
Really Hard Time developing Hard Real Time
Research Activities on Component-based Distributed RT/E Systems

Etienne BORDE1,2, Grégory HAIK1, Virginie WATINE1, Laurent PAUTET2

1 : THALES Land and Joint Systems, 5 avenue CARNOT 91883 Massy cedex France

{firstname.lastname@fr.thalesgroup.com}

2 : Ecole Nationale Supérieure de Télécommunications, 46 rue BARRAULT, 75634 Paris cedex France
{firstname.lastname@enst.fr}

Abstract: The development process of distributed real-time embedded systems (DRES) suffers significant
limitations when addressing the antagonistic concerns of systems interoperability, flexibility, and reliability. In
this paper, we first present a component-based development process and related architecture designed to enable
DRES interoperability while improving developer productivity. We then describe the techniques this process
uses in order to improve reliability of these systems. The component-based framework is illustrated by a
practical use case. Lastly, we present research orientations addressing verification, validation, and certifiability
on the one hand, and their ability to tackle with the always-growing flexibility requirements on the other hand.

As real time embedded systems complexity is
growing every year, industry software architects are
facing major challenges in terms of development
productivity. This issue is addressed by component-
based development methodologies, as proposed by
the software engineering academic community [1].
Automatic deployment and configuration, code
generation, code reuse, better testability and early
validation, reduced time to market, easy tuning and
mitigating integration risks are some of the benefits
of component-based development (CBD). In mid
1990, industry standards have been issued for
applying CBD to large scale information systems
(Sun’s Enterprise Java Beans – EJB [2], OMG’s
CORBA Component Model – CCM [3]).
Unfortunately, CCM and EJB frameworks are not
directly applicable to distributed real time
embedded systems: scarce computing and memory
resources, hardware heterogeneity, real time
constraints, performances and assurance issues
make CCM and EJB irrelevant for development of
DRE systems. Consequently, DRES software
engineering community has performed extensive
research for adapting component-based
development to DRE systems. THALES has been
involved at the OMG for defining a variant of CCM
that may cover the technical requirements of
embedded real time component-based frameworks.
The reason of choosing CCM as a starting point
was the suitability of OMG’s philosophy with the
requirements of THALES’ clients in terms of
interoperability and standard openness. Thus, the
main challenge was to make CCM efficient,
predictable and low footprint. Moreover, since non
functional requirements of DRE systems are very
versatile from one system to the other, it is crucial
for a DRES component-based framework to be
highly adaptable and configurable. Note that a

naïve approach to adaptability may deeply impede
interoperability.

Research conducted by THALES during the last four
years has led to a component framework that is
usable and beneficial for industry-standard real time
embedded systems. Ongoing research is performed
for addressing more application domains,
particularly safety-critical, mission-critical or
security-critical certified applications requiring
deep verification and validation on the one hand,
and reconfigurable and multi-mission systems on
the other hand.

This paper will first present the outcome of
THALES’ collaborative research effort performed
during the last four years (section 1). The benefits
of the resulting component-based framework,
namely MyCCM, are illustrated on a real world
program MyCCM is being applied to (section 2).
Finally, an overview of current research activities is
provided in section 3.

1. Component-based
Framework for
Distributed RT/E
Systems

This section will first present the authors’
viewpoint on component-orientation, and then
describe the principles and the outcome of adapting
component-based development to real time
embedded systems as performed in the scope of
collaborative projects.

1.1. Component-Orientation

Principles
Component-orientation has been introduced to help
managing the increasing complexity that
Information Systems were facing and to increase
the productivity of their development. A component
is basically a piece of functionality that can be
assembled with others in order to provide the full
functional coverage of the system. Allowing to
break down the whole system in smaller really
independently manageable pieces, easier to develop
and to reuse, makes it much cheaper to develop and
integrate.

To achieve that goal, components come with three
main characteristics:
• A self-described packaging format, so that

components can be deployed and configured
externally from the application.

• The explicit description, by means of ports, of
not only the services that the component is
providing (as an object does), but also of the
ones it requires for functioning, to be provided
by other components; this allows the
components being connected externally from
the application.

• The separation of the business logics (the
components themselves) from the relevant1
technical support that the infrastructure is
providing to them and which is under the
responsibility of the containers, parts of the
infrastructure aiming at hosting the
components.

Even not always put forward, this “separation of
concerns” is a key factor to master complexity and
to allow an effective reuse, hardly achievable with
only object orientation. Actually the two more
important factors that prevent reuse are:
• Inability to master the dependencies between a

piece of software and others: component model
– making this explicit – provides a way to
tackle this.

• Inability to master dependencies between a
piece of software and its underlying
infrastructure: Component/Container model
offers a way of structuring this. As a side
effect, this model allows to guarantee that the
supported technical properties are enforced
consistently across the application (e.g., the
access control policy is guaranteed to be
applied to all components)

Of course, the work to build the appropriate
containers is no more of the application developer’s
responsibility. Component-based infrastructure

1 What is the relevant technical support depends on
the application domain.

(e.g., EJB – see below) are thus coming with the
tooling allowing to automatically generate the
containers, based on standardised descriptions.

This model has been implemented as support for
Information Systems. The first consistent
implementation has been Sun's EJB (Enterprise
Java Beans) which is a real success in this specific
application domain. EJB offers support for
technical services that are meaningful in this area
(Persistence support, Transactional support and
Security – to be understood as access control) and
is built on top the Java infrastructure.

CORBA CCM (CORBA Component Model) is a
more generic and distributed specification of this
model, even if still fully dedicated to Information
Systems (it offers support for the same technical
services as EJB). However, as the general trend of
CORBA is to focus more on technical systems2,
CCM is moving in the same direction. This move
has already started at OMG, with newly adopted
Lightweight CCM specification that defines a CCM
profile compatible with embedded targets.

With .NET, Microsoft has also adopted this model,
even if the proprietary solution it proposes allows a
slightly different, more intrusive and less
structured, way of organising the software.

Requirements
analysis

Design / implementation Deployment

Functional
characteristics

Non-functional
characteristics

Component
assemblies

Component
places

Container
services

Placing components

Mechanisms selection
(known applicable patterns)

Component
identification
(selection/creation) properties

System break-down
- interfaces
- interactions properties

Component
assemblies
identification

uses

Figure 1: Impact of separation of concerns on
development process

Impacts on the Development
Process
Separating the functional properties from the non-
functional ones and building the whole system by
means of assembly, deployment and configuration
of components have huge positive impacts on the
development process itself, whose main phases are
featured on Figure 1:

2 Cf. all the new specification in the area: Real
Time CORBA, Minimum CORBA – special profile
for embedded systems, Fault Tolerant CORBA,
Data Parallel CORBA...

• It allows a clean role separation: domain
experts may focus their functional expertise
while platform specialists may define and
implement the best technical support.

• Component reuse is made possible.
• As technical support realisation is mainly

achieved based on component configuration,
main design choices (such as component
localisation) can be delayed until the latest and
therefore adjusted during the integration,
making that costly phase much easier.

1.2. Adaptation to Real-time
and Embedded Systems

All the positive impacts of component-orientation
would be also very desirable for RT/E systems.
However current implementations are not suitable
for those systems since they don’t provide the
relevant non-functional support nor the adequate
interaction modes between components and are not
meant to accommodate resource constraints, which
are here of prime importance.

THALES has therefore decided to adapt an existing
standard component model to specific constraints of
RT/E systems and to define a dedicated framework.
As basis, OMG’s Lw-CCM has been selected and
its adaptation initiated in the scope of two research
projects (IST/COMPARE [7] and ITEA/MERCED
[8]).

One important characteristic of the RT/E area is the
huge variety of its systems. Trying to provide in a
unique framework a solution that would fit all the
RT/E systems is not achievable, nor desirable.
Therefore, rather than just adding the technical
support that would allow to develop the use-cases
parts of those projects, it has been decided to focus
on extensibility and usability.

Extensibility is achieved by providing the ability to
plug within the container, technical support
providers, called container services. For that
purpose, has been defined an open architecture for
the container with specification of dedicated
interfaces to insert and configure the container
services as well as a packaging format to enable
their deployment.

Usability for RT/E systems is primarily conditioned
by the ability to get adequate interaction between
components. Actually proper interaction support is
crucial for it conditions the ability of designing
components and the existing one was far from
being enough. A new construct, named connector,
has been introduced to capture the interaction style.
Connectors can then be developed for as many
interaction styles as needed. Connectors are actually
made of fragments, which are considered as
specific container services and can be deployed and
configured as such.

Usability also depends on the ability of the
framework to accommodate stringent resource
requirements. Key elements for that purpose are (i)
the ability to tailor the containers at their minimum
functional coverage by plugging in only what is
strictly needed, (ii) the platform isolation provided
by the containers, which allows the use of a huge
variety of technical services (including small ones if
needed) as well as (iii) the implementation of
specific trade-offs to get the better use of the scarce
resources. As a proof of concept of the ability to
accommodate various platforms, two
implementations of the framework have been
developed during those research projects: the first
one on top of RT-CORBA, the second one on top
of OSEK-VDX.

In the scope of these two projects, interaction
support for the use-cases has been implemented, as
well as some container services providing basic
development facilities (tracing...) and timing
properties enforcement (locking protocols and
appropriate setting of POSIX scheduling
parameters).

1.3. MyCCM
Based on these research results, THALES has started
to industrialise a framework, called MyCCM (Make
Your CCM). MyCCM building blocks are
represented on Figure 2.

Deployment
& Configuration

Descriptors
(XML)

Container
Generation

Tool

Component
Descriptors

(IDL3 & XML)

Container
runtime &
services

connectors

P
ac

ka
gi

ng
 &

A
ss

em
bl

y

Components

Containers

Component
Descriptors

(IDL3 & XML)

Implementation
(binaries)

Execution Platform

A
dm

in
is

tra
tio

n

Infrastructure
Technical
Service

Application
Components

Predefined
Components

Technical
Service

Technical
Service

Containers

Figure 2: MyCCM building blocks

The central part represents MyCCM runtime, that is
mainly two folds: (i) infrastructure and its services
mediated by the containers, which in return are
hosting structures for the components, and (ii) a
tool called Administration, dedicated to
deployment, configuration and connection of
components – and later on, monitoring and control.
On the right side is represented the container
generation tool, which generates the containers and

component envelopes3 based on component
description (IDL3 and XML files); on the left side,
the packaging and assembly tool which prepares
what the Administration needs as input, namely the
component packages and the deployment plan.

Adaptation to a particular domain
As it can be seen, the framework is a combination
of runtime support and associated tooling. Porting it
to a given platform will affect not only the runtime
support, but the generated code as well. Therefore
attention has been paid to make the code generation
mechanisms as flexible as possible.

Besides porting to the target platform, adapting the
framework to a specific domain consists just in
selecting or defining and implementing proper
container services and connectors.

Real Time Issues
Container services are used for configuring time
and scheduling parameters of the application, while
other services provide real time locking
mechanisms. This way, the software architect
addresses all the scheduling issues in configuration
files. The corresponding activation model is
illustrated on Figure 3: threads, that may be either
periodic or “one shot” are associated to
components entry points. One shot threads are
meant for interrupt handling as well as any input
I/O functions: where necessary, the architect
connects one shot threads to a never ending
incoming event handler encapsulated in the
receiving component.

MyCCM also enables the software architect to set
the scheduling parameters of the threads handling
the framework-supported communication
mechanisms. Such communication threads may
have either a (i) static scheduling configuration as
given by the architect, a (ii) dynamic configuration
where scheduling parameters are inherited from the
calling activity or finally (iii) no-configuration –
applicable only to components in the same address
space – where the calling thread performs the local
method invocation. MyCCM uses the underlying
OS and middleware (POSIX and RT-CORBA for
instance) for implementing these policies.

3 A component envelope is a generated piece of
code allowing a user-written piece of code to be
hosted by a container. What is generally called
‘component’ is the business code (written by the
application-developer) plus its envelope.

Component2

Component1

Component3

node1 node2

dyn

sta

dyn

periodic

one_shot

Functionnal
threads
Communication
threads

Figure 3 : Threads configurations

2. A Practical Use Case
Beyond experimentations and use case
developments performed in the scope of research
projects, MyCCM has been recently adopted by
THALES for the development of an Infra-Red Search
and Track (IRST) Signal Processor called
ARTEMIS.

2.1. The ARTEMIS Program
ARTEMIS IRST system has been selected to equip
the Future European Multi-Role Frigates
(FREMM). It is mainly composed of three infra-red
sensors – located around a mast – and a Signal
Processor. Each sensor covers a third of the frigate
horizon (120°). The three video streams are sent to
the IRST Signal Processor (ISP) by a specific
protocol on top of UDP. The ISP applies
visualisation and tracking algorithms to incoming
streams. Data processing is distributed on different
single board computers. Each algorithm is
encapsulated in a component that communicates
either locally or remotely with its counterparts via
the communication support of the component
framework. For controlling and configuring the
components, the framework relies on a free RT-
CORBA middleware, while high bandwidth data
streams are handled by a fast, unreliable
implementation of CCM event support. Finally,
processed video and tracks are sent to the frigate's
Combat Management System using a dedicated
protocol.

A module in a UML modeller enables the ISP
software architect to design the application in a top
down approach. Scheduling settings (priorities and
periods) and parameters of components are defined
in UML models as well. The software architect
may also define functional validation scenarios, or
target performance measurement scenarios in the
UML modeller. CCM deployment and
configuration descriptors are then produced for

each validation scenario. On-target execution of
these scenarios is handled automatically by
MyCCM deployment mechanisms.

2.2. Benefits for the Software
Architect

Usage of a component framework such as MyCCM
has good consequences on productivity of software
development. Several factors contribute to
increasing productivity. First, MyCCM
development process is based on intensive code
generation: configuration of scheduling parameters
such as POSIX priorities and thread periods,
priorities of RT-CORBA communication threads,
data marshalling code and method dispatch, and
configuration, deployment and connection of
application components are simply generated from
the architecture description provided as a set of
UML models. With MyCCM, the program manager
doesn’t have to provision development efforts for
these tasks. Additional cost reduction resides in the
dramatic simplification of internal communication
protocols: with handcrafted communications,
detailed specifications of datagram/stream formats
are necessary; with a communication middleware
such as CORBA, equivalent specifications are
much more abstract, and consequently simpler.
Specification of interfaces is done at operation
level, with in/out parameters and exceptions, not at
socket level. Moreover, generation of threading
artefacts and deployment code makes a program
relying on MyCCM clearly more productive than a
regular CORBA or RT-CORBA application, for
which only communication support is generated.

Integration of MyCCM with modelling tools is
another productivity factor. Indeed, the software
architect is not meant to write complex architectural
descriptors by hand: definition of application
architecture, design, configuration and deployment
is rather done in a UML-based GUI. The first
benefit is that graphical models constitute a key
communication support between team members.
Moreover, model-to-descriptor generators may
come with potentially intensive model verification,
which leads to early discovery of model
inconsistencies.

Another productivity factor is easier testability:
because MyCCM architecture enables the
component developer to avoid platform
dependencies, the functionalities of such platform-
independent components can be validated not only
on target, but also on development host.
Components might be specifically enveloped and
compiled for either the host or the target by just
modifying few parameters of the UML architectural
description, so that a complete functional
validation can be performed on host.

Finally, integration costs and risks are significantly
reduced by the late binding between application
and the platform: when all software components are
finally put together for final integration, it is almost
inevitable that integration engineers have to fine
tune the thread number and their associated
parameters (period, priority…). With MyCCM,
since all these parameters are in the models and not
in the application code, engineers don’t have to
deeply analyse component code for finding out
where threads are created and configured. Another
typical situation where this late binding property
mitigates integration risks is when hardware
happens to be ill dimensioned with regard to
software execution times and system timing
requirements. Application components only have to
be re-targeted (in UML models) to the new
hardware. MyCCM will take into account the new
hardware environment by generating some other
technical code, with no impact on component
implementations.

To sum up, component-based development might
have very positive impact on productivity of
software development. Still, our real-world
experimentation with ARTEMIS program has not
yet reached the point where productivity benefits
might be factually assessed. This point will be
reached by the end of all development and
integration activities.

2.3. Current Limitations
There are key issues in DRES development that are
not currently addressed by MyCCM. For instance,
although MyCCM enables software architect to
implement priority-based real time systems, no
support is provided yet for taking advantage of RT-
CORBA support for real time network protocols.
Network scheduling must be performed by other
means. In today’s MyCCM, priority inversion may
occur in network stacks.

No support is provided either for proving that the
system will meet its end-to-end requirements. This
issue is generally referred to as schedulability.
Another key issue is proving that the system is
deadlock-free. Those two properties (schedulability
and deadlock verification) are mandatory for high
assurance systems, might they be mission-critical,
safety-critical or security-critical.

Yet another issue is that MyCCM only offers a
programmatic support for reconfiguration: if
needed, reconfiguration must be programmed by
hand. A descriptive, framework-supported
reconfiguration mechanism would contribute to
further increase productivity. Last but not least,
multi-mission systems have specific requirements
on software architecture that are not currently
addressed by MyCCM.

Next section will discuss these issues and provide
the reader with insights about ongoing research
activities on these topics.

3. Ongoing Research
Activities

The two directions followed by our research
activities are verification and validation on the one
hand, and support for greater flexibility on the other
hand. While verification and validation address
safety-critical, mission-critical or security-critical
systems, research on flexibility addresses context-
aware systems, fault tolerant systems, load balanced
systems, autonomous systems and multi mission
systems.

3.1. Verification & Validation
Worldwide academic community has performed
extensive research towards verification of DRE
systems. During the last decades, formal methods
such as model checking, computational logics,
schedulability algorithms and static code analysis
have been foreseen to be able to provide the
software architect with advanced tools and methods
for verifying and validating DRE systems. Yet,
these formal methods lack proper integration with
the actual execution infrastructure, making them
more difficult to use efficiently. Numbers of
properties might be verified, although resource
dimensioning is under particular focus in the DRE
domain.

Typical resources to be dimensioned are time,
memory and energy. The following will focus on
time.

Several tools are available to analyse real time
properties of the system. Some are based on model
checking techniques (UPAAL [14] for instance),
others on algebraic methods inherited from Rate
Monotonic Analysis, such as MAST [15] and
Cheddar [17]. Not surprisingly, both methods have
their respective limitations: model checking is
subject to exponential state space explosion, while
algebraic methods are not able to analyse all
possible situations.

Research has been conducted to integrate model
checking techniques with component-based
development [11, 12, 13]. University of Cantabria
(Spain), THALES and ENST (among others) are
currently performing research towards integration
of CBD and algebraic methods. This requires the
user to provide a characterisation of the temporal
properties of each component, so that end-to-end
execution times can be synthesised. Such end-to-
end execution times can finally be provided,
together with other parameters such as periods,

priorities and deadlines, to the scheduling analysis
tool.

As a matter of fact, these temporal characterisations
might even be automatically generated by an on-
target performance measurement setting of the
component framework, provided that a more
abstract behavioural profile – omitting numbers – is
available. For complex components, execution time
measurement scenarios could be generated by static
analysis of component code as developed at CEA-
List.

Finally, on-target measurements may also be
performed for OS, middleware and network
traversal timings, provided that quantitative data
flow descriptions are available.

Other verifications might be performed besides
schedulability analysis. Most notably, Ocarina [19]
has been developed in order to enable the
configuration of the middleware from an AADL
[16] description. In parallel with the generation of
the middleware code, a behavioural model of this
middleware is generated into a well formed
coloured Petri net in order to verify behavioural
properties of the middleware thanks to model
checking techniques.

As another verification example, the AADL Error
annex is used [18] to model possible faults, their
probability of occurrence, and their propagation
through the system. Automatically mapped into a
stochastic Petri net, this allows analysing fault
occurrence and propagation in terms of probability.

THALES is currently involved in ITEA-SPICES4
project, whose objective is to integrate such
verification tools with component-based
frameworks. SPICES strategy is to make all
descriptors and tools input to be AADL models, so
that users may apply various verification and
simulation tools to their own AADL application
models. The target outcome is a featured
component framework connected the relevant
verification tools for addressing safety-critical
avionics applications.

3.2. Flexibility
Antagonistic with enforcing safety critical
requirements, enhanced flexibility of the
component framework will ease application
developers and – as we will see – users of multi-
mission systems to handle variability of the
environment, as well as variability of the system
itself.

4 SPICES is an ongoing ITEA funded collaborative
project.

Dynamic reconfiguration
Many research activities have been performed to
provide dynamic reconfiguration mechanisms, and
use case examples are numerous: reduction of
functionalities due to a battery or bandwidth
limitation, recuperation of functionalities in case of
fault recovery, fine tuning and debug of the
application, load balancing, user requests, are
typical examples that require reconfiguration
mechanisms.

A proper reconfiguration support in a component
framework is made of both runtime mechanisms
and description language. Regarding runtime
mechanisms, component frameworks following
Lw-CCM specification implement component
instantiation and removal, component connection
and disconnection. Openness of MyCCM container
implies instantiation, removal and (dis-)connection
capabilities of container services as well.

Besides runtime support, expression of dynamic
reconfiguration policies is the real issue. A
distinction might be done between two
reconfiguration categories, depending on whether
the different configurations are statically
enumerated and fully specified, or if on the
contrary configurations are unknown or
underspecified before actual occurrence of
reconfiguration. The former case is referred to as
pseudo-static reconfiguration, while the latter is
simply called dynamic configuration. Each category
might be better addressed by a specific description
language for reconfiguration policies. Guarded state
automaton would be suitable for pseudo-static
reconfiguration, while more expressive language
would be necessary for dynamic reconfiguration.
Note that programmatic expression of
reconfiguration policies is already available in
MyCCM. Reconfiguration logics can be
implemented in dedicated components behaving
like deployment agents. A key benefit in stepping
beyond this programmatic support is to verify and
control reconfiguration policies, since
reconfiguration is often subject to timing
requirements as well.

In [22], for example, the reconfiguration may be
delayed depending on the time of service
interruption that the reconfiguration process
requires. Reconfiguration priority is another key
parameter. For instance, the reconfiguration of a
cell phone due to a low-battery signal should not
impede the end user to receive or emit calls. At the
opposite, if reconfiguration is due to the breakdown
of a computing resource, the reconfiguration may
be more important than the execution of some
functional parts of the application. In the scope of

Flex-eWare5 project, reconfiguration capabilities
will be added to MyCCM framework.

Multi-mission support
The objective of a framework-based support to
multi-mission systems is to ease the configuration
of a multi-mission platform system by an end user.
Typical example is an Unmanned Aerial Vehicle
(UAV) usually used to monitor forest fires that
could be reconfigured in emergency for supervision
of evacuation operations after an earthquake. In this
case, the infrared camera must be replaced by a
standard camera, and the system must be
reconfigured.

As part of Flex-eWare project, we will design a tool
dedicated to ease configuration of multi-mission
systems, based on ontology of the application
domain. This tool helps the end user to select
components providing and using consistent
services. The correspondence of services is
evaluated within the ontology, relying on semantic
annotations attached to the services. This tool also
supports the assembly of those components by
generating the connectors for two components that
are semantically equivalent but syntactically
different.

The following example constitutes a use case of
such a tool: supposing that the two formerly
mentioned cameras drivers have different interfaces
(different operation names, parameters type, etc…).
Note that if the cameras are done by different
vendors, the probability of this scenario is high.
Still, the platform integrator might have attached to
these two camera drivers a common goal in the
ontology, and equivalent concepts attached to
interfaces as well. Then a mechanism of data
representation may be generated to enforce the
compatibility of those interfaces.

Very few research works have been undertaken in
order to tackle the flexibility issue in the field of
DRES. These techniques, based on semantic
representation of application domains have mainly
been studied for information systems and web
services. Indeed, a major issue when using such a
technique is to guarantee that the behavioural
properties that have been verified on the previous
system will still be verified in its new
configuration. In the case of critical systems, in
which properties are very difficult to check, this
issue constitutes an open issue.

5 Flex-eWare is a ANR (Agence Nationale de la
Recherche) project focusing on flexibility of
component-based systems

4. Conclusion
As shown by the description of FREMM IRST use
case, component-based frameworks are already
applicable to industry-standard distributed real time
embedded systems. Moreover, MyCCM internal
design makes it easy to adapt to the non functional
requirements of a particular application domain.

State-of-the-art real time operating systems and
communication middleware provide a level of
performance that enable component frameworks to
address highly constrained systems, such as
vetronics and robotics.

Although with positive impact, component
frameworks will not solve all the issues of
developing hard real time. No matter whether a
component framework is used or not: what is hard
is to come out with an application design globally
satisfying the antagonistic constraints of
predictability and resource usage optimisation.
However, component frameworks have good
consequences on productivity and potentially
integrate verification tools with simulation
capabilities in a consistent manner. In other words,
component frameworks might become the working
environment of real time embedded software
architects.

5. References

[1] : C. Szyperski. Component Software:
Beyond Object-Oriented Programming.
Adison-Wesley, 1998.

[2] : T. Valesky, Enterprise JavaBeans:

Developing Component-Based Distributed
Applications. Addison-Wesley 1999.

[3] : Object Management Group. CORBA

Component Specification. In: OMG
Document formal/02-06-65, Juin 2002.

[4] : R. Marvie, P. Merle, and J.M. Geib.

Separation of concerns in modeling
distributed component-based architectures.
In: proc. of Enterprise Distributed Object
Computing Conference, 2002 (EDOC '02).

 [5] : A.D. Birrell, and B.J. Nelson.

Implementing Remote Procedure Calls. In:
ACM Transactions on Computer Systems
2, 1 (February 1984): 39-59.

 [6] : Object Management Group. Light Weight

CORBA Component Model Revised
Submission. In: OMG Document
realtime/03-05-05 edn. (2003).

[7] : S. Robert, A. Radermacher, V. Seignole

and S. Gérard. The CORBA connector
model. In: Proceedings of adaptive and
reflexive middleware, 2005 (ARM 05).

[8] : S. Robert, A. Radermacher, V. Seignole, S.

Gérard, V. Watine, and F. Terrier. The
CORBA Connector Model. In:
proceedings of Software Engineering and
Middleware, ACM digital library,
September 2005, Lisbon, Portugal.

[9] : Object Management Group. Deployment

and Configuration Adopted Submission.
In: OMG Document ptc/03-07-08 edn.
(2003)

[10] : A. Bailly. Test et validation de composants

logiciels. In: PhD Thesis in computer
science, at Université des Sciences et
Techniques de Lille (USTL/LIFL).France,
2005.

[11] : G. Madl, S. Abdelwahed, and D.C.

Schmidt. Verifying distributed real-time
properties of embedded systems via graph
transformations and model checking
(invited paper, submitted).. In: The
International Journal of Time-Critical
Computing, 2005.

[12] : J. Carlson, J. Hakansson, and P.

Pettersson.. SaveCCM: An Analysable
Component Model for Real-Time Systems.
In: Proceedings of Formal Aspects of
Component Software, 2005.

[13] : J.P. Etienne, and S. Bouzefrane. Vers une

approche par composants pour la
modélisation d’applications temps réel. In:
Proceedings of sixth francophone
conference on Modeling and verification,
2006.

[14] : K.G. Larsen, P. Pettersson, and W. Yi.

UPPAAL in a Nutshell. In: Journal on
Software Tools for Technology transfer,
1(1-2):134-152, October 1997.

[15] : M. González Harbour, J.J. Gutiérrez, J.C.

Palencia and J.M. Drake. MAST:
Modeling and Analysis Suite for Real-
Time Applications. In: Proceedings of the
Euromicro Conference on Real-Time
Systems, Delft, The Netherlands, June
2001.

[16] : SAE – Society of Automative Engineers.
SAES AS5506. In: Embedded Computing
Systems Committee, SAE, November, 2004

[17] : F. Singhoff, J. Legrand, L. Nana, and L.

Marcé. Scheduling and Memory
requirements analysis with AADL. In:
Proceedings of the 2005 annual ACM
SIGAda international conference on Ada,
Atlanta, GA, USA, 2005.

[18] : A.E. Rugina, K. Kanoun and M. Kaâniche.

AADL-based Dependability Modelling. In
: LAAS report N°06209, 2006.

[19] : T. Vergnaud. Modélisation des systèmes

temps-réel embarqués pour la génération
automatique d’applications formellement
vérifiées. In: PhD thesis, at Ecole
Nationale Supérieur des
Télécommunications de Paris, France,
2006

[20] : K. Fujii and T. Suda. Component Service

Model with Semantics (CoSMoS) : A new
Component Model for Dynamic Service
Composition. In : Proceedings of
Applications and the Internet Workshops
(SAINTW’04), Tokyo, Japan, 2004, p. 348-
355..

[21] : L. Apvrille. Contribution à la

reconfiguration dynamique de logiciels
embarqués temps-réel : Application à un
environnement de télécommunication par
satellite. In : PhD thesis, Laboratoire
d’Analyse et d’Architecture des Systèmes
du CNRS (LAAS),Toulouse, France, 2002.

[22] : E. Schneider. A Middleware Approach for

Dynamic Real-Time Software
Reconfiguration on Distributed Embedded
Systems. In: PhD thesis, at Université
Louis Pasteur, Strasbourg, France, 2004.

