
A Modeling Language for Communicating
Architectural Solutions in the Domain of Robot

Control

Robin Passama

OBASCO Group, École des Mines de Nantes – INRIA, LINA
4 rue Alfred Kastler, 44307 Nantes cedex 3, France

Robin.Passama@emn.fr

Abstract. An open issue in robotics is to explain and compare very different solutions for control decomposition proposed by
robot architects. This paper presents a domain specific modelling language dedicated to overcome this problem. The underlying
goal of this work is to promote the communication of robot architects’ expertise. The paper starts from a reflexion on the state
of the art in research on control architectures. It results from this the report that to compare control architectures, it is necessary
to be focused on the decision process organization by abstracting from technological features. A conceptual model for robotic
architectures, defining domain terminology and concepts used in the description of decision process organization, is presented.
Then, the language used to model organization of the decision process is defined via a meta-model. Finally, the use of the
language is illustrated with the description of architectural solution of Aura.
keywords: robot control architecture, domain specific modelling language, decision process decomposition

1. Introduction

According to [10], a robot is ”a machine that physically interacts with its environment to reach an objective assigned
to it. It is a polyvalent entity able to adapt itself to variations of its working conditions. It has perception, decision and
action functionalities [...] It also has, at various level, the ability to cooperate with man.” A robot can be decomposed
into two part (1) an operative - or mechanical - part including physical elements, sensors, actuators, etc, (2) a controller
part in which decision are taken and reactions computed. The controller part is a complex composition of software and
hardware pieces putting in place robot decisional process.

The design of controller is a very complex task. One important factor of this complexity is that design process
involves a great variety of expertises in automatics, informatics, telecommunications, electronics, mechanics, etc. As
intelligent robotics becomes an industrial challenge, the need of powerful methodologies, languages and tools now
arises as a very important issue to reduce the complexity of the design of robot controllers. In this frame, the notion of
architecture, as an artifact that describes a modular decomposition and main properties of the controller of a given robot,
is certainly becoming as important as it is today in software engineering. An architectural solution for robot control, or
control architecture solution, is a solution for decomposing design of controllers in a more or less generic way: the same
solution can be used and specialized for the design of more than one robot controller, in a more or less restrictive way
according to a given set of operational requirements associated to this solution.

To date, expressing architectural solutions is always made ”by hand” in most of research or industrial papers, without
formalization or standardisation, unlike it is done in software engineering with the used of UML [14]. Without a common
language for designing robot control architectures , it so very difficult to understand, to communicate and to compare
the different solutions. It is also a barrier for the adoption of robot control design patterns as solutions of specific robot
control problems, like design pattern [12] are used in software engineering to express reusable software design solutions.
UML could be used to design control architectures, but it does not support any domain abstractions, which leads each
robot control designer to redefine new abstractions and terminology. The consequences would be that (1) concepts and
terminology would not be compatible, making human understanding and solutions comparison very difficult, (2) users
would reinvent the wheel for each of their design, wasting a considerable amount of time, (3) graphical representations of
models would not emphasis the characteristics of domain expert ”way of doing”, making the communication of models
more difficult. Furthermore, UML class and component diagrams, focus on software aspects. But a controller is an hybrid
software/hardware (electronic) system and a same control architecture solution can be implemented in very different
ways depending on the responsibilities granted to software and hardware parts.

That is why a domain specific modeling language for designing control architecture solutions is required. This paper
presents a first attempt to define such a language. The difficulties to overcome are (1) the complexity and diversity
of robot software controllers from both a structural and a behavioral point of view that makes it complex to find the
right abstractions, (2) the difficulty to find the right separation of concerns in order to improve human understanding

and expertise reuse, (3) the need to bridge the gap imposed by cultural and historical differences of practices in the
community.

Section 2 presents a global reflexion on state of the art in control architecture design and make a synthesis of
important concepts and practices. Section 3 starts from this synthesis and defines the proposed modeling language with a
meta-model. Section 4 then illustrates the use of the language on Aura Architectural solution. Finally, section 5 concludes
this paper and provides some perspectives.

2. Reflexion on the State of the Art in Robot Control Architectures

2.1. Challenge, Problem and Direction

Currently, the global challenge in robotics development is to express very different human expertise into identified soft-
ware (and even hardware pieces) and to integrate all theses pieces in a cohesive manner into control architecture. This
integration is not limited to expertise in robotic fields as control, navigation, vision, world modeling or artificial intel-
ligence, but also concerns various ”non-functional” domains as security, transactions, persistence and so on. Moreover,
the emergence of service robotics will involve the necessity to express a large set of ”business” domains, like medicine,
human security, defense, etc. Managing each of independently already requires a high degree of expertise, but the emerg-
ing robotic industry will require managing them simultaneously for a given system. This challenge can be related to two
complementary problems : domain engineering for the management of domain expertise and separation of concerns for
expertise integration.

Historically, software engineering aims at providing solutions for software analysis, design, development, deploy-
ment and testing. But generally these solutions are centered on programmer’s, software architect’s or software project
manager’s points of view, like for example in object, aspect, or component paradigms. Even if software frameworks
encapsulate specific domain expertises, they only provide a solution usable by programmers, but not by most of domain
experts. Consequently, we see two main problems in the use of well-known software engineering approach: they don’t
provide to domain experts an adequate frame to apply their expertise to a given problem nor to reuse their solutions; most
of them don’t provide techniques at an adequate domain abstraction level to merge solutions from different domains of
expertise into a global software system. In the frame of robotic systems design and development, this issue is a really
important one since robot control architecture designers cannot all be software engineers.

The management of domain expertise at an adequate level of abstraction is the intended goals of the Domain Spe-
cific Languages (DSLs) approach [20]. The main idea of this pragmatic approach is to provide high-level languages to
domain experts to describe solutions of domain problems. One advantage is that, thanks to the degree of abstraction of
a DSL, empirical or formal rules can be checked on models in order to validate or to verify various domain properties.
Another property of DSLs is sometime to allow for automatic code generation from solution models. The present paper
investigates in that promising direction by defining the conceptual basis of a DSL for robot architects, but without consid-
ering analysis or code generation, only description of solutions being the subject of this work. In a DSL design, the first
step, which is mandatory before being able to define language syntax and semantics that matches domain terminology,
is the domain analysis. It consists to define common concepts to understand and communicate domain expertise. It cor-
responds, in our context, to the definition of common concepts usable by robot architects to explain control architecture
solutions. To define domain concepts, next subsection gives a global overview of current methodological practices and
their related issues.

2.2. Current Practices and Issues in Control Architectures

When studying current practices two main issues emerge: the diversity of control design methodologies [18] and the
different levels of abstraction in the description of control architecture solutions.

This latter issue is discussed first. When looking at research papers on control architectures, one can notice that
descriptions made are really different, uneasily comparable (if possible) and sometime quite ”fuzzy”. This report is
certainly the first motivation of the present work. There are two factor for explaining this report. The first factor is
the language or graphical conventions used to describe control architectures. Some authors use standard description
languages like for instance UML class, component and deployment diagrams (for example [11]), which, as said earlier,
limits the vision of the architecture to a specific implementation paradigm and does not really well captures the domain
expertise. Many others use ”ad-hoc” description features, which capture domain expertise at a greater abstraction level
but which are often not well defined nor comparable. The second factor is certainly the merging of implementation
detail with control decomposition details in the description, which impacts greatly in the diversity of terminologies and
concepts. Many proposals are close to specific frameworks. For example CLARATy [29][28] is closed to a locomotion
and navigation framework, LAAS [1] and ORCCAD [25] are close to specific execution frameworks and Chimera [27],
OROCOS [24] and MirpaX [16] are close to communication frameworks. With so deep differences among proposals in
their technological foundations, it is obviously difficult to denote recurrent (shared) concepts in all of them.

From this first report, the intuitive solution is to provide a domain language to allow the description of key design
concepts without binding these concepts with underlying technologies, with implementation languages or paradigms or
even with specific algorithms. The chosen direction should then be ”abstraction”, as in software engineering few years

ago with the use of models written in a standard language [14] and of design patterns [12]. The direct consequence of
this report is to differentiate the notion of robot control architecture from the notion of robot software architecture. As a
first attempt to define these two notions, this paper proposes general definitions:

• The robot control architecture is a model of a robot controller that captures the decomposition of robot decisional
process, its perception and action capabilities into interacting pieces of different levels of decisional complexity
and of different responsibilities within each level.

• The robot software architecture is a model of the software system embedded in the robot, that defines the robot
control architecture realization with software artifacts and interfaces it with robot hardware architecture.

So, regarding the previous conclusions, if the use of standard software modeling languages seems to be really useful
to describe robot software architectures they are not adapted to describe robot control architectures. In the same time a
language for designing robot control architectures is needed to avoid ”ad-hoc” models and to allow for a better under-
standing, a better communication and a better comparison of robot architects’ design solutions.

The other issue, regarding robot architects’s practices, is the management of the diversity of control design method-
ologies. A classification of these methodologies, proposed in [18], has emerged along robotic history and defines four
approaches: reactive, deliberative, hybrid and behavior-based.

Historically, the two main approaches for control architecture decomposition, defined since the 1980’s, are deliber-
ative and reactive approaches. The deliberative approach, also called hierarchical proposes a decomposition of a con-
troller into a set of hierarchical layers, each one being a control and “decision-making system”. A layer directly con-
trol the direct lower layer and is under control of its direct upper layer. The higher the layer is the more important are
the decisions for the course of robot mission. The lower the layer is the more time constraints are strong in order to
preserve robot reactivity (its ability to compute and apply adequate reactions in a time compatible with physical con-
trolled system). Lower layers are responsible for simple control and reflex decisions like for example control law appli-
cation loops or environment observation loops. Higher layers are involved in high-level and complex decisions such as
planning. Classically, deliberative architectures are three layered [13], but some ones define a greater number of layers
like NASREM [3] and 4D/RCS [2]. Quickly speaking, the deliberative approach proposes a functional decomposition of
robot decisional process from complex and long-term decision to simple and short-term ones. The main advantage of
this approach is an interesting way to separate decisional concerns and the drawback can be a bad reactivity: the upper is
the layer that makes the decision in response of a given stimuli, the higher the reaction time because information has to
cross all lower layers to be handled. The reactive approach proposed by example in Brooks’ subsumption architectures
[7], proposes a decomposition of a controller into set of reactive autonomous entities, often called reactive behaviors
because they implement behaviors of the robot specialized for a given finality (e.g. ”reaching the nearest heat source”).
Each reactive behavior define a Perception - Decision - Reaction cyclic process, where Perception is the mechanism that
recovers sensor data, Decision is the mechanism that computes the adequate reaction and Reaction is the mechanism that
apply to actuators the computed reaction. Interactions are not restricted to occur within a hierarchical schema: sensors
data are simultaneously available to several reactive behaviors that decide of reactions and propagate them to actuators.
The complexity is that many reactive behaviors can generate, at the same time, contradictory reactions. Reactive archi-
tecture so integrate an arbitration mechanism that allow the robot to adopt a coherent global behavior according to its
mission objectives. Arbitration consists in recovering behaviors’ reactions and synthesizing them in a global reaction
that is actually applied to actuators. This arbitration is realized in different way, achieved by different types of interac-
tions, for example with a complex vote protocol in DAMN [23] or with subsumption links in subsumption architectures
[7]. The global behavior, issued from such a partially uncontrolled arbitration of behaviors is viewed as emergent. So,
quickly speaking, the reactive approach proposes an multi-agent decomposition of robot decisional process. The main
advantage is reactivity and adaptability according to physical world variations and the main drawback is an architectural
and implementation complexity induced by the management of reactions arbitration.

To mix advantages of both approaches (understandability, manageability of architectures and reactivity of the result-
ing controller) the hybrid (for example CLARATy[29] or LAAS [1] architectures) and behavioral-based [19] approaches
have been proposed. They are supposed to combine hierarchical decisional process decomposition and the ability to react
quickly to environment stimuli. This is achieved in so many different ways that it is obviously complicated to list them
all.

Nevertheless, a precise study of the domain shows that (1) each control architecture is based on a personal interpreta-
tion (by the authors) of the chosen approach and (2) that the distinction between all these approaches can be really fuzzy.
First of all, the distinction between deliberative and reactive approaches, that seems to be clear can be attenuated by the
fact that lower layer of deliberative architectures contain reactive behaviors (i.e. control law application loops) and by
the fact that reactive architectures can be arranged according to a set of hierarchical layers representing different levels of
decision complexity [7]. What primitively differentiate these architectures is the underlying decomposition ”philosophy”
(functional and multi-agent).

Another example is the difference between reactive and behavioral-based approaches that is really thin since it
mainly relies on a criterion (”the behavior-based can store representations while reactive cannot” [18]) that can be
considered as subjective (in fact, only the life time of the representation differs).

One more example is the difference between hybrid architectures like Aura [4], 3T [5] or ARM-GALS [17] on
the one hand and LAAS[1], CLARATy [29] on the other hand. In fact, the first ones are hybrid in the sense that their

lower layer is organized around reactive behaviors coordinated with an arbitration mechanism (like reactive or behavior-
based approaches) and this layer is under the control of a decisional layer in charge of complex decisions (resulting in
reconfigurations of reactive layer). The second ones are more or less organized as deliberative architectures but according
to the authors with a greater uncoupling between layers which is a quite subjective criterion. Fortunately this criterion
can be specified thanks to architectures, for example ORCCAD [6] or LIRMM [22] architectures, that clarify in a more
or less explicit way this point: architectures are viewed as hybrids because they have a layered style that allows for
direct interactions (under given conditions) between non adjacent (not directly in relation) layers, allowing so sensing
or reaction information to cross frontiers between layers in order to improve reactivity. To conclude on that point, the
difference between hybrid architectures is important when considering the control design within the lower layers: the
former approach being based on a multi-agent decomposition, the latter being rather based on a functional one.

The final example is the difference between hybrid architectures like IDEA [21] or Chimera [26] and other hybrid ar-
chitectures, that lies in the decomposition of the control architecture into control sub-systems that incorporate the control
of specific parts of the controlled robotic system. This organization is viewed as hybrid because (1) each subsystem en-
capsulates both reactive and deliberative capabilities and so can be viewed as a hierarchically layered architecture (even
if it is not explicit in papers) and (2) subsystems are independent from each other and coordinate in a complex way, being
so considered as autonomous interacting agents. This organization is, in a limited way, generalized in LIRMM [22] but
also in CLARATy [29] where each subsystems is in turn incorporated into a more global layered system that controls the
whole robot: subsystems are then under the control of a higher decisional layer. This approach has the benefit to render
more intuitive the decisional process decomposition because it couples it with the decomposition of morphological and
infrastructural (hardware) attributes of the controlled sub-system.

As a conclusion for this subsection, the intuitive direction to follow for a language for communicating architectural
solutions is to provide common concepts that on one hand abstract from these subtle differences between approaches
and on the other hand allow all existing control design methodologies to be used.

2.3. Commonalities

Defining the right abstractions to design control architecture solutions requires in the first time to focus on commonalities
between proposed architectures. Commonalities are identified in different ways. The first (and rather classical in domain
analysis) way is to consider as ”common” the concepts that are the most recurrent in (since there is no concept shared
by all) control architectures. The second is to consider as ”common” the concepts that are explicitly used in really few
architectures but that are in fact really useful and always applicable for control architecture decomposition. The last way
consists in identifying recurrent variations in control architectures and generalizing them into a concept that can capture
all possible variants.

The most easy to find recurrent concept is the one of layer. The layer concept exists in a huge number of archi-
tecture, initially in deliberative architectures, but also in most of hybrid, reactive and behavior-based architectures. Un-
fortunately, one have to admit that nearly each author has its own vision of what is exactly a layer. For example, in
subsumption architectures [7] layers are abstractions of reactive behavior roles (e.g. robot movements, robot integrity,
etc.), and in LAAS architectures [1] they separate AI decision-making mechanisms from control law modules. What is
important in the concept of layers, is that a layered organization separates decisional concerns in a clear way, whatever
the precise meanings of layers are. The layer is so the vector of a hierarchical decomposition of decisional process.

Another recurrent concept is the one of activity or task. An activity or task denotes a part of the decisional process
with specific decisional, control and perception responsibilities. The terms activity or task are not standards since many
other terms are often use, like for example real-time task and real-time procedure [6], reactive behavior [7], genom
module [1], module [9], agent [21], port-based object [26], Motor or perception Schema [4], depending on authors
point of view that is influenced by implementation or methodological concerns. Sometimes activities are not explicit in
the architecture, even if they exists, for example CLARATy architecture hides control and perception threads inside its
object-oriented design. In fact this latter point is also true for nearly all layered architectures, since upper ”decisional” or
”deliberative” layers are made of entities (often explicitly drawn) that are responsible of AI-based planning [1] [29] or
environment representation and navigation [4] mechanisms. These entities can also be viewed as activities of higher level
of decision. One important property is that activities are arranged into layers according to their decisional complexity.

As reported in the previous subsection, some architectures propose a decomposition of control architectures into
systems. The concept of system, as a part of the decisional process that incorporates the control of specific parts of the
controlled robot, explicitly exists in a really limited number of architectures and under different names and forms like
IDEA agents [21] or Robotic Resource [22]. This concept also exists in other architectures but without being explicitly
defined. The advantages of this concept are that (1) it is useful for decomposing decisional process (cf. previous subsec-
tion) and (2) it can be generalized in such a way that it is applicable for all architectures. The generalization consists in a
systemic organization of control architectures: a system can potentially be decomposed into subsystems that are systems
responsible of the control of sub-parts of the controlled physical part of robot. Sub-systems being systems they can in
turn be decomposed in such a way. Since there can be a single system for decomposing the control architecture of a given
robot (i.e. no systemic decomposition) and that an entire robot team can be viewed as a system itself decomposable into
subsystems (one for each robot), the concept of system can be easily applied to all control architectures. One can notice
that the systemic organization is orthogonal to the hierarchical one: each subsystem can incorporate both reactive and
long-term decision-making activities and so can itself be layered.

Another useful but rather exceptional concept is the knowledge concept, that helps to identify the data and know-how
used in a control architecture. If never mentioned as with the term knowledge this concept explicitly exists in architectures
using object-oriented models in their description, more precisely CLARATy [29] and LIRMM [9] architectures. Object-
class hierarchies represent the knowledge used in the architecture, for example robot physical properties knowledge or
environment knowledge. The functional layer of CLARATy partially merges knowledge with activities while these two
aspects are clearly separated respectively in object class and Petri-net modules in LIRMM proposal. The advantages of
this concept are that (1) it is useful for qualifying more precisely the responsibilities of activities by explicitly defining
what type of information they use and (2) it implicitly exists in all architectures. Indeed, whatever the activity taken into
account in any architecture, it uses a specific knowledge of the robot and the environment. For example, any control
activity is based on a representation of the robot morphology and kynodynamics. Of course, this representation is in
most of time completely hidden in the architecture design. Another related aspect is knowledge specialization, effec-
tive in CLARATy thanks to class specialization mechanism. Knowledge specialization helps to define different levels of
knowledge refinement and to qualify more precisely at which level of refinement an activity works.

One thing that emerges when studying the different architectural solutions proposed along history is the huge di-
versity of interactions used. Nearly each architecture use a specific set of interaction protocols, of different degrees of
abstraction according to their implementation. Interactions are the most recurrent variations that can be found between
control architectures. Since its impossible to list all possible interactions (more especially as new ones could be defined
in the future), a concept generalizing them is necessary in a domain language for control architecture description. Inter-
action partly influence the control design methodology. For example, specific protocols, like subsumption links [7] or
vote protocols [23], are used in reactive and behavior-based architectures to put in place arbitration mechanisms; layered
architectures use different event notification protocols to make sensing activities communicate with upper layer activities
[9]. If interactions can be explicitly represented, it would certainly be useful for a better understanding of the design
methodology used for a given control architecture solution.

3. A Control Architecture Modeling Language

The proposed modeling language focus on the control control architecture -i.e. the decomposition of robot decisional
process, and does not take into account implementation aspects -i.e. robot software and hardware architectures.

3.1. Concepts, Terminology and Graphical Conventions

One important thing to take into account when designing a domain specific language is that it has to be complete, mini-
malist and easily readable. Complete, because each domain solution has to be expressible with the language. Minimalist,
because the minimal set of concepts has to be provided to express solutions. Easily readable because a quick understand-
ing of a solution is necessary. This is a big challenge in itself because the right balance has to be chosen between a great
variety of precise domain concepts on one hand and a restricted set of generic domain concepts that can be more easily
learn on the other hand.

3.1.1. Main Concepts

First, we define four main concepts: Knowledge, Activity, Coordination, System. To this end, the term task is used, and it
has to be understood in the general meaning, -i.e. the fact of doing something.

Knowledge: a Knowledge entity identifies a structured piece of information about the world within which the robot
controller evolves. It can directly refer to the physical world (environment, robot body) or to a concept bound up to this
physical world like a ”phenomenon” or an ”event”. It can also refer to a know-how of the robot relative to this world, i.e.
a way of detecting/solving problems relevant to this world (e.g. criteria defining singular configurations of the robot).
Finally, the control architecture being itself part of the robot world, a Knowledge entity can also explicitly refer to (parts
of) it, to get for instance a form of introspection.

Activity: an Activity entity is responsible for the achievement of a task that plays a role in the robot decisional process,
using a set of Knowledge entities. For example, an Activity entity (activity for short) can refer to the observation of the
environment state, of the robot (body) state, or even of the controller state. It can also refer to: low-level control of the
robot, like the application of a control law, medium-level control as control context commutation, and high-level control
like planning. Finally, it can also refer to a learning activity (creating or refining knowledge) whatever the level of control
is concerned. An activity uses (internally) Knowledge entities to elaborate its decisions. For example, an activity defining
a control law application uses knowledge on environment and robot morphology to compute actuator commands.

Coordination: a Coordination entity is responsible of the way a set of activities interact by exchanging or sharing
knowledge. For example, it can express collaboration, i.e. an interaction type defining how different tasks are distributed
among activities to achieve a more complex task. This is the most common case of Coordination entities, for instance
command execution requesting or event notification. It can also express competition, i.e. an interaction type defining
how several activities achieve the same task. This the the type used in many behavior-based or reactive architectures, for
instance vote protocols or subsumption links. A same activity can be involved in more that one coordination. Knowledge
entities that are exchanged or shared during coordination depends on the nature of the interaction. For example, in an

<name>

description

Body Environment

Phenomenon ! Interaction Infrastructure

Action Behavior

Strategy

Objective
Knowledge entity

Figure 1. Some graphical conventions for representing Knowledge entities

event notification, Knowledge entities can represent specific states of the observed physical system (environment or robot
body).

Systems: a System entity is an abstraction of the control of a physical (mechanical) entity (morphologically dis-
tributed or not). For example, a System entity (system for short) can refer to the control of a robot’s part (e.g. the arm
or the vehicle of a mobile robot), to the control of the (entire) robot (e.g. the mobile robot) or even to the control of a
robot team. It is responsible of the way a set of Activity and Coordination entities, concerning this physical entity, are
organized in order to achieve a set of tasks. This organization is done with a hierarchy of layers. A layer is an abstraction
that symbolizes a ”level of decision complexity” whatever the complexity of the decision is (from ”simple” reactive
decisions to ”complex” deliberative decisions). A system organizes its internal activities by associating each of them to
a layer according to its relative decision complexity in the system. A system also defines relations between its internal
control architecture and infrastructure elements, like sensors and actuators. An infrastructure element is an abstraction
that represents primitive part of the robot that provides to systems inputs (sensors), outputs (actuators) or both (physical
communication links) or abstract composition of that parts (e.g. all actuators of the arm) by which the system retrieves
information from the world within which the robot evolves.

3.1.2. Knowledge

A Knowledge entity is quite complex to detail without more specialization. At the highest level of abstraction, the only
thing that can be said is that it contains a model synthesizing the type of knowledge and data representing the parame-
terization of this model for a given context. ”Model” means any form of representation of the knowledge, being it math-
ematical formulas, empirical models, declarative models like CSP, biologically inspired models like neural networks,
geometrical models, etc.

Since Knowledge entities are used to qualify other entities, its specialization to more precise domain abstractions
is a way to improve easy understanding of models. In this way, the work done by Brugali and Salvaneschi in stable
aspects of robot development [8] provides a good terminological basis that is extended here. So, knowledge entities can
be arranged following three categories: Embodiment, Situatedness and Intelligence.

The Embodiment refers to the consciousness of having a body that allows the robot to experience the world directly.
In this category, we find Knowledge entities like that representing the Body or Infrastructure of a robot, or some of their
parts. The Body Knowledge entities allow for representing the electro-mechanical devices of robot operative part. Body
entities can be themselves associated with other Knowledge entities of the Embodiment category. For instance a Body is
associated to Morphologies and Kinodynamics [8] that are physical properties of robot body. A Morphology knowledge
entity represents shape of a Body, its physical components and their structural relationship. For example, a robot can
have a humanoid morphology, an animal-inspired or a human-vehicle inspired morphology. A KinoDynamics knowledge
entity represents the kinematic (position and velocity) and dynamic (acceleration, force) constraints that limit the relative
movement of the robot’s body in the environment (morphological constraint like links and joints, physics law like gravity,
etc.). The Infrastructure entities allow for representing the electronic-communications devices of robot controller part.
Infrastructure entities represent elements like Sensors and Actuators or even more complex composite elements. Body
and Infrastructure entities can themselves be decomposed into smaller part. For example, a rover robot entire Body can
be decomposed into an Arm, a Vehicle and a Camera. Knowledge on embodiment can be so modularized.

The Situatedness refers to evolving in a complex, dynamic and unstructured environment that strongly affects the
robot behavior. In this category, there are Knowledge entities like that representing the Environment. The environment
is viewed as a continuum of physical configurations, but from a decisional point of view it is a discrete spatial-temporal
milieu that is made up of any kind of dynamic or static elements such as people, robots, equipments, buildings, animals,
mountains, etc., and hosts all their (potential) mutual Interactions. It can be decomposed into sets of Environment entities
that represent any spatial part of it. Interactions are knowledge entities that represent interactions that can occur between
the robot and the environment. Contrary to [8] the concept of Interaction is here limited to interactions governed by
physic’s laws (movement in environment, objects grasping, physical quantities measurement, etc.). In this category, there
are also Knowledge entities like that representing the Phenomena. A Phenomenon refers to something that can occur
in the environment, which is directly perceptible (thanks to specific Interactions) or estimable by the robot. To describe
these entities we need others ones like those representing Places in the environment (the ”where”), Objects (the ”what”)
and Time (the ”when”).

The Intelligence refers to the ability of the robot to adopt adequate and useful behaviors while interacting with the
dynamic environment. In this category, we can find Behaviors and Actions. Briefly, an Action denotes a capability of

Reactions Perceptions

Intentions Observations

Decision

<name>

Reactions Perceptions

Intentions Observations

<name>

Protocol

Activity Entity Coordination Entity

Figure 2. Graphical conventions for representing Activity and Coordination entities

the robot (or part of it) to act in order to obtain a given result (e.g. a given effect on the environment). For example,
an Action can represent the fact of ”reaching a given place at a given time”. The expected result of Actions can be
represented by Objectives (e.g. the place and time). Behavior denotes an abstract representation of the way the robot
behaves when realizing Actions according to the possible robot-environment Interactions. For instance, a Behavior can be
”being attracted by the nearest heat sources”, it is defined thanks to Actions like ”reaching a given place”, ”detecting heat
sources” and ”defining nearest reachable source” and according to Interactions like ”heat measurement”, ”movement
in room” and ”environment perceiving”. Knowledge entities of this category can also represent Strategies associated
to each System. A knowledge entity representing a Strategy contains an action planner and for each action defines the
behavior(s) to be selected (and if necessary merges) to reach its objective. Behavior is the result of the activation of
a set of coordinated Activities (or a single one). So, to allow the precise description of Strategies, Knowledge entities
can also represent the Activities and Coordination used to give concrete expression to the Strategy, to allow the robot to
reason on. This conceptual decomposition of Intelligence is partially detached from [8] proposal, to put in adequacy the
organization of knowledge entities with other main domain concepts.

Figure 1 shows some graphical conventions used to describe Knowledge entities. The different types of Knowledge
entities are represented using different symbols to clarify their intrinsic differences. To this point, concepts allows only
to model the ”passive” characteristics of robot controller architecture, not the ”active” ones.

3.1.3. Activity and Coordination

”Active” characteristics are expressed thanks the Activity and the Coordination entities. An Activity is an entity of any
level of decision that puts in place Perception-Decision-Reaction cycles. Graphical conventions to represent them and
their properties are represented in figure 2.

It receives Perceptions (required pieces of information, or significant phenomena notification) from other activities
or from the infrastructure (sensors). Each Perception of an activity is associated with one or more knowledge entities of
any level of abstraction, from simple sensor data to complex computed robot or environment states. It contains a Decision
mechanism that computes Reactions. This mechanism is of any level of abstraction, from simple control law computation
to a high-level planning or supervisory control mechanism. The Decision mechanism handles activity internal knowledge
(Body and Environment for instance) and knowledge coming from Perceptions to determine the adequate Reactions to
adopt. Reactions represent the way an activity wants its decision to be realized by (eventually) others activities or by the
infrastructure (actuators). Each Reaction is associated with one or more knowledge entities of any level of abstraction,
from simple actuator data to a high-level order (e.g. an Objective). The Decision mechanism can be influenced by
Intentions it receives. An Intention represents a goal that an activity intends to accomplish -i.e. a goal influencing its
Decision. An Intention is associated to knowledge entities representing, for instance, the desired state of the robot Body,
related or not to the Environment, or a desired Behavior. The Reaction emitted by an activity can be viewed as an
Intention by the activity that receives it. The Decision mechanism can also emit Observations. An Observation represents
an interesting state of: decisional process, body or environment. For instance, an activity that detects an obstacle in the
environment can transmit the corresponding Observation associated with corresponding knowledge entities representing
the obstacle. An emitted Observation can be viewed as a Perception by activities that receive it. Like for knowledge
entities, activities could be categorized into more specific entities like for instance, Environment Observers or Body
Motion Planners, and so on, but this specialization should take place at the moment when a consensus on decisional
process decomposition will be accepted.

Intentions, Observations, Reactions and Perceptions are exchanged by activities thanks to Coordination entities. A
Coordination entity is an entity of any level of abstraction, that imposes a protocol for knowledge exchange or share
between a set of activities. It can represent various interactions like simple event notifications and resource request
on time interval as the one used in CLARATy, specific subsumption or inhibition links, as well as a complex vote
protocol like in DAMN. In fact, it depends on the protocol and on the nature of Intentions, Observations, Perceptions and
Reactions taken into account by the Coordination. Graphical conventions to represent Coordination entities are presented
in figure 2. Intentions, Observations, Perceptions and Reactions are optional features for both activity and coordination
entities (even if using none of them makes no sense).

Infrastructure

 Decision
Complexity

 Time
Constraints

Reactions Perceptions

Intentions Observations

SSA

sensorsensoractuator

<name>

<name> <name>

C

communication

Figure 3. Graphical conventions for representing Systems entities

3.1.4. System

Systems are entities used to describe control architectures. Each System contains a set of coordinated activities and share
with some of them some of their inputs and outputs (i.e. Intentions, Observations, Perceptions and Reactions). So a
System can be considered itself as a decision-making system just as activities and can coordinate with other activities
and/or Systems. Inside Systems, activities are organized according to a layered approach. The number and the precise
semantics of each layer (decisional, reactive, executive, functional, etc.) is let undetermined to allow a maximal flexibility,
main hierarchical organization criterion being the ”decisional complexity” (increasing from down to up) and real-time
constraints (increasing from up to down).

Systems being used to describe the control architecture of an identified piece of the robot, they are in relation with
Body Knowledge entities they are responsible of. These latter are useful to ”reason” about the robot body while systems
are useful to exploit it. For example a Manipulator System control a robot Arm. System being able to contain other
systems, the control of the robot or group of robots can also be described recursively. For example, the system controlling
a rover robot can be composed of one system controlling its arm (Manipulator System) and another one controlling
its vehicle (Locomotor System), like in CLARATy. All activities contained in a System participate to the control of the
same part of the robot Body. A System can also explicitly refers to the Infrastructure of the Robot Body to associate its
Intentions, Observations, Perceptions and Reactions with related Infrastructure elements, and more particularly Sensors
and Actuators. For example, the Manipulator System refers to joints sensors and actuators of the arm and put them in
relation with its Perceptions and Reactions. Graphical conventions for representing systems and robot infrastructure are
presented in figure 3. This figure represents a System containing two Subsystems, where Subsystems contains two layers
(layers are differentiated by dotted lines) and the System contains three layers, including the two preceding layers and
an upper layer. Activities contained in subsystems interact with sensors and actuators of a more global infrastructural
element (e.g. arm sensing and actuating infrastructure).

3.2. Language Meta-model

Now that concepts have been defined, this section presents the modeling language meta-model which reifies these con-
cepts at the modelling level.

3.2.1. Reifying Concepts

The diagram of figure 4 shows the way main concepts are reified into the meta-model. Interesting things to denote in this
diagram are:

• All control architecture entities are generalized into an Entity abstract class, in turn specialized into two abstract
class Knowledge entity and Decisional Entity. This latter class is a generalization of all entities used in decisional
process decomposition.

• A composite pattern is used to describe relations between Activity, Coordination and System entities allowing so
”recursive” decomposition of architecture into coarse-grained Systems.

• A Decisional Entity uses internally a set of Knowledge Entities (association with the used role).
• All types of inputs and outputs of Decisional Entities are generalized into a Interaction Point abstract class.

According to the diagram, a same Interaction Point can be shared by more than one Decisional entity, for example

Entity

name : string

Knowledge Entity

ActivityCoordination

Decisional Entity
1..*

EmbodiementSituatednessIntelligence

Model 1..1

description : string

Decision

1..11..1

PerceptionReactionIntentionObservation

description : stringdescription : string

Protocol

1..*

1..*

.*

.* source 1..* target

1..*

exchanged
1..* 1..*
used

Environment Interaction Phenomena

BodyInfrastructureBehaviorAction Strategy

Interaction Point
name : string

1..*

System

1..*

Layer

name : string

1..1

1..*

upperlower 0..1 0..1

decisional
level

Figure 4. Meta-model : diagram of main concepts

a same Reaction can be shared by an Activity and its containing System (than in fact exports this Reaction outside
its limits). In consequence it can have more than one source and more than one target.

• An Interaction Point exchanges a set of Knowledge Entities and a same Knowledge Entity can be exchanged by
any number of Interaction Points.

• A System contains a set of hierarchically ordered layers (according to the lower-upper relation) and layers can be
defined across many Systems.

• An Activity is associated to a unique layer that corresponds to its ”decisional level” and a layer can contain many
activities.

The meta-model does not precise the way Models, Protocols and Decision are described. Their string description
attribute is added to allow for a description in a natural language, which of course is not formal but, in a first time, the
most simple solution is preferred.

This diagram shows that Knowledge Entities are shared by the other entities. This is explained by the fact that a same
knowledge can be use in many parts of the robot control architecture. For example knowledge on robot body is used in
all activities that put in place control loops. This can be compared to a kind of separation of concerns since Knowledge
Entities can be viewed as aspects that crosscut the decisional process decomposition. This is taken into account in the
language by differentiating knowledge representation concern from decisional decomposition one: Knowledge Entities
are modeled in a first dimension and Decisional Entities in a second one. This two dimensions are related to each other
with links (represented in decisional dimension) between Knowledge and Decisional Entities (relations where Knowledge
entities play used and exchanged role), which represents aspects weaving.

3.2.2. Details on Knowledge Entities

Relations between the different types of Knowledge Entities are described in the diagram of figure 5. With the purpose of
conciseness, the diagram does not precise all meta-classes, like Time, Places, Objects, Morphologies and Kinodynamics,
but they can be deduced from previous discussions.

The diagram focuses on structural relationships between Knowledge Entities that are according to previous defini-
tions.

• A Body evolves in a set of Environments, it can support a set of Infrastructure elements and it participates to a set
of Interactions. A Body can be decomposed into smaller Bodies as well as Infrastructure.

• An Environment can be decomposed into a set of more spatially restricted Environments.
• A Phenomenom occurs within an Environment and is detected thanks to a set of Interactions.
• An Interaction occurs within Environments.
• A Behavior is activable according to a set of possible Interactions and can be observed when the robot realizes a

given set of Actions.
• An Action commands a Body and has, as goals, a set of Objectives.
• An Objective references the target Environement to express its spatial localization.

*

*

Phenomena

Infrastructure

Strategy

supports

*

0..1
evolves in
* *

1..* *

occurs within

1..*

*

occurs within
Interaction

detected thanks to

*

*

participant

*

*
Body

Behavior
commands

1..1

*

activates

activable according to possible

*

*

*

plans

Objective

goal*

*

Environment

references
0..1

*

*

* *

Objective

* *

is observable
when robot
realizes

*

Action

*

Figure 5. Meta-model : diagram detailing important Knowlegde Entities

Systemcontroller*
*

Body

Sensor Actuator Composite Device

Infrastructure 1..1 1..1
matches

Communication Device

2..*

Entity

1..*

1..*

exploits

used

Interaction Point

Infrastructure Device

1..*

0..* supports

Figure 6. Meta-model : diagram defining entities used in detailed architecture description

• A Strategy plans a set of Actions to realize, and according to this set it activates a set of Behaviors.

This relations in the meta-model will be traduced by links between Knowledge Entities instances in a control archi-
tecture model. These links will be stereotyped with << ... >> label. For instance for links between Body and Environ-
ment, the stereotype <<evolvesin>> will be used. Composition links between Knowledge Entities in the meta-model are
traduced by composition links in a model.

3.2.3. Complete Control Architecture Description

Since a precise description of control architectures, like it is presented in figure 3, has to be possible, the relation between
Decisional Entities and Physical Infrastructure Elements have to be described. This is the purpose of the diagram of
figure 6. This part of the meta-model more specifically details Systems according to their relation with operative part they
control and physical elements they use to control it.

The relation between a System and the robot operative part it controls it expressed according to the controller relation
between Body and System meta-classes. A constraint, that is not expressed in the diagram, is that all Decisional Entities
it contains participate to the control of the same Body or sub-parts of it. To describe the way a System controls a Body,
the diagram introduces the abstract class Infrastructure Device that is itself specialized into four concrete classes :

• Communication Device (square with C label cf. fig. 3) that represents a device that the robot uses to communicate
with human operators or other robot, for instance a Wifi device.

• Sensor (square with S label cf. fig. 3) that represents a physical sensor, for instance a joint position sensor.
• Actuator (square with A label cf. fig. 3) that represents a physical actuator, for instance a joint position command

actuator.

0..1

specialization 0..1*
Entity

name : string

Cardinality

 min : int
 max : int U {*}

Interaction
Point

0..1

0..1* generalization

generalization

specialization

Figure 7. Meta-model : diagram defining Genericity, Refinement and Optionality management

• Composite Device (represented with a white rectangle around other devices in figure 3) that represents a set
of simpler devices that can be grouped according to a given infrastructure decomposition. For instance, it can
represent all joint sensors and all joint actuators of a same robot arm or all devices of a robot.

All Infrastructure Devices support a set of Interaction Points (restricted to Perceptions for Sensors and Reactions for
Actuators by which they can interact with Decisional Entities. A Composite Device just supports the set of Interaction
Points of its contained Infrastructure Devices. A System so exploits a given set of Infrastructure Devices by putting in
relation its Interaction Points with theirs. For example, a Manipulator System exploits (at least) the Composite Device
that represent the sensors and actuators of arm. It has to be noticed that an Infrastructure Device can be used by many
Systems (of course it has to be done with care). Finally, diagram shows that an Infrastructure knowledge entity refers to
a corresponding Infrastructure Device.

3.2.4. Genericity, Refinement and Variability

Now that all primitive structures of the language used to describe control architectures have been defined, this subsection
states the management of control architecture solutions description. To describe architectural solutions, mechanisms
allowing to deal with different degrees of genericity-specialization are necessary Mechanisms introduced in the language
are defined in the diagram of figure 7. These mechanisms are all defined thanks the Cardinality class, inspired from UML
[14] cardinalities.

Individually, a Cardinality just represents minimal and maximal amounts, where maximal amount can be infinite
number (using * value). When a Cardinality is associated to an Entity, this means that this Entity can be refined, in an
architecture that conforms to the solution, as many times as allowed by the Cardinality maximal and minimal value. So,
Cardinality is used to deal with the genericity of control architecture solutions. For example, when considering a team
of robots where each robot has the same control architecture, the architectural solution is expressed with a single System
and its associated Cardinality that expresses the minimal and maximal number of team members. If no Cardinality is
explicitly associated to an Entity, this means that this latter has a [1..1] cardinality. When a cardinality is associated to
an Entity having a composite relation with other Entities (e.g. System, Body, etc.), this Cardinality is applied to all its
internal description, allowing so to express a possible duplication of the Entity internal structure. For example, when a
cardinality is associated to a System, this means that each of its contained Activity and Coordination can be duplicated
as many times as specified by the System’s Cardinality. Cardinalities can also be associated with Interaction Points,
meaning these points can be duplicated and refined when their source and or target Entity are refined.

Variability in a model allows the user to express different possible choices in its design. In feature models [15] used
to express product lines, variability is expressed in two ways : optional features and group features. An optional feature
corresponds to a feature that can or not be present in the resulting product. A group feature corresponds to a possible
choice between a set of feature. In the present work, optionality means that an Entity is present or not in a refined control
architecture. It is expressed with a [0..1] cardinality applied on this Entity or Interaction Point and can be extended to
[0..n] cardinalities, whatever n value is. In a first time, the language only incorporate description feature for optionality
and does not deal with group cardinalities. When an optional entity disappears in a refinement all its interaction points
(for decisional entities) or relations (for knowledge entities) disappear. Furthermore, when a Coordination has only one
possible participating entity in a refinement, it disappears.

Refinement is expressed in the meta-model with the generalization-specialization relationship on Entity and Inter-
action Point classes (cf. fig. 7), that is similar to the UML class specialization feature. This relation allow to refine a
set of Entities to adapt an architural solution to a control architecture of a given robot. So the refinement is restricted
according to cardinality. When a Knowledge Entity is refined, its relations with other Knowledge entities are themselves
specialized with relations between related specialized Knowledge Entities. By default, in an architectural solution, all
relations supports a [0..*] cardinality, meaning they are optional but can be duplicated many times.

4. Example

This section presents the use of the modeling language for the description of Aura Architectural solution. This example
is defined according to a personal understanding and interpretation of Aura solution, based on its related bibliography.
This is an important precision: since only the authors deeply know Aura, their initial viewpoints could be unintentionally

 Global
Map (1)

Human
Order (3)

Spatial
Path (4)

<<references>>

path to follow
in the environment
to reach local area

Global representation
of environement
static structures

Abstract mission objective

 Local Area
Map (2)

representation
of a part of the

environment

<<goal>>

Spatial
Objective (5) <<references>>

<<commands>>

<<commands>>

<<supports>>

Acting on Objects
Management
Behavior (10)

Moving To
SpatialObjective (6)

Following
Operator Commands (7)

<<commands>>

<<occurs>>

<<occurs>>

<<occurs>>

<<occurs>>

<<observable>>

Movement in
Environment
Mangement
Behavior (9)

<<observable>>

<<observable>>

Spatial Point
Unreachable (15)

!Spatial Point
Reached (14)

!

Action on
Object Success (17)
!

Environment
Stimuli (18)

!Mesuring
Quantities (21)

<<detected>> <<detected>>

<<detected>>

<<detected>>

[1..*]

[0..1]

[1..*]
[0..*]

[1..*]

[0..*]

[1..*][1..*]

Remote Control
Infrastructure (24)

[0..1]

[1..*]

[1..*]

One point or area
in space

Robot Body (11)

Moving in
Environment (19)

Action on
Object Fail (16)

!
[0..*]

Interacting
with Objects (20)

[0..*]

<<detected>>

Reaching a spatial point Operator telecommands robot

[1..*]

Robot
Infrastructure (25)

Actuation
Infrastructure (23)

[1..*]

Sensing
Infrastructure (22)

[1..*]

Acting on
Objects (8)

[0..*]

Finding/Manipulating
/pushing/tracting objects

<<observable>>

Figure 8. Aura Architectural Solution : Knowledge dimension (a)

not respected. So these examples should be seen as an illustration of the use of the modeling language rather than a
”definitive” opinion on the way Aura architectures are designed.

Aura is a generic and abstract control architecture solution which merges a reactive approach for low-level control
design with a hierarchical ”deliberative” approach for high-level control design. It has been chosen because Aura is a
very complex and general architectural solution which integrates preoccupations like teleoperation and learning.

The example mainly refers to [4]. The architectural solution is decomposed in two dimensions : the knowledge
dimension presented in figures 8 and 9 and the decisional dimension presented in figure 10. The relations between these
two dimensions are expressed thanks to numbers in parenthesis associated to knowledge entities (cf. fig. 8 and 9) and
used in decisional entities (cf. 10).

4.1. Knowledge Dimension

The knowledge dimension decomposes (cf. fig. 8) the generic knowledge entities used in the Aura architectural solution.
Human orders are abstract mission objectives given by human operators. The Human Order knowledge can be refined
many times to describes different types of mission objectives. The Global Map is a global representation of static ele-
ments of the environment. It is decomposed into Local Areas, representing for instance things like rooms or corridors.
The Local Area knowledge can be refined many times to describes these different types of Local Area if it is of impor-
tance. The Spatial Path is an objective that defines the path the robot has to follow in the environment. It is decomposed
into a set of Spatial Objectives representing important places where the robot has to accomplish specific objectives. The
Spatial Objective entity can itself be refined into specific objectives for specific Local Areas. Three generic knowledge
entities are used to represent interactions: Moving In Environment, Interacting with Objects and Measuring Quantities.
All these interactions occurs in Local Area, except Moving In Environment that also occurs within Global Map (i.e. go-
ing from one local area to another). A set of phenomena are detected thanks to these interactions: Spatial Point Reached
and Spatial Point Unreachable detected thanks to Moving In Environment, Action on Object Fail and Action on Object
Success thanks to Interacting with Objects, Environment Stimuli thanks to Measuring Quantities. Figure 8 shows that
Interacting with Objects interaction and related phenomena are optional, in the sense that Aura Robot does not necessar-
ily have means to manipulate objects nor have for mission to transport object in the environment. Other Interactions and
phenomena are not considered to be optional (they have to be refined at least one time in a control architecture).

Figure 8 defines three types of actions: Moving to Spatial Objective which consists for the robot to go from current
point to a spatial objective, Following Operator Commands which consists for the robot to be teleoperated, Acting on
Objects which consists to make an action on an object to obtain a given result (e.g. catching an object, throwing it in

Acting on
Objects (8)

Following
Operator Commands (7)

Behavior Activation
Stategy

Action Planning
Strategy (12)

Acting on
Object Behavior (10)

Movement in
Environment
Behavior (9)

<<plans>> <<plans>> <<plans>>

<<activates>><<activates>>

Moving To
SpatialObjective(6)

[1..*] [0..*] [0..1]

[1..*]
[1..*] [0..*]

Behavior Activation
Stategy

Behavior Activation
Strategy (13)

[1..*]

Figure 9. Aura Architectural Solution : Knowledge dimension (b)

a bin, etc.). All actions are considered to be optional except Moving to Spatial Objective, because Aura is initially a
solution for robot mobility. Two knowledge entities generalize all behaviors of robot: Movement in Environment Behavior
that generalizes behaviors like ”approaching spatial point” or ”obstacle avoidance” and Acting on Objects Behavior
like ”catching nearest waste”. For reason of conciseness of the model, relations between interactions and behaviors
are not represented. For example, Acting on Objects Behavior should be linked with a <<possible>> relation with all
three interactions. All actions commands a unique Robot Body because Aura does not propose a decomposition of the
knowledge of robot operative part into smaller controlled parts. The Robot Body supports a Robot Infrastructure itself
composed of sensing and acting infrastructural elements and optionally a remote control infrastructural element. Control
strategies are defined in figure 9. As the decomposition of knowledge of Aura architectural solution has been understood
there are two categories of strategies represented by two generic knowledge entities: Action Planning Strategy defines an
action planner and Behavior Activation Strategy defines a way a set of behaviors are activated and merged.

Next subsection shows the way all these entities are used in the decisional process decomposition of Aura architec-
tures.

4.2. Decisional Dimension

The decomposition of robot architectures into subsystems does not exist in Aura: each robot is associated to a single
system. System decomposition arises as soon as a group of collaborative robots is considered, each system (i.e. robot)
being attached on its own infrastructure (cf. fig. 10). Robot system is decomposed into five layers, two reactive layers
and three deliberative layers.

At the top layer there is the Mission Planner activity, in charge of collecting user intentions (i.e. mission long term
goals and constraints) represented with Human Order (3) knowledge entity. At the layer below, the Spatial Reasoner
activity receives requests from the Mission Planner to define the Spatial Path (4) (sequence of Spatial Objectives(5)) the
robot must or can follow to achieve Human Order (3). Once a path is defined the Plan Sequencer activity is invoked to
define the sequence of actions (6-8) required to follow the path and to achieve Human Order (3). For example, if the
Human Order is to clean a building, the first action sequence would be: ”go to room 1” (6), ”collect waste”(8) and ”put
waste in the bin” (8) if the Spatial Path path is ”room1, room2, room3, etc.”. The action sequence corresponds to a state
diagram where states are actions to perform and transitions are action changes. Transitions are associated to specific
phenomena (14-17) that enable the state change. The planning itself is defined according to a given Action Planning
Strategy (12) and according to Global Map and Local Area knowledge.

The activity entities of the deliberative layers interact around a Long Term Environment Memory Sharing coordina-
tion entity to consult and update Global Map and Local Areas knowledge (1,2).

Once a sequence of actions has been defined, the Plan Sequencer invokes the Schema Controller activity of the
Reactive Action Execution Layer to realize each action (6-8). To this end the Schema Controller defines a Behavior
Activation Strategy for each action to realize. Schema Controller interacts with Perception Schemas and Motor Schemas
activities of the Reactive Control Layer. Perception Schemas activities are responsible of the production of Stimuli (18)
or other action execution related phenomena (14-17) from sensors data. Stimuli are phenomena that contain partial
instantaneous representations of the environment (1,2) or robot body (11). Other phenomena (14-17) are representing
interesting state of actions execution. Perception Schemas can also produce long term Environment (1,2) representations
(e.g. map of a room, update of the Global Map). Motor Schema activities put in place specific behaviors (9,10). Each
Motor Schema activity is viewed as a control low, computed using stimuli (18) and Robot Body (11), to obtain a given
behavior (9,10), as for example ”obstacle avoidance”. Schema Controller activity coordinates Perception Schemas and
Motor Schemas in different ways. First, it translates the action execution request into a composition of Schemas (cf.
Composition Selection): Motor Schemas are activated according to the behavior they represent ; Stimuli generated by
Perception Schemas are redirected to Motors Schemas following a predefined Behavior Activation Strategy (13) and
Perception Schemas can be configured with a Spatial objective (5). Second, some Perception Schemas are activated to
generate action execution status (cf. Action State Notification). Schema Controller uses these phenomena to know if the
current action has been (or cannot be) realized. It can then reply to the Plan Sequencer to indicate if the action succeeded
or failed; if the action failed it tries to re-plan a sequence of actions or it indicates the Spatial Reasoner that the path
cannot be followed. Perception Schemas can also interact with the higher-level activities by updating the Long Term
Environment Memory. Finally, the Schema Controller sums and balances the commands to motors generated by activated

Motors Schemas

LongTerm
Environment

Memory Sharing
Updating/Consulting

Environment Map

Perception Schema Motor Schema
(1,2,5,11,
14-22)

Motors Schemas
Schemas Controller

Motors Schemas
Plan Sequencer

(1,2,3,4,5,12,
6-8,14-17)

Creating plans of actions

(1, 2)

Motors Schemas
Spatial Reasoner

(1,3,4)
Finding path in the environment

and spatial learning

Motors Schemas
Mission Planner

(3)Interface with human operator
and mission plan recognition

Request/ Reply

(3)

Request/ Reply

(3,4)

Request/ Reply

Activating and
waiting for reply (5,6-8,14-17)

Commands
Arbitration

Summing and
ponderating
commands

Composition
Selection

Selecting and
composing
perception
with motors

(5,9,10,1
3,18)

(9-11,
13, 23)

Reactive
Control
Layer

Reactive
Action

Execution
Layer

Action
Planning

Layer

Path
Planning

Layer

Mission
Planning

Layer

Computing stimuli
action states and environment

static representation
Computing actuators

commands from stimuli

Execute actions by
activating behaviors

A S

AnyActuator (23) AnySensor (22)
Remote Communication

Device (24)

(5,6-8,13,
14-17)

(5,9,10,11,
18,23, 24)

C

[1..*]
[1..*]

[1..*]Aura Robot Controller
(11)

[0..1]

[0..1]

(3)

(3,4)

(3)

(3,4)

(1)

(1,2)
(1,2)

(1,2)

(5, 6-8)

(5, 6-8)

(3)

(14-17)

(14-17)

[0..1]

(1,2)

[0..1]

[0..1]

(22)

(23)

(6-8)

(14-17)

(14-17)(18)

(5)
[0..1]

[1..*] [1..*]

(23)[1..*]
[1..*]

(18)

[0..1]

(9-11,13)

[0..1]
[0..1]

(5) Notifying new
states of current

actions

ActionState
Notification

(6-8,
14-17)

[1..*]

[0..*]

(5,9,10,13)

(3)

(5)

(5)

(6-8)

(6-8)

[0..1]

[0..1]

[0..1]

[0..1]

[0..1]

[0..1]

(14-15)

(14-15)

[1..*]

Robot Infrastructure
Device (25)

Figure 10. Aura Architectural Solution : Decision dimension

Motor Schemas (cf. Command Arbitration) according to the respective importance of behaviors in the chosen Behavior
Activation Strategy. Once done, the command vector is applied to robot’s motors. Human machine interaction can take
place in many ways in an Aura architecture. Human can send Human Order to the Mission Planner at the top most level,
it can directly send Spatial Objectives to the Spatial Reasoner, it can send actions to execute to the Plan Sequencer and
finally it can directly interact with a specific Motor Schema to control robot movements.

5. Conclusion

This paper has argued on the necessity to define a dedicated language for communicating and understanding architectural
choices in robotics. It proposed such a modeling language that embeds conceptual and terminological properties of
the domain. It allows expressing architectural specificities by providing adequate abstractions and by promoting the
importance of control organization thanks to different abstract types of entities: System, Activity, Coordination and
Knowledge. An example of use of this model have been developed on a well-known architecture.

Future work aims for the design of decision mechanisms of Activity entities and that of protocols of Coordination
entities. Simple concepts and terminologies have to be defined to easily express their respective properties. In the same
way, more detail should be integrated to the different Knowledge entities types, to describe more precisely their respective
models.

Another important point is a better understanding of genericity and refinement mechanisms. The refinement mecha-
nism and cardinalities’ impact on refinement should be formalized to avoid ambiguities. It would also be usefull to pro-
vide a way to describe alternative possibilities. In that sense, feature models [15] is a good source of inspiration because
it provides structures, like group features and include/excluse constraints, to deal with it.

The short term goal of this work is to propose a precise frame to compare existing control architecture solutions and
to highlight their advantages and limitations. In a longer term, the goal is to find commonalities and variations between
all the main designs proposed in the domain.

References

[1] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand. An architecture for autonomy. International Journal of Robotics
Research, vol.17, n◦4 p.315-337, 1998.

[2] J.S. Albus and al. 4d/rdc : A reference model architecture for unmanned vehicle systems. Technical report, NISTIR 6910, 2002.
[3] J.S. Albus, R. Lumia, J. Fiala, and A. Wavening. Nasrem : The nasa/nbs standard reference model for telerobot control system

architecture. Technical report, Robot System Division, National Institute of Standards and Technologies, 1997.
[4] R.C. Arkin and T. Balch. Aura : principles and practice in review. Technical report, College of Computing, Georgia Institute of

Technology, 1997.
[5] R.P. Bonnasso, D. Kortenkamp, D.P. Miller, and M. Slack. Experiences with an architecture for intelligent, reactive agents.

Technical report, NASA Johnson Space center, 1995.
[6] J.J. Borrely, E. CosteManier, B. Espiau, K. Kapellos., R. Pissard-Gibollet, D. Simon, and N. Turro. The orccad architecture.

International Journal of Robotics Research, Special issues on Integrated Architectures for Robot Control and Programming, vol
17, no 4, p. 338-359, April 1998.

[7] R.A. Brooks. A robust layered control system for a mobile robot. IEEE journal of Robotics and Automation, vol. 2, no. 1,
pp.14-23, 1986.

[8] D. Brugali and P. Salvaneschi. Stable aspects in robot software development. Advanced Robotic Systems, vol. 3, n◦ 1, pages
17–22, 2006.

[9] J.D. Carbou, D. Andreu, and P. Fraisse. Events as a key of an autonomous robot controller. In 15th IFAC World Congress (IFAC
b’02), 2002.

[10] B. Espiau. La peur des robots. Science Revue , Hors série n◦10, p.49, mars 2003.
[11] L. Fluckiger and H. Utz. Lessons from applying modern software methods and technologies to robotics. In Software Integration

and Development in Robotics, SDIR07 at ICRA07 (International Conference of Robotic and Automation), 2007.
[12] E. Gama, R. Helm, R. Jonhson, J. Vlissides, and G. Booch. Design Patterns : Element of Reusable Object-Oriented Software.

Addison-Wesley Professional Computing, 1995.
[13] E. Gat. On three-layer architectures. A.I. and mobile robots, D. Korten Kamp & al. Eds. AAAI Press, 1998.
[14] Object Management Group. Uml ressource page, http://www.uml.org/.
[15] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson. Feature-oriented domain analysis (foda) feasability study. Technical

Report CMU/SEI-90-TR-21, Carnegie Mellon University, Pittsburgh, PA, November 1990.
[16] J. Maaß, N. Kohn, and J. Hesselbach. Open modular robot control architecture for assembly unsing the task frame formalism.

Advanced Robotic Systems, vol. 3, n◦ 1, pages 1–10, 2006.
[17] J. Malenfant and S. Denier. Architecture réflexive pour le contrôle de robot autonomes. In revue L’objet. Langage et Modèle à

Objets LMO’04, pp.17-30, Octobre 2004.
[18] M. Mataric. Situated robotics, in encyclopedia of cognitive science, 2002.
[19] M. Mataric. Behavior-based control: example from navigation, learning and group behavior. Journal of Experimental and

Theoritical Artificial Intelligence 9, pages 323–336, 1998.
[20] M. Mernik, J. Heering, and A.M. Sloane. When and how to develop domain specific languages. ACM Computing Surveys, Vol.37,

n◦4, pages 316–344, 2005.
[21] N. Muscettola, G.A. Dorais, C. Fry, R. Levinson, and C. Plaunt. Idea : Planning at the core of autonomous reactive agents. In

Proceedings of the 3rd International NASA Workshop on Planning and Scheduling for Space, 2002.
[22] R. Passama, D. Andreu, C. Dony, and T. Libourel. Overview of a new robot controller development methodology. In 1st

conference on Control Architecture of robots (CAR’06), pp. 145-163, 2006.
[23] J.K. Rosenblatt. Damn : a distributed architecture for mobile navigation. Technical report, The Robotic Institute, Canergie Mellon

University, 1997.
[24] C. Schlegel. A component approach for robotics software: Communication patterns in the orocos context. 18 Fachtagung

Autonome Mobile Systeme (AMS), pages 253–263, 2003.
[25] D. Simon, B. Espiau, K. Kapellos, and R. Pissard-Gibollet. Orccad: Software engineering for real-time robotics, a technical

insight. Robotica, Special issues on Languages and Software in Robotics, vol 15, no 1, pp. 111-116, March 1997.
[26] D.B. Stewart. The chimera methodology : Designing dynamically reconfigurable and reusable real-time software using port-based

objects. International Journal of Software Engineering and Knowledge Engineering, vol.6, n◦2, pp.249-277, June 1996.
[27] D.B. Stewart. Designing software components for real-time applications. In 2001 Embeded System Conference, San Francisco,

2001.
[28] C. Urmson, R. Simmons, and I. Nesnas. A generic framework for robotic navigation. In IEEE Aerospace Conference, vol. 5, pp.

2463-2470, 2003.
[29] R. Volpe, I. Nesnas, T. Estlin, D. Mutz, R. Petras, and H. Das. The claraty architecture for robotic autonomy. In IEEE Aerospace

Conference (IAC-2001), March 2001.

