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Abstract— Autonomous robots are complex systems that re-
quire the interaction/cooperation of numerous heterogeneous
software components. Nowadays, robots are critical systems and
must meet safety properties including in particular temporal and
real-time constraints. We present a methodology for modeling
and analyzing a robotic system using the BIP component frame-
work integrated with an existing framework and architecture,
the LAAS! based on G®sM. The BIP componentization approach
has been successfully used in other domains. In this study, we
show how it can be seamlessly integrated in the preexisting
methodology. We present the componentization of the functional
level of a robot, the synthesis of an execution controller as well as
validation techniques for checking essential “safety” properties.

I. INTRODUCTION

A central idea in systems engineering is that complex
systems are built by assembling components (building blocks).
Components are systems characterized by an abstraction that is
adequate for composition and re-use. It is possible to obtain
large components by composing simpler ones. Component-
based design confers many advantages such as reuse of
solutions, modular analysis and validation, reconfigurability,
controllability, etc.

Autonomous robots are complex systems that require the
interaction/cooperation of numerous heterogeneous software
components. They are critical systems as they must meet
safety properties including in particular, temporal and real-
time constraints.

Component-based design relies on the separation between
coordination and computation. Systems are built from units
processing sequential code insulated from concurrent execu-
tion issues. The isolation of coordination mechanisms allows
a global treatment and analysis.

One of the main limitations of the current state-of-the-
art is the lack of a unified paradigm for describing and
analyzing the information flow between components. Such a
paradigm would allow system designers and implementers to
formulate their solutions in terms of tangible, well-founded
and organized concepts instead of using dispersed coordination
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mechanisms such as semaphores, monitors, message passing,
remote call, protocols, etc. It would allow in particular, a
comparison of otherwise unrelated architectural solutions and
could be a basis for evaluating them and deriving implemen-
tations in terms of specific coordination mechanisms.

The designers of complex systems such as autonomous
robots need scalable analysis techniques to guaranteeing essen-
tial properties such as the one mentioned above. To cope with
complexity, these techniques are applied to component-based
descriptions of the system. Global properties are enforced by
construction or can be inferred from component properties.
Furthermore, componentized descriptions provide a basis for
reconfiguration and evolutivity.

We present an incremental componentization methodol-
ogy and technique for an already existing autonomous robot
software developed at LAAS. The methodology considers
that the global system architecture can be obtained as the
hierarchical composition of larger components from a small set
of classes of atomic components. Atomic components are units
processing sequential code that offer interactions through their
interface. The technique is based on the use of the Behavior-
Interaction-Priority (BIP) [2] component framework which
encompasses incremental composition of heterogeneous real-
time components.

The main contributions of the paper include:

o A methodology for componentizing and architecting au-

tonomous robot systems.

o Composition techniques for organizing and enforcing
complex event-based interaction using the BIP frame-
work.

o Validation techniques for checking essential properties,
including scalable compositional techniques relying on
the analysis of the interactions between components.

The paper is structured as follows. In Section II we illustrate
with a real example, the preexisting architecture (based on
G®M [6]) of an autonomous robotic software developed at
LAAS. From this architecture, we identify the atomic com-
ponents used for the componentization of the robot software
in BIP. Section III provides a succinct description of the BIP



component framework. Section IV presents a methodology for
building the BIP model of existing G®bM functional modules
and their integration with the rest of the software. Controller
synthesis results as well as ‘“safety” properties analysis are
also presented. Section V concludes the paper with a state
of the art, an analysis of the current results and future work
directions.

II. MODULAR ARCHITECTURE FOR AUTONOMOUS
SYSTEMS

Autonomous robots are complex systems that require the
interaction/cooperation of numerous and quite different soft-
ware modules/components. This is usually achieved with the
proper architecture, methods and tools.

A. Preexisting Software Architecture

At LAAS, we have developed a framework, a global
architecture, that enables the integration of processes with
different temporal properties and different representations.
This architecture decomposes the robot system into three main
levels, having different temporal constraints and manipulating
different data representations [1]. This architecture is used on
a number of robot, in particular DALA, an iRobot ATRV, and
is shown on Fig. 1. The levels in this architecture are :
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Fig. 1. An instance of the LAAS architecture for the DALA Robot.

e a functional level: it includes all the basic built-in robot
action and perception capacities. These processing func-
tions and control loops (e.g., image processing, obstacle
avoidance, motion control, etc.) are encapsulated into
controllable communicating modules developed using
GeM?. Each modules provide services which can be
activated by the decisional level according to the current
tasks, and posters containing data produced by the mod-
ule and for other (modules or the decisional level) to use.

e a decisional level: this level includes the capacities of
producing the task plan and supervising its execution,
while being at the same time reactive to events from the
functional level. The coexistence of these two features,
a time-consuming planning process, and a time-bounded
reactive execution process poses the key problem of their
interaction and their integration to balance deliberation
and reaction at the decisional level.

« At the interface between the decisional and the functional
levels, lies an execution control level that controls the
proper execution of the services according to safety
constraints and rules, and prevents functional modules
from unforeseen interactions leading to catastrophic out-
comes. In recent years, we have used the R2C [15] to
play this role, yet it was programmed on the top of
existing functional modules, and controlling their services
execution and interactions, but not the internal execution
of the modules themselves.

The organization of the overall system in layers and the
functional level in modules are definitely a plus with respect
to the ease of integration and reusability. Yet, an architecture
and some tools are not “enough” to warrant a sound and safe
behavior of the overall system.

In this paper the componentization method we propose will
allow us to synthesize a controller for the overall execution
of all the functional modules (which will be componentized)
and will enforce by construction the constraints and the rules
between the various functional modules. Hence, the ultimate
goal of this work is to implement both the current functional
and execution control level with BIP.

B. Componentization of G®"oM Functional Modules

Each module of the LAAS architecture functional level is
responsible for a function of the robot. Complex modalities
(such as navigation) can be obtained by having modules
“working” together. For example in Fig. 1 (which only shows
the data flow of the functional level), there is an implicit
processing loop. The module Laser RF acquires the laser
range finder and store them in poster Scan, from which
Aspect builds the obstacle map Obs. The module NDD
(responsible for the navigation) avoids this obstacle while
producing a Speed reference to reach a given target from the
current position Pos produced by POM. Finally, this Speed
reference is used by RFLEX, which controls the speed of the

2The Ge"oM tool can be downloaded from:
http://softs.laas.fr/openrobots/wiki/genom



robots wheels, and also produces the odometry position to be
used by POM to generate the current position.’

All these modules are built using a unique generic canvas
(Fig. 2) which is then instantiated for a particular robot func-
tion. We shall now describe this generic module, taking NDD
as an example of instance, and identifying the “components”
which are typeset in italic.

Each module can execute several services started on client
requests. The module can send information relative to the
executed requests to the client (such as the final report) or
share data with other modules using posters. E.g. the NDD
module provides six services corresponding to initializations of
the navigation algorithm (definition of parameters), launching
and stopping the path computation toward a given goal and a
permanent service (SetParams, SetDataSource, SetSpeed, Stop,
GoTo and Permanent). NDD also exports a poster (Speed)
containing the speed reference.

The services are managed by a control task responsible for
launching corresponding activities within execution tasks.
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Fig. 2. A G®M module organization.

Control and execution tasks share data using the internal
data structures (IDS). Moreover execution tasks have periods
in which the several associated activities are scheduled. It is
not necessary to have fixed length periods if some services are
aperiodic. Fig. 3 presents the behavior of an activity, inspired
from classical thread life cycle. Activity states correspond to
the execution of particular elementary code available through
libraries and dedicated either to initialize some parameters
(START state), to execute the activity (EXEC state) or to safely
end the activity leading to reseting parameters, sending error
signals, etc.

The component-based approach considers the functional
level as a hierarchical entity which is decomposed successively
into simpler components like modules, and further down to
atomic components like execution tasks, activities, etc.

3This particular setup will serve as an example throughout the rest of the
paper.
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Fig. 4. A componentized G®oM module.

In order to formalize the componentization approach, we
propose the following decomposition:

Functional level ::= (Module)+

Module ::= (Service)+ . (Control Task) . (Poster)+
Service ::= (Execution Task) . (Activity)

Control Task ::= (Timer) . (Scheduler Activity)

where ”’+” means the presence of one or more of the particular
component and ”.” means the composition of different compo-
nents. The componentized view of a G®oM module is shown
in Fig. 4.

The next section introduces the BIP framework which
has been used for the componentized implementation of the
functional level of the robot.

III. THE BIP COMPONENT FRAMEWORK

BIP* [2] is a software framework for modeling heteroge-
neous real-time components. The BIP component model is
the superposition of three layers: the lower layer describes
the behavior of a component as a set of transitions (i.e a
finite state automaton extended with data); the intermediate
layer includes connectors describing the interactions between
transitions of the layer underneath; the upper layer consists of
a set of priority rules used to describe scheduling policies for

4The BIP tool-set can be downloaded from:
http://www-verimag.imag.fr/ async/BIP/bip.html.



interactions. Such a layering offers a clear separation between
component behavior and structure of a system (interactions
and priorities).

BIP allows hierarchical construction of compound compo-
nents from atomic ones by using connectors and priorities.

An atomic component consists of a set of ports used for
the synchronization with other components, a set of transitions
and a set of local variables. Transitions describe the behavior
of the component. They are represented as a labeled relation
between control states.

@in

out @
0<x

y:=f(x) 0 oL

Fig. 5. An example of an atomic component in BIP.

Fig. 5 shows an example of an atomic component with two
ports in, out, variables x, y, and control states empty, full.
At control state empty, the transition labeled in is possible
if 0 < z. When an interaction through ¢n takes place, the
variable z is eventually modified and a new value for y is
computed. From control state full, the transition labeled out
can occur.

Connectors specify the interactions between the atomic
components. A connector consists of a set of ports of the
atomic components which may interact. An interaction of a
connector is any non empty subset of its set of ports. A
typing mechanism is used for the ports in order to determine
the feasible interactions of a connector and in particular to
model the two basic modes of synchronization, rendezvous
and broadcast.

Priorities in BIP are a set of rules used to filter interactions
amongst the feasible ones.

The model of a system is represented as a BIP compound
component which defines new components from existing com-
ponents (atoms or compounds) by creating their instances,
specifying the connectors between them and the priorities.

The BIP framework consists of a language and a toolset
including a front-end for editing and parsing BIP programs
and a dedicated platform for the model validation. The plat-
form consists of an Engine and software infrastructure for
executing simulation traces of models. It also allows state
space exploration and provides access to model-checking tools
like Evaluator [12]. This permits to validate BIP models and
ensure that they meet properties such as deadlock-freedom,
state invariants and schedulability.

The back-end, which is the BIP engine, has been entirely
implemented in C++ on Linux to allow a smooth integration of
components with behavior expressed using plain C/C++ code.

The following section describes the modeling and verifica-
tion of the functional layer of the robot in the BIP framework
and its integration within the LAAS framework.

IV. MODELING, VERIFYING AND INTEGRATING THE
FUNCTIONAL LAYER OF THE ROBOT DALA IN BIP

In modeling the functional layer of the robot in BIP, we have
used the hierarchical decomposition of the functional layer as
presented earlier in section II-B. Compound components are
created by composing sub-components (atoms or compounds)
using the connectors between them and priorities (if required),
to build the hierarchy of the complete system.

For example, a compound component modeling a generic
service is obtained from the atomic components execution task
and activity and the connectors between them, as shown in
Fig. 6.
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Fig. 6. BIP model of a service.

The left sub-component represents the execution task of
a service. It is launched by synchronization through port
trigger. The execution task then checks the validity of the
parameters of the request (if available) and will either reject
the request or start the activity by synchronizing with the
activity component (right sub-component). In each state, the
status of the execution task is available by synchronizing
through port status. The activity will then wait for execution
(i.e. synchronization on the exec port with the control task) and
will either safely finish, fail, or abort. Each of the transitions
control, start, exec, fail, finish and inter may call an external
function.

The service components are further composed with control
task and poster components to obtain the module components.

The full BIP description of the functional level of the robot,
which consists of several modules, is beyond the scope of this
paper. We rather focus on the modeling of the NDD module.

A. Modeling the NDD module in BIP

The NDD module contains six services, a poster and a
control task as sub-components and the connectors between
them, as shown in Fig. 7.

The control task wakes up periodically (managed by the
bottom-left component with alternating sleep and trigger tran-
sitions) and always triggers the Permanent service at the
beginning of each period. During a period, the services will
have authorization to execute through interactions with the
control task.

Moreover, the BIP formalism allows complex relations to
be defined, such as:
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o interruptions, as modeled by the connector joining
Stop.exec and GoTo.abort; if service Stop is executed,
the GoTo algorithm will be aborted;

o constraints, as modeled by the goTo connector (in blue);
service GoTo can be launched only if SetParams, Set-
Speed and SetDataSource have been already completed
(information available through their status port).

B. Executing and Monitoring the BIP model

The BIP tool-chain generates code from the BIP model,
which can be executed by the BIP engine. The code contains
calls to functions from libraries originally designed for G®"oM
modules, which executes the real activities of the robotic
system. The code generated for the NDD module has been
integrated and executed in the robot simulation environment
of LAAS [9]. In particular, it was fully integrated with the
decisional layer by replacing the functional layer originally
modeled with G®"oM with the one modeled in BIP.

There is a services interface in the architecture allowing
each G®bM module to have its requests called from the
decisional level. In the BIP model, each module (e.g. NDD,
RFLEX, ...) has an additional component to accept requests
and will synchronize with the corresponding ports of the
module (for example those of NDD shown in Fig. 7). Hence,
the requests sent by the decisional level are received by
the component and reports are sent by each service upon
completion according to the protocol used by G®"oM modules.
Indeed, the decisional layer does not need any modification to
work with BIP.

The following section demonstrates how the methodology

The NDD module.

enforces by construction the constraints and the rules between
the various functional modules.

C. Functional level Controller synthesis

In the LAAS architecture, a centralized controller (R2C)
is used to control the proper execution of the services and to
enforce the safety constraints and modules interactions. On the
contrary, in the BIP model, we have used separate controllers
for each service. The proper execution order and the safety
properties are enforced by the BIP connectors between the
controllers of different services. A BIP connector has guarded
actions associated to each of its possible interactions. Depen-
dency between the controllers of service in different modules
are modeled by connectors associated with guards which
represents either some valid execution condition or some
safety rule. The composite behavior of these local controllers,
synchronized by the connectors and restricted by priorities, is
equivalent to the behavior of the centralized controller.

As an example, we had to enforce a rule between the NDD
and the POM modules which states that the robot can navigate
using the GoTo service of the NDD module only if the module
POM has already executed successfully its Run service (which
updates poster Pos). The rule is enforced by constructing a
connector between port trigger of the Goto service and port
status of the Run service, and guarded by the status value.
The status value of the Run service is updated when Run has
been successfully executed.

The next section presents in detail the methods used for the
verification of the robotic system and their results.



D. Verification of Safety Properties

The BIP tool-set can perform an exhaustive state-space
exploration of the system. Additionally, it can detect potential
deadlocks in the system. These features have been used to
verify some properties in the model of the robot and for
detection of deadlocks. Two kinds of properties have been
verified.

1) Safety properties: A safety property guarantees that
something unexpected will never happen. For the verification
of such properties, we used methods based on state-space
exploration. The basic idea is to generate all reachable states
and state changes of the system under consideration, and
represent this as a directed graph called the state-space. Two
different methods have been applied.

a) Model checking [16, 3]: We used the model-checker
tool Evaluator [12] which performs on-the-fly verification
of temporal properties on the state-space generated by the
BIP engine on exploration of the system. As an example,
we describe the usage of this method in verifying a safety
property of the NDD module. It is required that the GoTo
service is triggered only after a successful termination of
SetSpeed service. To ensure this, in the BIP model of NDD,
we need to guarantee that the interaction GoTo:trigger occurs
only after the occurrence of the interaction SetSpeed.:finish.
We checked for violations of this property, i.e finding a
transition sequence in the state-space where GoTo:trigger is
not preceded by SetSpeed:finish. This safety property can be
expressed in branching-time p-calculus [11] as the following:

uX.(<SetSpeed:finish”>T or <—"GoTo:trigger”>X)

The result obtained by Evaluator proves that the initializa-
tion property is preserved in the NDD module.

b) Verification using Observers [18, 14]: For a given
system S and a safety property P, we construct first an
observer for P, i.e. an automaton which monitors the behavior
of S and reports an error on violation of P. The verification
consists of exploring the state-space of the product system.
Such a method has been used to verify a timing property in
the NDD module. It is needed to verify that the total time taken
by all the services called within a period does not exceeds the
period.

trigger tick finish
@ @
Fig. 8. Observer for the control task period verification.

In BIP, it is possible to model time as symbolic time [2] by
using tick ports and clock variables in every timed component.

Time progress is by strong synchronization of all the tick
ports. The clock variables are incremented on a fick, to model
function execution times. Fig. 8 shows the observer component
used to verify the timing property of the NDD module. It has
a clock variable ¢ and a parameter p representing the period
of the control task. It synchronizes with the control task and
tracks the cumulative time taken by the services triggered by
control task. If this time exceeds the period p, the observer
moves to the ERROR state. During exploration, if a global
system state, containing the ERROR state of the observer is
reachable, then the property is violated.

Such a method can also be used to verify timing properties
between several modules. The processing loop presented in
section II-B manages obstacle avoidance: obstacles detected
by the laser are added to the aspect map which is used by
NDD to compute a speed reference for RFLEX to control the
robot velocity. The following time constraint can be verified: it
should take less than a given time (e.g., a second depending on
the current robot velocity) between the detection of an obstacle
(data written in the Laser poster) and the speed reduction (the
execution of the RFLEX permanent service).

2) Deadlock freedom: This is an essential correctness prop-
erty as it characterizes a system’s ability to perform some
activity over its life time. The BIP toolset allow detection
of potential deadlocks by static analysis of the connectors
in the BIP model [7]. It generates a dependency graph and
for each cycle in this graph, a boolean formula is generated.
The satisfiability of the formula is then checked by the tool
minisat [4], where a solution corresponds to a potentially
deadlocked global state. Presence of an actual deadlock can
then be verified by reachability analysis of the deadlocked
states, starting from the initial state of the system. The analysis
for the NDD module found a potential deadlock for the state
where all services are in the EXEC state, all activities are in the
ETHER state, and the control task is in the Q state. However,
this state is unreachable, hence the deadlock is not possible.

V. STATE OF THE ART, CURRENT RESULTS AND
PROSPECTIVE

The design and development of autonomous robots and
systems is a very active research field. There are other archi-
tectures addressing similar problems: to provide an efficient,
reusable and formally sound organization of robot software.
CLARAty [13], used on various NASA research rovers, pro-
vides a nice object oriented hierarchical organization over two
layers, but there is no formal model of the component inter-
actions, nor modules canvas. IDEA [5], developed at NASA
Ames, has an interesting modular/component organization
with a temporal constraint based formalism. However, com-
plexity of constraint propagation is an obstacle for effective
deployment on real-time functional modules. RMPL [10, 19]
and its associated tools, propose a system based on a model-
based approach. The programmers specify state evolution



with invariants expressed in an “Esterel like” language and
a controller maintaining them.

In [8], the authors present the CIRCA SSP planner for
hard real-time controllers. This planner synthesizes off-line
controllers from a domain description and then deduce
the corresponding timed automata to control the system
on-line. These automata can be formally validated with
model checking techniques. However, this work focuses on
the decisional part of the overall architecture. In [17] the
authors present a system which allows the translation from
MPL (Model-based Processing Language) and TDL (Task
Description Language) to SMV, a symbolic model checker
language. Compared to our approach, this does not address
componentization and seems to be more designed for the
high level specification of the decisional level.

The paper presents an approach integrating component-
based construction and validation of robotic systems. It shows
that a complex robotic system can be considered as the
composition of a small set of atomic components. The use of
BIP is instrumental for achieving this, as it provides powerful
constructs for coordinating components. The combination of
connectors to describe interactions between components, and
priorities to enforce scheduling policies, proves to be essential
for incremental modeling. The global model is obtained by
progressively composing its atomic components. It is possible
to identify in the global model all its atomic components and
their interactions. This allows in particular, to study the impact
of changes of a component’s behavior or structure on the
global behavior and its properties. The paper shows that it is
possible to combine standard verification techniques, based on
global state exploration, with structural analysis techniques for
deadlock detection. This is a very interesting work direction
that will be further investigated.

Another useful work direction is the online monitoring of
the functional level execution using observer components,
which would be able to generate feedback actions for the
decisional level which can be useful for error-recovery or
restarting of services.

Our work is based on the idea that componentization and
reasoned construction supported by an appropriate method-
ological framework and tools, are instrumental for coping
with system design complexity. It is possible to enforce by
construction some design requirements and avoid as much as
possible an a posteriori validation of the global system. We
will work towards achieving such a challenging goal in several
directions. These include the formalization of the componen-
tization methodology in particular regarding the interplay be-
tween atomic components and their coordination mechanisms.
Another important work direction is achieving constructivity,
that is guaranteeing some properties by construction or by
lightweight global analysis. Finally, the methods and tools
should be improved in particular to support incremental system
construction and analysis.
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