
Design Principles for a Universal Robotic Software Platform and
Application to URBI

Jean-Christophe Baillie

Abstract— The number of generic robots available today on
the market is increasing significantly. While this represents a
great opportunity to carry on research using advanced robotic
devices, including humanoid robots, there is still a serious
limitation: all these robots are totally incompatible in term of
software, and they are generally quite hard to program, lacking
the proper abstractions and properties needed in robotics. We
will present here a discussion on possible design rules for such
a universal software platform and review a few already existing
platforms with these criteria in mind. We will also introduce the
URBI platform which is the result of our effort in an attempt
to design a universal platform following these guidelines.

I. INTRODUCTION

Looking at what happens today in Japan, Korea and the
US, it appears that the number of generic robots available
on the market will be increasing significantly in the coming
years [9]. By ”generic robots”, we mean robots not specif-
ically designed for an industrial task but general purpose
robots, commonly usable in labs for research. Many of these
robots, including humanoid robots, integrate cameras, wifi
and on-board computers, and most of them are available for
an affordable price. This is a great opportunity for research
but while the hardware is making progresses, there is still
no clear generic software platform emerging that could make
these robots compatible and bring the benefits of cross-robot
compatibility and component reuse. This is a major issue and
several studies have highlighted the benefits of having such
a universal software platform [4], [8], [5], [6].

Of course, robot programming can be done in C++, even
in C, and to a certain extend every software platform is
formally identical. But we believe that the debate should not
be between using Java vs C++, or using a given technology
vs another. The important question is to think about good
properties of such a universal platform that would facilitate
its adoption by a vastly heterogeneous community, mostly
knowledgeable and sometimes already on-track with a soft-
ware platform of their own. How could such a paradox be
solved: to have a universal but also very flexible platform,
which still brings value added in the process and does
not stand just as an empty shell, while providing a clear
orientation towards robotics. This will be the topic of our
discussion in this article.

We claim that the URBI software platform developed in
our lab makes a significant progress in the direction of
such a universal platform. We will shortly present the key

This work was supported by Gostai S.A.S., France
J.C. Baillie is with the National Institute of Advanced

Technologies, Cognitive Robotics Lab, 75015 Paris, France
jean-christophe.baillie@ensta.fr

characteristics of URBI and compare it to other existing
software platforms.

II. WHAT ARE THE KEY REQUIREMENTS FOR A

UNIVERSAL ROBOTIC SOFTWARE PLATFORM?

The challenge that we are going to investigate is: how
could we design and promote a universal robotic software
platform in the research community, what are the key re-
quirement for such a platform?

As a guideline, there are three main questions that we
should keep in mind when we investigate the potential
features: are these features necessary, acceptable and usable
by the community?

• Being necessary is an obvious requirement, however
sometimes overlooked by “over-featured” solutions that
can drawn the user in useless complexity.

• Being acceptable means that the community can realis-
tically accept to use this feature which by essence cre-
ates certain constraints or enforces a point of view. For
example, forcing the use of the C language exclusively
or forcing the use of a very constrained class-based
architecture will not be acceptable by many users.

• Finally, usability means that, however necessary and
acceptable the feature is, it should be relatively easy
to understand and integrate. The risk is otherwise to
have a kind of ”complexity barrier” that prevents the
widespread usage of the platform.

Breaking one of the three above requirements might be
one the main reasons why we have not seen any successful
platform emerging yet.

We detail below four key characteristics that we believe are
required for a successful universal platform and whose im-
plementation should fit with the necessary/acceptable/usable
constraints presented above.

A. Flexibility

Being flexible means that the platform should be working
with any operating system, be interfaced easily with any
programming language and of course be suitable for any
type of robotic application.

A non flexible platform will typically enforce several
design choices and will, to a certain extend, constrain the user
into a predefined way. While this has the advantage to im-
prove general coherence and structure, it is also generally not
acceptable (in the sense defined above) by the community.
In fact, many research topics are precisely about finding a
good architecture, a good paradigm or structure for robotics.

One can always bypass these constraints but at the cost of
heavy custom-made layers. The difficulty here is that most
platform developers claim to have a flexible solution, in the
sense that it is possible to do anything with it, as long as
one is ready to put enough effort in the process. A C++
library, like OPENR on the Aibo[10], is a good example.
Here, the notion of usability that we have introduced before
plays a central role. The flexility must be easy to implement,
natural (using well known concepts, like objet oriented
programming) and possibly transparent: no need to read a
long documentation to know how to use it, and no need
to develop, port or recreate preliminary tools/interfaces to
benefit from it.

Note that non-flexible platforms have been imposed al-
ready in other domains, like desktop computers, but there
was already a quasi monopolistic player to enforce it, which
is not the case today for robotics. So we believe that a non-
flexible platform (in the usable sense) will unlikely become
a widely used universal robotic platform.

B. Modularity

Modularity adds the possibility to plug components in the
platform to extend its capabilities. This is necessary to be
able to start cooperations between labs and the industry, by
developing and reusing modules for robotics. It is the basis
of a software industry for robotics. The need for modularity
is widely recognized, see for example [11], [15], [12].
Modularity is also imperative to move towards plug&play
hardware components for robotics.

Again, this constraint will be acceptable only if it is very
easy to deploy. Anyone should be able to develop compo-
nents and the unavoidable structuring constraints should be
reduced to the minimal, for the solution to be usable.

C. Powerful abstractions for robotics

Robotics is unlike classical computer related domains. The
main difference is that robots have to explore hypotheses,
runs things in parallel, react to events at various levels and
generally speaking integrate vastly more software technolo-
gies than a regular PC. Among the important technical dif-
ferences, parallelism and event-based programming are two
core requirement in any robotic application. The underlying
platform must support these abstractions natively.

Thread-based libraries on top of C++ or other languages
do not offer the appropriate abstraction needed for robotics.
The limitations of threads have been widely discussed al-
ready [16] and it is now recognized to be a major issue
in parallel application development, especially now that we
can see quad-core processors on the market. The main
limitation of threads in their most primitive declination is
that memory safe locking and code synchronization, which
is are very challenging problems, are left to the programmer.
This rapidly lead to bugs, even for careful and experienced
programmers.

Something new is needed to handle parallelism at the right
level of abstraction, just like object-oriented programming

brought something new to modular development. The bene-
fits of the abstractions available in C++ today compared to C
are now widely recognized, even if some resistance existed
at the beginning, and we claim that such a paradigm shift
is needed for robotics as well, to integrate parallelism and
event-based programming at the core of the platform.

Introducing some smart C++ classes to handle parallelism
will raise the problem of flexibility. Theses classes will
not be available in Python, Java or Matlab and, even if
it is possible, a important effort would have to be done
to provide a unified set of abstractions for all possible
languages. A intermediary programming scripting language,
with proper interfaces with other languages and integration of
parallel and event-driven abstractions is the direction we have
chosen. More and more, scripting languages are used as glue
between other compiled languages. Python or Ruby are two
famous examples. What these languages lack however for the
moment is the necessary abstractions adapted for robotics, at
least with a sufficient level of usability, as described above.

D. Simplicity

The above requirements generally tend to give birth to
very complicated software architectures which are confusing
and prevent the users to adopt them. Simplicity for usability
is a requirement of both the modular component architecture
and of the core platform technology in general.

It is of course hard to assess what is difficult and what
is simple, it will highly depend on the level of experience
of the user. This criteria can only be enforced by following
some common sense principle: reuse notions that exist, limit
the number of abstractions, build layered architectures where
the complexity of the knowledge necessary to perform a task
is proportional to the complexity of the task, etc.

It is however possible to measure the level of simplicity
reached once the platform has been released by looking at
the average user appreciation. This measure should be done
by any platform developer to validate his approach.

III. ADOPTION STRATEGIES

Beyond the technical questions mentioned above, the
question of the promotion of the platform is a generally
underestimated problem. The issue is not only to have the
platform adopted by the research community but also by
robot manufacturers. Relying on standardization comities
is a long and uncertain process, and releasing open-source
version on the Internet is generally not enough to attract the
proper attention on the solution, at least not in a short time.
In fact, some marketing is required.

Active promotion and continuous development, mainte-
nance and support are typically demanded by robot man-
ufacturers. This support can be achieved by a gathering of
universities granted with appropriate funding and political
will, or by a private company spin-off from the lab and
supported by the community. We believe that individual
initiatives or small lab projects will not be sufficient to
efficiently promote a universal software platform for robotics.
The issue of ”adoption strategies” should not rely only on

the quality of the solution proposed, but deserves its proper
attention and financing.

IV. THE URBI PLATFORM

The URBI platform, developed initially by J.C. Baillie[1]
in the Cognitive Robotics Lab of ENSTA (Paris), is an
attempt to design a universal robotic software platform that
follows the above guidelines.

The URBI platform is based on a client/server architecture,
built on top of a new programming language called URBI. It
is possible to log into the robot with a simple telnet client and
start to enter URBI code to control the robot and the software
inside the robot. More advanced graphical and developer-
oriented tools are also available.

We detail here the main characteristics of URBI. This is
a very brief introduction, the reader is invited to get more
information in [2], [1], [3].

A. Why a new programming language?

There are already so many programming languages, why
should we add a new one to the list? The novelty of URBI
is that it brings new abstractions to handle parallelism and
event-based programming, directly integrated into the lan-
guage semantics. A component architecture is also directly
integrated in the language via a familiar object oriented
approach.

In terms of the general look & feel (types, control struc-
tures, objects, etc), URBI is fairly similar to other scripting
languages like Ruby, with a syntax based on C/C++ to make
it as familiar as possible to new users (usability constraint).

1) Parallelism: Parallelism is not handled via threads or
callbacks in the language, instead URBI introduces four
command separators: the classical semicolon, and the new
comma, pipe and ampersand. While the semicolon has its
usual serial semantics, the other separators add more possi-
bilities, including parallelism, to state how two commands
should be executed. Figure 1 illustrates the four semantics.

Fig. 1. Four types of command separators in URBI

Note that separators like pipe or ampersand are strict,
since they enforce respectively an immediate serialization
or parallelization of the commands. This can be used to
precisely describe synchronization processes. Comma and

semicolon however are loose, and the semantics allows for
a gap to exist.

One can build complex serial/parallel constructs very
easily. In the following code, C will start as soon as A and
B have both finished:

{ A & B } | C;

Threads are not required as they are transparently handled
by the URBI scheduler running in the language kernel inter-
preter, thus providing the right level of abstraction needed
for parallelism.

2) Event-based programming: Another important abstrac-
tion in URBI is how events can be handled in the language.
Consider the following code:

at (condition) action;

The action part will be executed once, each time the con-
dition becomes true. Another event handler is whenever,
which will execute the action in loops whenever the condition
is true and as long as the condition remains true. These
two commands are a bit similar to if and while, but
they remain in background and will constantly monitor the
condition to trigger the action if necessary.

It is also possible to emit events with parameters to send
signals between codes running in parallel or between clients.
The example below will trigger action(42):

at (myevent(x)) action(x);

emit myevent(42);

We will see in the next section an example that combines
parallel and event-based programming together with the
component architecture.

B. The UObject component architecture

URBI is an object oriented language, so you can use and
define objects as usual. What is more important is that you
can also plug C++ objects into the language very easily,
which is the base of the component architecture available in
URBI. The C++ object will then be visible and usable as
any other object in URBI; it is called a ”UObject”.

UObjects can be plugged, but they can also be unplugged
and then ran remotely as autonomous executable programs,
taking the address of the URBI Engine server as a parameter.
This allows to integrates distributed object management
directly in the language itself. For usability, note that, as
we already explained, the C++ code of the UObject is the
same whether it is plugged or ran in remote mode, it does
not even need to be recompiled and it can be switched at
runtime (relocatable objects).

CORBA, RT-Middleware or openHRP objects can also be
seen from within URBI, like in fact most existing distributed
object architecture, thus making URBI a central platform to
integrate various technologies.

In summary: URBI plays the role of a central coordina-
tor/hub for a set of plugged or remote heterogeneous objects,
with parallel and event-based built-in capabilities. Shared
memory and message passing can be done simply via the
language structures.

Example
The example below can be used on the Aibo robot

(there is a free version of URBI for Aibo available on
www.urbiforge.org), and it will track the ball whenever the
robot sees it:

whenever (ball.visible) {
headPan.val += camera.xfov * ball.x
&
headTilt.val += camera.yfov * ball.y

};

headPan and headTilt are two UObjects controlling
the head motors, and ball is a UObject detecting and
localizing the ball in the image. Typically, headPan and
headTilt will be plugged in the robot like ”hardware
drivers”, while ball or other computer intensive objects
can be running remotely outside of the robot. The UObject
code is exactly the same in both cases (it is not even
necessary to recompile it) and the way to use the object inside
URBI is identical, which brings important features in term
of transparent distributed object management and usability.

Note that the UObject architecture provides ways to get
a notification whenever a specified variable is modified in
URBI. For example, the ball UObject requests a notifica-
tion on camera.val, thus making ball aware of any new
image to process.

This simple example shows also how URBI enables to
control motors by assigning the ‘val’ attribute of a motor
object in the language. This is very simple and can be used
in educational applications.

The UObject components in C++ have been designed
with simplicity in mind. A limited set of small changes
is necessary to port an existing C++ class into a UObject.
Extensions to Java and C# are in development, to extend the
acceptability of the feature.

C. Advantages of the client/server approach: liburbi

The client/server approach allows to interact with URBI
through a socket connection, from any existing programming
language. Liburbi is a set of GPL libraries for various lan-
guages like C++, C, Java, Matlab, Ruby, Python and others,
that allows to create connections to an URBI Engine, send
commands and receive messages asynchronously. Liburbi is
designed with simplicity in mind, as a proxy to the URBI
Engine and it does not add new abstractions or complexity
to the platform, which is essential for usability.

In the most degraded case, URBI can be seen as a
simple driver for the robot hardware, and can be used with
liburbi from within any programming language to provide a
common interface to any robot.

D. Advanced features for robotics

In addition to parallelism, event-based programming and
the object oriented UObject component architecture, URBI
brings several unique features that we briefly review here.
These features are direct consequences of the parallel nature
of the language and would not be semantically well defined
otherwise.

A simple assignment in URBI can target a variable to
reach a value in a given time or at a given speed, or
set a sinusoidal oscillation on it. The assignment is not
instantaneous anymore and can be run in parallel with others:

neck.val = 10 time:450ms
& leg.val = -45 speed:7.5
& tail.val = 14 sin:4s ampli:45;

Variables have a blend mode which specifies how con-
flicting simultaneous assignments should be handled - an
extension of the concept of ’mutexes’:

x->blend = add;
x = 1 & x = 3;
//now x equals 4

Any portion of code can be prefixed with a tag. It is
then later possible to stop, freeze, unfreeze this code from
anywhere using the tag name, which brings powerful features
to control the flow of execution of parallel codes:

mytag: { some code };
stop mytag;
freeze mytag;
unfreeze mytag;
...

Hierarchical tags and multi-tags are also available.
More details about the advanced features of URBI can be

found in the tutorial or reference manual [2].

E. Limitations

Currently embedded versions of URBI are limited to
robots who have a reasonably powerful CPU embedded
(typically ARM7 or more). It is written in C++ and must be
compiled for the hosting platform. This limitation is coun-
terbalanced by the fact that most robots can be controlled
remotely via a serial link or wifi connection, URBI running
on a PC or a Mac on the side. The general trend in robotics is
also to have more and more linux based robots with sufficient
CPU onboard.

Another limitation of URBI is the need to develop a set of
hardware UObjects for each new robot. This is similar to the
problem of driver development. Most of the time however,
the robot comes with a simple C API that can be wrapped
inside C++ UObjects in a few days. URBI is not an Operating
System and will rely on existing interfaces to the hardware,
thus limiting the driver development problem.

The real time aspect in URBI is dependent on the un-
derlying operating system. If the OS is capable of real-
time scheduling, then putting URBI in the highest priority

will allow to guarantee a first level of real-time features
in URBI (at the level of URBI commands, not plugged
UObjects). The second stage is to include in URBI some
real-time oriented features, like priority flags for commands.
This is in development for version 2. Finally, work has to be
done on integration of UObjects in the real-time framework,
and integration with existing real-time platforms like RT-
Middleware.

Finally, the current limitation of URBI is its relatively
limited adoption and youth. There are currently nine different
robots that run URBI and one simulator (Webots), and about
20 to 25 universities that use it on a daily basis. One spin-
off company of our lab is currently promoting URBI towards
robot manufacturers to extend its coverage.

V. COMPARISON OF URBI WITH EXISTING PLATFORMS

URBI has been designed with the four above key con-
straints in mind: flexibility, modularity, parallel abstractions
for robotics, and simplicity. Other attempts are currently
made in the same direction and we will shortly review some
of the most significant here.

A. Player/Stage

Player/stage is a client/server based platform built on top
of C++. It is widely used in mobile robotics applications, in
particular with the Pioneer robots.

As a C++ library, it does not bring new abstractions in
term of parallelism or event programming: the user must
use threads and an event loop of his own. Flexibility is also
limited by the choice of a specific programming language,
but the client/server architecture enables in principe other
language interfaces, with a question mark on usability.

There is no distributed component architecture in
player/stage, except C++ built-in objects.

B. Microsoft Robotics Studio

The recent announcement by Microsoft to offer a uni-
versal robotic interface has been perceived as a very good
sign of the maturity of the robotics industry. It represents
a serious effort in the right direction for more advanced
abstractions for robotics, supported by a major software actor
capable of active promotion. It is however relying on a
.NET architecture which needs Microsoft Windows either
on the robot or on a remote computer, raising questions in
terms of flexibility. Generally speaking, several users have
reported that MRS remains relatively complex to master for
the moment.

C. CORBA

CORBA, the distributed component architecture developed
by OMG, provides much flexibility as it has been ported to
many type of languages. CORBA has no particular abstrac-
tions available for parallelism, except the object level par-
allelism, and events are handled with a usual asynchronous
object message passing mechanism.

One of the limitation of CORBA is that it is perceived
as a complex solution and it lacks of a central coordination

mechanism to interface the different CORBA objects. The
same applies to RT-Middleware currently developed in Japan.

Note that since URBI allows to dynamically create meth-
ods on an existing object at runtime, it is possible to create
a UObject that will connect to a CORBA or RT-Middleware
object, read the IDL and create appropriate hooks as URBI
object methods, to transparently interact with the remote
object. Effectively, this allow to transparently access CORBA
or RT-Middleware components, seen as regular objects in
URBI.

D. Others

Many others platforms exist, like Tekkotsu [6], Marie [7],
Orocos [11], Orca [12], ERSP [13] or Pyro [14]. Some
are based on a C++ library approach and rely on a rather
complex architecture. Some others, like Pyro, are notably
more simple and based on python, but do not include native
abstractions for parallelism or distributed objects at the
moment.

While each of these platforms brings its own clear benefits,
and do a great job in their specific domain, none of them at
the moment fits altogether with all the four requirements that
we have detailed.

VI. CONCLUSION

While there is still no clear leader in the field of universal
robotics software platform, the number of candidates is
increasing, like the number of robots. Reminding us of the
beginning of the 80’s and the Personal Computer revolution,
it is likely that one major platform will stand out in the future.
But unlike computer users in the 80’s, robot specialists
and end-users are today more knowledgable and aware of
the importance of design principles in order to have a
successful, flexible and adapted platform. We have presented
four key guidelines that should drive the development of
such a platform: flexibility, modularity, parallel abstractions
for robotics, and simplicity. We have claimed that each of
these characteristics is necessary and should be acceptable
and usable to make it suitable in a universal platform. Finally,
we have introduced the URBI platform which is the result
of our efforts towards such a universal platform. We also
summarized briefly some others candidates by comparing
their approach to the four criteria that we have stated.

URBI is currently available for free on www.urbiforge.org,
with documentation and a user forum. It is available in
particular for the Aibo and Mindstorm robots. We hope
that URBI can contribute to the development of robotics in
research and in the industry.

REFERENCES

[1] J.C. Baillie, ”URBI: Towards a Universal Robotic Low-Level Pro-
gramming Language”, in Proceedings of IROS’05, 2005, pp 820-825.

[2] J.C. Baillie, ”The URBI Tutorial” www.urbiforge.org/tutorial, v 1.2,
2007.

[3] urbiforge, ”URBI Technology website, with documentation and soft-
ware exchange platform ” www.urbiforge.org, 2004-2007.

[4] G.M.Biggs and B.A.MacDonald, ”Specifying Robot Reactivity in Pro-
cedural Languages”, in Proc. IEEE/RSJ Int. Conference on Intelligent
Robots and Systems, 2006.

[5] G.M.Biggs and B.A.MacDonald, ”A survey of robot programming
systems”, in Proceedings of the Australasian Conference on Robotics
and Automation, CSIRO, Brisbane, 2005.

[6] David S. Touretzky and Ethan J. Tira-Thompson, ”Tekkotsu: A frame-
work for AIBO cognitive robotics”, in Proceedings of the Twentieth
National Conference on Artificial Intelligence (AAAI-05), 2005, Menlo
Park.

[7] Ct, C., Brosseau, Y., Ltourneau, D., Raevsky, C., Michaud, F., ”Robotic
Software Integration Using MARIE”, International Journal of Ad-
vanced Robotic Systems - Special Issue on Software Development and
Integration in Robotics. Vol.3, No.1, 55-60.

[8] Richard T. Vaughan, Brian Gerkey, and Andrew Howard, ”On Device
Abstractions For Portable, Resuable Robot Code”, in Proceedings of
the IEEE/RSJ International Conference on Intelligent Robot Systems,
2003, pp 2121-2427.

[9] UNECE - United Nations Economic Commis-
sion for Europe, ”2004 World Robotics Survey”,
www.unece.org/press/pr2004/04robots index.htm, 2004.

[10] Sony Corporation, ”Open-R SDK for Aibo robots”,
www.openr.aibo.com, 2005.

[11] OROCOS, ”Open Robot Control Software”, www.orocos.org.
[12] A. Makarenko, A. Brooks, T. Kaupp, ”Orca: Components for

Robotics”. IEEE/RSJ International Conference on Intelligent Robots
and Systems, (IROS 2006) Workshop on Robotic Standardization

[13] Evolution Robotics, ”ERSP: http://www.evolution.com/products/ersp/”
[14] Blank, D.S., Kumar, D., Meeden L., and Yanco, H., ”Pyro: A Python-

based Versatile Programming Environment for Teaching Robotics.”,
Journal of Educational Resources in Computing (JERIC).

[15] A. Mallet, S. Fleury and H. Bruyninckx, ”A specification of generic
robotics software components: future evolutions of GenoM in the
Orocos context”, in International Conference on Intelligent Robotics
and Systems, Lausanne (Switzerland), 2002.

[16] John K. Ousterhout, ”Why Threads Are A Bad Idea (for most
purposes)”, Talk at the 1996 USENIX Technical Conference, January
25, 1996, http://home.pacbell.net/ouster/threads.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /TimesNewRomanPS-ItalicMT
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

