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Abstract: The development process of distributed real-time embedded systems (DRES) suffers significant 
limitations when addressing the antagonistic concerns of systems interoperability, flexibility, and reliability. In 
this paper, we first present a component-based development process and related architecture designed to enable 
DRES interoperability while improving developer productivity. We then describe the techniques this process 
uses in order to improve reliability of these systems. The component-based framework is illustrated by a 
practical use case. Lastly, we present research orientations addressing verification, validation, and certifiability 
on the one hand, and their ability to tackle with the always-growing flexibility requirements on the other hand. 

 
As real time embedded systems complexity is 
growing every year, industry software architects are 
facing major challenges in terms of development 
productivity. This issue is addressed by component-
based development methodologies, as proposed by 
the software engineering academic community [1]. 
Automatic deployment and configuration, code 
generation, code reuse, better testability and early 
validation, reduced time to market, easy tuning and 
mitigating integration risks are some of the benefits 
of component-based development (CBD). In mid 
1990, industry standards have been issued for 
applying CBD to large scale information systems 
(Sun’s Enterprise Java Beans – EJB [2], OMG’s 
CORBA Component Model – CCM [3]). 
Unfortunately, CCM and EJB frameworks are not 
directly applicable to distributed real time 
embedded systems: scarce computing and memory 
resources, hardware heterogeneity, real time 
constraints, performances and assurance issues 
make CCM and EJB irrelevant for development of 
DRE systems. Consequently, DRES software 
engineering community has performed extensive 
research for adapting component-based 
development to DRE systems. THALES has been 
involved at the OMG for defining a variant of CCM 
that may cover the technical requirements of 
embedded real time component-based frameworks. 
The reason of choosing CCM as a starting point 
was the suitability of OMG’s philosophy with the 
requirements of THALES’ clients in terms of 
interoperability and standard openness. Thus, the 
main challenge was to make CCM efficient, 
predictable and low footprint. Moreover, since non 
functional requirements of DRE systems are very 
versatile from one system to the other, it is crucial 
for a DRES component-based framework to be 
highly adaptable and configurable. Note that a 

naïve approach to adaptability may deeply impede 
interoperability. 

Research conducted by THALES during the last four 
years has led to a component framework that is 
usable and beneficial for industry-standard real time 
embedded systems. Ongoing research is performed 
for addressing more application domains, 
particularly safety-critical, mission-critical or 
security-critical certified applications requiring 
deep verification and validation on the one hand, 
and reconfigurable and multi-mission systems on 
the other hand. 

This paper will first present the outcome of 
THALES’ collaborative research effort performed 
during the last four years (section 1). The benefits 
of the resulting component-based framework, 
namely MyCCM, are illustrated on a real world 
program MyCCM is being applied to (section 2). 
Finally, an overview of current research activities is 
provided in section 3. 

1. Component-based 
Framework for 
Distributed RT/E 
Systems 

This section will first present the authors’ 
viewpoint on component-orientation, and then 
describe the principles and the outcome of adapting 
component-based development to real time 
embedded systems as performed in the scope of 
collaborative projects. 



1.1. Component-Orientation 

Principles 
Component-orientation has been introduced to help 
managing the increasing complexity that 
Information Systems were facing and to increase 
the productivity of their development. A component 
is basically a piece of functionality that can be 
assembled with others in order to provide the full 
functional coverage of the system. Allowing to 
break down the whole system in smaller really 
independently manageable pieces, easier to develop 
and to reuse, makes it much cheaper to develop and 
integrate. 

To achieve that goal, components come with three 
main characteristics: 
• A self-described packaging format, so that 

components can be deployed and configured 
externally from the application. 

• The explicit description, by means of ports, of 
not only the services that the component is 
providing (as an object does), but also of the 
ones it requires for functioning, to be provided 
by other components; this allows the 
components being connected externally from 
the application. 

• The separation of the business logics (the 
components themselves) from the relevant1 
technical support that the infrastructure is 
providing to them and which is under the 
responsibility of the containers, parts of the 
infrastructure aiming at hosting the 
components.  

Even not always put forward, this “separation of 
concerns” is a key factor to master complexity and 
to allow an effective reuse, hardly achievable with 
only object orientation. Actually the two more 
important factors that prevent reuse are: 
• Inability to master the dependencies between a 

piece of software and others: component model 
– making this explicit – provides a way to 
tackle this. 

• Inability to master dependencies between a 
piece of software and its underlying 
infrastructure: Component/Container model 
offers a way of structuring this. As a side 
effect, this model allows to guarantee that the 
supported technical properties are enforced 
consistently across the application (e.g., the 
access control policy is guaranteed to be 
applied to all components) 

Of course, the work to build the appropriate 
containers is no more of the application developer’s 
responsibility. Component-based infrastructure 

                                                 
1 What is the relevant technical support depends on 
the application domain. 

(e.g., EJB – see below) are thus coming with the 
tooling allowing to automatically generate the 
containers, based on standardised descriptions. 

This model has been implemented as support for 
Information Systems. The first consistent 
implementation has been Sun's EJB (Enterprise 
Java Beans) which is a real success in this specific 
application domain. EJB offers support for 
technical services that are meaningful in this area 
(Persistence support, Transactional support and 
Security – to be understood as access control) and 
is built on top the Java infrastructure. 

CORBA CCM (CORBA Component Model) is a 
more generic and distributed specification of this 
model, even if still fully dedicated to Information 
Systems (it offers support for the same technical 
services as EJB). However, as the general trend of 
CORBA is to focus more on technical systems2, 
CCM is moving in the same direction. This move 
has already started at OMG, with newly adopted 
Lightweight CCM specification that defines a CCM 
profile compatible with embedded targets.  

With .NET, Microsoft has also adopted this model, 
even if the proprietary solution it proposes allows a 
slightly different, more intrusive and less 
structured, way of organising the software. 
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Figure 1: Impact of separation of concerns on 
development process 

Impacts on the Development 
Process 
Separating the functional properties from the non-
functional ones and building the whole system by 
means of assembly, deployment and configuration 
of components have huge positive impacts on the 
development process itself, whose main phases are 
featured on Figure 1: 

                                                 
2 Cf. all the new specification in the area: Real 
Time CORBA, Minimum CORBA – special profile 
for embedded systems, Fault Tolerant CORBA, 
Data Parallel CORBA... 



• It allows a clean role separation: domain 
experts may focus their functional expertise 
while platform specialists may define and 
implement the best technical support. 

• Component reuse is made possible. 
• As technical support realisation is mainly 

achieved based on component configuration, 
main design choices (such as component 
localisation) can be delayed until the latest and 
therefore adjusted during the integration, 
making that costly phase much easier. 

1.2. Adaptation to Real-time 
and Embedded Systems 

All the positive impacts of component-orientation 
would be also very desirable for RT/E systems. 
However current implementations are not suitable 
for those systems since they don’t provide the 
relevant non-functional support nor the adequate 
interaction modes between components and are not 
meant to accommodate resource constraints, which 
are here of prime importance. 

THALES has therefore decided to adapt an existing 
standard component model to specific constraints of 
RT/E systems and to define a dedicated framework. 
As basis, OMG’s Lw-CCM has been selected and 
its adaptation initiated in the scope of two research 
projects (IST/COMPARE [7] and ITEA/MERCED 
[8]).  

One important characteristic of the RT/E area is the 
huge variety of its systems. Trying to provide in a 
unique framework a solution that would fit all the 
RT/E systems is not achievable, nor desirable. 
Therefore, rather than just adding the technical 
support that would allow to develop the use-cases 
parts of those projects, it has been decided to focus 
on extensibility and usability. 

Extensibility is achieved by providing the ability to 
plug within the container, technical support 
providers, called container services. For that 
purpose, has been defined an open architecture for 
the container with specification of dedicated 
interfaces to insert and configure the container 
services as well as a packaging format to enable 
their deployment. 

Usability for RT/E systems is primarily conditioned 
by the ability to get adequate interaction between 
components. Actually proper interaction support is 
crucial for it conditions the ability of designing 
components and the existing one was far from 
being enough. A new construct, named connector, 
has been introduced to capture the interaction style. 
Connectors can then be developed for as many 
interaction styles as needed. Connectors are actually 
made of fragments, which are considered as 
specific container services and can be deployed and 
configured as such.  

Usability also depends on the ability of the 
framework to accommodate stringent resource 
requirements. Key elements for that purpose are (i) 
the ability to tailor the containers at their minimum 
functional coverage by plugging in only what is 
strictly needed, (ii) the platform isolation provided 
by the containers, which allows the use of a huge 
variety of technical services (including small ones if 
needed) as well as (iii) the implementation of 
specific trade-offs to get the better use of the scarce 
resources. As a proof of concept of the ability to 
accommodate various platforms, two 
implementations of the framework have been 
developed during those research projects: the first 
one on top of RT-CORBA, the second one on top 
of OSEK-VDX. 

In the scope of these two projects, interaction 
support for the use-cases has been implemented, as 
well as some container services providing basic 
development facilities (tracing...) and timing 
properties enforcement (locking protocols and 
appropriate setting of POSIX scheduling 
parameters). 

1.3. MyCCM 
Based on these research results, THALES has started 
to industrialise a framework, called MyCCM (Make 
Your CCM). MyCCM building blocks are 
represented on Figure 2. 
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Figure 2: MyCCM building blocks 

 

The central part represents MyCCM runtime, that is 
mainly two folds: (i) infrastructure and its services 
mediated by the containers, which in return are 
hosting structures for the components,  and (ii) a 
tool called Administration, dedicated to 
deployment, configuration and connection of 
components – and later on, monitoring and control. 
On the right side is represented the container 
generation tool, which generates the containers and 



component envelopes3 based on component 
description (IDL3 and XML files); on the left side, 
the packaging and assembly tool which prepares 
what the Administration needs as input, namely the 
component packages and the deployment plan. 

Adaptation to a particular domain 
As it can be seen, the framework is a combination 
of runtime support and associated tooling. Porting it 
to a given platform will affect not only the runtime 
support, but the generated code as well. Therefore 
attention has been paid to make the code generation 
mechanisms as flexible as possible. 

Besides porting to the target platform, adapting the 
framework to a specific domain consists just in 
selecting or defining and implementing proper 
container services and connectors. 

Real Time Issues 
Container services are used for configuring time 
and scheduling parameters of the application, while 
other services provide real time locking 
mechanisms. This way, the software architect 
addresses all the scheduling issues in configuration 
files. The corresponding activation model is 
illustrated on Figure 3: threads, that may be either 
periodic or “one shot” are associated to 
components entry points. One shot threads are 
meant for interrupt handling as well as any input 
I/O functions: where necessary, the architect 
connects one shot threads to a never ending 
incoming event handler encapsulated in the 
receiving component. 

MyCCM also enables the software architect to set 
the scheduling parameters of the threads handling 
the framework-supported communication 
mechanisms. Such communication threads may 
have either a (i) static scheduling configuration as 
given by the architect, a (ii) dynamic configuration 
where scheduling parameters are inherited from the 
calling activity or finally (iii) no-configuration – 
applicable only to components in the same address 
space – where the calling thread performs the local 
method invocation. MyCCM uses the underlying 
OS and middleware (POSIX and RT-CORBA for 
instance) for implementing these policies.  

                                                 
3 A component envelope is a generated piece of 
code allowing a user-written piece of code to be 
hosted by a container. What is generally called 
‘component’ is the business code (written by the 
application-developer) plus its envelope. 
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Figure 3 : Threads configurations 

2. A Practical Use Case 
Beyond experimentations and use case 
developments performed in the scope of research 
projects, MyCCM has been recently adopted by 
THALES for the development of an Infra-Red Search 
and Track (IRST) Signal Processor called 
ARTEMIS. 

2.1. The ARTEMIS Program 
ARTEMIS IRST system has been selected to equip 
the Future European Multi-Role Frigates 
(FREMM). It is mainly composed of three infra-red 
sensors – located around a mast – and a Signal 
Processor. Each sensor covers a third of the frigate 
horizon (120°). The three video streams are sent to 
the IRST Signal Processor (ISP) by a specific 
protocol on top of UDP. The ISP applies 
visualisation and tracking algorithms to incoming 
streams. Data processing is distributed on different 
single board computers. Each algorithm is 
encapsulated in a component that communicates 
either locally or remotely with its counterparts via 
the communication support of the component 
framework. For controlling and configuring the 
components, the framework relies on a free RT-
CORBA middleware, while high bandwidth data 
streams are handled by a fast, unreliable 
implementation of CCM event support. Finally, 
processed video and tracks are sent to the frigate's 
Combat Management System using a dedicated 
protocol. 

A module in a UML modeller enables the ISP 
software architect to design the application in a top 
down approach. Scheduling settings (priorities and 
periods) and parameters of components are defined 
in UML models as well. The software architect 
may also define functional validation scenarios, or 
target performance measurement scenarios in the 
UML modeller. CCM deployment and 
configuration descriptors are then produced for 



each validation scenario. On-target execution of 
these scenarios is handled automatically by 
MyCCM deployment mechanisms. 

2.2. Benefits for the Software 
Architect 

Usage of a component framework such as MyCCM 
has good consequences on productivity of software 
development. Several factors contribute to 
increasing productivity. First, MyCCM 
development process is based on intensive code 
generation: configuration of scheduling parameters 
such as POSIX priorities and thread periods, 
priorities of RT-CORBA communication threads, 
data marshalling code and method dispatch, and 
configuration, deployment and connection of 
application components are simply generated from 
the architecture description provided as a set of 
UML models. With MyCCM, the program manager 
doesn’t have to provision development efforts for 
these tasks. Additional cost reduction resides in the 
dramatic simplification of internal communication 
protocols: with handcrafted communications, 
detailed specifications of datagram/stream formats 
are necessary; with a communication middleware 
such as CORBA, equivalent specifications are 
much more abstract, and consequently simpler. 
Specification of interfaces is done at operation 
level, with in/out parameters and exceptions, not at 
socket level. Moreover, generation of threading 
artefacts and deployment code makes a program 
relying on MyCCM clearly more productive than a 
regular CORBA or RT-CORBA application, for 
which only communication support is generated. 

Integration of MyCCM with modelling tools is 
another productivity factor. Indeed, the software 
architect is not meant to write complex architectural 
descriptors by hand: definition of application 
architecture, design, configuration and deployment 
is rather done in a UML-based GUI. The first 
benefit is that graphical models constitute a key 
communication support between team members. 
Moreover, model-to-descriptor generators may 
come with potentially intensive model verification, 
which leads to early discovery of model 
inconsistencies. 

Another productivity factor is easier testability: 
because MyCCM architecture enables the 
component developer to avoid platform 
dependencies, the functionalities of such platform-
independent components can be validated not only 
on target, but also on development host. 
Components might be specifically enveloped and 
compiled for either the host or the target by just 
modifying few parameters of the UML architectural 
description, so that a complete functional 
validation can be performed on host.  

Finally, integration costs and risks are significantly 
reduced by the late binding between application 
and the platform: when all software components are 
finally put together for final integration, it is almost 
inevitable that integration engineers have to fine 
tune the thread number and their associated 
parameters (period, priority…). With MyCCM, 
since all these parameters are in the models and not 
in the application code, engineers don’t have to 
deeply analyse component code for finding out 
where threads are created and configured. Another 
typical situation where this late binding property 
mitigates integration risks is when hardware 
happens to be ill dimensioned with regard to 
software execution times and system timing 
requirements. Application components only have to 
be re-targeted (in UML models) to the new 
hardware. MyCCM will take into account the new 
hardware environment by generating some other 
technical code, with no impact on component 
implementations. 

To sum up, component-based development might 
have very positive impact on productivity of 
software development. Still, our real-world 
experimentation with ARTEMIS program has not 
yet reached the point where productivity benefits 
might be factually assessed. This point will be 
reached by the end of all development and 
integration activities. 

2.3. Current Limitations 
There are key issues in DRES development that are 
not currently addressed by MyCCM. For instance, 
although MyCCM enables software architect to 
implement priority-based real time systems, no 
support is provided yet for taking advantage of RT-
CORBA support for real time network protocols. 
Network scheduling must be performed by other 
means. In today’s MyCCM, priority inversion may 
occur in network stacks. 

No support is provided either for proving that the 
system will meet its end-to-end requirements. This 
issue is generally referred to as schedulability. 
Another key issue is proving that the system is 
deadlock-free. Those two properties (schedulability 
and deadlock verification) are mandatory for high 
assurance systems, might they be mission-critical, 
safety-critical or security-critical. 

Yet another issue is that MyCCM only offers a 
programmatic support for reconfiguration: if 
needed, reconfiguration must be programmed by 
hand. A descriptive, framework-supported 
reconfiguration mechanism would contribute to 
further increase productivity. Last but not least, 
multi-mission systems have specific requirements 
on software architecture that are not currently 
addressed by MyCCM. 



Next section will discuss these issues and provide 
the reader with insights about ongoing research 
activities on these topics. 

3. Ongoing Research 
Activities 

The two directions followed by our research 
activities are verification and validation on the one 
hand, and support for greater flexibility on the other 
hand. While verification and validation address 
safety-critical, mission-critical or security-critical 
systems, research on flexibility addresses context-
aware systems, fault tolerant systems, load balanced 
systems, autonomous systems and multi mission 
systems.  

3.1. Verification & Validation 
Worldwide academic community has performed 
extensive research towards verification of DRE 
systems. During the last decades, formal methods 
such as model checking, computational logics, 
schedulability algorithms and static code analysis 
have been foreseen to be able to provide the 
software architect with advanced tools and methods 
for verifying and validating DRE systems. Yet, 
these formal methods lack proper integration with 
the actual execution infrastructure, making them 
more difficult to use efficiently. Numbers of 
properties might be verified, although resource 
dimensioning is under particular focus in the DRE 
domain.  

Typical resources to be dimensioned are time, 
memory and energy. The following will focus on 
time. 

Several tools are available to analyse real time 
properties of the system. Some are based on model 
checking techniques (UPAAL [14] for instance ), 
others on algebraic methods inherited from Rate 
Monotonic Analysis, such as MAST [15] and 
Cheddar [17]. Not surprisingly, both methods have 
their respective limitations: model checking is 
subject to exponential state space explosion, while 
algebraic methods are not able to analyse all 
possible situations. 

Research has been conducted to integrate model 
checking techniques with component-based 
development [11, 12, 13]. University of Cantabria 
(Spain), THALES and ENST (among others) are 
currently performing research towards integration 
of CBD and algebraic methods. This requires the 
user to provide a characterisation of the temporal 
properties of each component, so that end-to-end 
execution times can be synthesised. Such end-to-
end execution times can finally be provided, 
together with other parameters such as periods, 

priorities and deadlines, to the scheduling analysis 
tool. 

As a matter of fact, these temporal characterisations 
might even be automatically generated by an on-
target performance measurement setting of the 
component framework, provided that a more 
abstract behavioural profile – omitting numbers – is 
available. For complex components, execution time 
measurement scenarios could be generated by static 
analysis of component code as developed at CEA-
List. 

Finally, on-target measurements may also be 
performed for OS, middleware and network 
traversal timings, provided that quantitative data 
flow descriptions are available. 

Other verifications might be performed besides 
schedulability analysis. Most notably, Ocarina [19] 
has been developed in order to enable the 
configuration of the middleware from an AADL 
[16] description. In parallel with the generation of 
the middleware code, a behavioural model of this 
middleware is generated into a well formed 
coloured Petri net in order to verify behavioural 
properties of the middleware thanks to model 
checking techniques. 

As another verification example, the AADL Error 
annex is used [18] to model possible faults, their 
probability of occurrence, and their propagation 
through the system. Automatically mapped into a 
stochastic Petri net, this allows analysing fault 
occurrence and propagation in terms of probability. 

THALES is currently involved in ITEA-SPICES4 
project, whose objective is to integrate such 
verification tools with component-based 
frameworks. SPICES strategy is to make all 
descriptors and tools input to be AADL models, so 
that users may apply various verification and 
simulation tools to their own AADL application 
models. The target outcome is a featured 
component framework connected the relevant 
verification tools for addressing safety-critical 
avionics applications. 

3.2. Flexibility 
Antagonistic with enforcing safety critical 
requirements, enhanced flexibility of the 
component framework will ease application 
developers and – as we will see – users of multi-
mission systems to handle variability of the 
environment, as well as variability of the system 
itself.  

                                                 
4 SPICES is an ongoing ITEA funded collaborative 
project. 



Dynamic reconfiguration 
Many research activities have been performed to 
provide dynamic reconfiguration mechanisms, and 
use case examples are numerous: reduction of 
functionalities due to a battery or bandwidth 
limitation, recuperation of functionalities in case of 
fault recovery, fine tuning and debug of the 
application, load balancing, user requests, are 
typical examples that require reconfiguration 
mechanisms. 

A proper reconfiguration support in a component 
framework is made of both runtime mechanisms 
and description language. Regarding runtime 
mechanisms, component frameworks following 
Lw-CCM specification implement component 
instantiation and removal, component connection 
and disconnection. Openness of MyCCM container 
implies instantiation, removal and (dis-)connection 
capabilities of container services as well. 

Besides runtime support, expression of dynamic 
reconfiguration policies is the real issue. A 
distinction might be done between two 
reconfiguration categories, depending on whether 
the different configurations are statically 
enumerated and fully specified, or if on the 
contrary configurations are unknown or 
underspecified before actual occurrence of 
reconfiguration. The former case is referred to as 
pseudo-static reconfiguration, while the latter is 
simply called dynamic configuration. Each category 
might be better addressed by a specific description 
language for reconfiguration policies. Guarded state 
automaton would be suitable for pseudo-static 
reconfiguration, while more expressive language 
would be necessary for dynamic reconfiguration. 
Note that programmatic expression of 
reconfiguration policies is already available in 
MyCCM. Reconfiguration logics can be 
implemented in dedicated components behaving 
like deployment agents. A key benefit in stepping 
beyond this programmatic support is to verify and 
control reconfiguration policies, since 
reconfiguration is often subject to timing 
requirements as well. 

In [22], for example, the reconfiguration may be 
delayed depending on the time of service 
interruption that the reconfiguration process 
requires. Reconfiguration priority is another key 
parameter. For instance, the reconfiguration of a 
cell phone due to a low-battery signal should not 
impede the end user to receive or emit calls. At the 
opposite, if reconfiguration is due to the breakdown 
of a computing resource, the reconfiguration may 
be more important than the execution of some 
functional parts of the application. In the scope of 

Flex-eWare5 project, reconfiguration capabilities 
will be added to MyCCM framework. 

Multi-mission support 
The objective of a framework-based support to 
multi-mission systems is to ease the configuration 
of a multi-mission platform system by an end user. 
Typical example is an Unmanned Aerial Vehicle 
(UAV) usually used to monitor forest fires that 
could be reconfigured in emergency for supervision 
of evacuation operations after an earthquake. In this 
case, the infrared camera must be replaced by a 
standard camera, and the system must be 
reconfigured. 

As part of Flex-eWare project, we will design a tool 
dedicated to ease configuration of multi-mission 
systems, based on ontology of the application 
domain. This tool helps the end user to select 
components providing and using consistent 
services. The correspondence of services is 
evaluated within the ontology, relying on semantic 
annotations attached to the services. This tool also 
supports the assembly of those components by 
generating the connectors for two components that 
are semantically equivalent but syntactically 
different. 

The following example constitutes a use case of 
such a tool: supposing that the two formerly 
mentioned cameras drivers have different interfaces 
(different operation names, parameters type, etc…). 
Note that if the cameras are done by different 
vendors, the probability of this scenario is high. 
Still, the platform integrator might have attached to 
these two camera drivers a common goal in the 
ontology, and equivalent concepts attached to 
interfaces as well. Then a mechanism of data 
representation may be generated to enforce the 
compatibility of those interfaces. 

Very few research works have been undertaken in 
order to tackle the flexibility issue in the field of 
DRES. These techniques, based on semantic 
representation of application domains have mainly 
been studied for information systems and web 
services. Indeed, a major issue when using such a 
technique is to guarantee that the behavioural 
properties that have been verified on the previous 
system will still be verified in its new 
configuration. In the case of critical systems, in 
which properties are very difficult to check, this 
issue constitutes an open issue. 

                                                 
5 Flex-eWare is a ANR (Agence Nationale de la 
Recherche) project focusing on flexibility of 
component-based systems 



4. Conclusion 
As shown by the description of FREMM IRST use 
case, component-based frameworks are already 
applicable to industry-standard distributed real time 
embedded systems. Moreover, MyCCM internal 
design makes it easy to adapt to the non functional 
requirements of a particular application domain. 

State-of-the-art real time operating systems and 
communication middleware provide a level of 
performance that enable component frameworks to 
address highly constrained systems, such as 
vetronics and robotics.  

Although with positive impact, component 
frameworks will not solve all the issues of 
developing hard real time. No matter whether a 
component framework is used or not: what is hard 
is to come out with an application design globally 
satisfying the antagonistic constraints of 
predictability and resource usage optimisation. 
However, component frameworks have good 
consequences on productivity and potentially 
integrate verification tools with simulation 
capabilities in a consistent manner. In other words, 
component frameworks might become the working 
environment of real time embedded software 
architects. 

5. References 
 

[1] : C. Szyperski. Component Software: 
Beyond Object-Oriented Programming. 
Adison-Wesley, 1998. 

 
[2] : T. Valesky, Enterprise JavaBeans: 

Developing Component-Based Distributed 
Applications. Addison-Wesley 1999. 

 
[3] :  Object Management Group. CORBA 

Component Specification. In: OMG 
Document formal/02-06-65, Juin 2002. 

 
 
[4] : R. Marvie, P. Merle, and J.M. Geib. 

Separation of concerns in modeling 
distributed component-based architectures. 
In: proc. of Enterprise Distributed Object 
Computing Conference, 2002 (EDOC '02). 

 
 [5] : A.D. Birrell, and B.J. Nelson. 

Implementing Remote Procedure Calls. In: 
ACM Transactions on Computer Systems 
2, 1 (February 1984): 39-59. 

 
 [6] : Object Management Group. Light Weight 

CORBA Component Model Revised 
Submission. In: OMG Document 
realtime/03-05-05 edn. (2003). 

 
[7] :  S. Robert, A. Radermacher, V. Seignole 

and S. Gérard. The CORBA connector 
model. In: Proceedings of adaptive and 
reflexive middleware, 2005 (ARM 05).
  

 
[8] : S. Robert, A. Radermacher, V. Seignole, S. 

Gérard, V. Watine, and F. Terrier. The 
CORBA Connector Model. In: 
proceedings of Software Engineering and 
Middleware, ACM digital library, 
September 2005, Lisbon, Portugal. 

 
[9] :  Object Management Group. Deployment 

and Configuration Adopted Submission. 
In: OMG Document ptc/03-07-08 edn. 
(2003) 

 
[10] : A. Bailly. Test et validation de composants 

logiciels. In: PhD Thesis in computer 
science, at Université des Sciences et 
Techniques de Lille (USTL/LIFL).France, 
2005. 

 
[11] : G. Madl, S. Abdelwahed, and D.C. 

Schmidt. Verifying distributed real-time 
properties of embedded systems via graph 
transformations and model checking 
(invited paper, submitted).. In: The 
International Journal of Time-Critical 
Computing, 2005. 

 
[12] : J. Carlson, J. Hakansson, and P. 

Pettersson.. SaveCCM: An Analysable 
Component Model for Real-Time Systems. 
In: Proceedings of Formal Aspects of 
Component Software, 2005. 

 
[13] : J.P. Etienne, and S. Bouzefrane. Vers une 

approche par composants pour la 
modélisation d’applications temps réel. In: 
Proceedings of sixth francophone 
conference on Modeling and verification, 
2006. 

 
[14] : K.G. Larsen, P. Pettersson, and W. Yi. 

UPPAAL in a Nutshell. In: Journal on 
Software Tools for Technology transfer, 
1(1-2):134-152, October 1997. 

 
[15] : M. González Harbour, J.J. Gutiérrez, J.C. 

Palencia and J.M. Drake. MAST: 
Modeling and Analysis Suite for Real-
Time Applications. In: Proceedings of the 
Euromicro Conference on Real-Time 
Systems, Delft, The Netherlands, June 
2001. 

 



[16] : SAE – Society of Automative Engineers. 
SAES AS5506. In: Embedded Computing 
Systems Committee, SAE, November, 2004 

 
[17] : F. Singhoff, J. Legrand, L. Nana, and L. 

Marcé. Scheduling and Memory 
requirements analysis with AADL. In: 
Proceedings of the 2005 annual ACM 
SIGAda international conference on Ada, 
Atlanta, GA, USA, 2005. 

 
[18] : A.E. Rugina, K. Kanoun and M. Kaâniche. 

AADL-based Dependability Modelling. In 
: LAAS report N°06209, 2006. 

 
[19] : T. Vergnaud. Modélisation des systèmes 

temps-réel embarqués pour la génération 
automatique d’applications formellement 
vérifiées. In: PhD thesis, at Ecole 
Nationale Supérieur des 
Télécommunications de Paris, France, 
2006 

 
[20] :  K. Fujii and T. Suda. Component Service 

Model with Semantics (CoSMoS) : A new 
Component Model for Dynamic Service 
Composition. In : Proceedings of 
Applications and the Internet Workshops 
(SAINTW’04), Tokyo, Japan, 2004, p. 348-
355.. 

 
[21] : L. Apvrille. Contribution à la 

reconfiguration dynamique de logiciels 
embarqués temps-réel : Application à un 
environnement de télécommunication par 
satellite. In : PhD thesis, Laboratoire 
d’Analyse et d’Architecture des Systèmes 
du CNRS (LAAS),Toulouse, France, 2002. 

 
[22] : E. Schneider. A Middleware Approach for 

Dynamic Real-Time Software 
Reconfiguration on Distributed Embedded 
Systems. In: PhD thesis, at Université 
Louis Pasteur, Strasbourg, France, 2004. 


