
A formal approach to designing autonomous systems:
from Intelligent Transport Systems

to Autonomous Robots

Fabrice KORDON1 and Laure PETRUCCI2

1 Université Pierre & Marie Curie, Laboratoire d’Informatique de Paris 6/MoVe
4, place Jussieu, F-75252 Paris CEDEX 05, France

fabrice.kordon@lip6.fr
2 LIPN, CNRS UMR 7030, Université Paris 13

99, avenue Jean-Baptiste Clément, F-93430 Villetaneuse, France
laure.petrucci@lipn.univ-paris13.fr

Abstract. Emerging transport systems involve more and more fully automatic
parts that communicate together in order to optimise traffic and security. Such
systems are highly distributed, mobile and require physical constraints to be taken
into account. The communicating entities may be included in vehicles or the in-
frastructure ; they must comply with real time and real space constraints ; they
should also have some autonomous behaviour in case of e.g. network failure.
The systems designed should be proved reliable before being put in operation.
We propose to use formal specification and verification techniques for designing
these models, prior to any costly hardware implementation.

1 Introduction

Emerging transport systems involve more and more fully automatic parts that com-
municate together in order to optimise traffic and security. Such systems are highly
distributed, mobile and require physical constraints to be taken into account. The com-
municating entities may be embedded in vehicles or included in the infrastructure.

In such systems, distribution leads to a huge complexity and a strong need to de-
duce possible (good and bad) behaviours on the global system, from those known of its
actors. Moreover, at least part of these systems is embedded with intrinsic real-time and
real-space constraints. They are due to the critical, highly reactive environment where
both timing and positionning are critical issues.

For such systems, we know that classical development methods are not adequate
since the coverage of possible executions is too low [GL97]. This observation leads to
investigate the use of formal methods. However, these still lack user-friendly languages
and tools that can enable their use by non-specialists. Hence, even though major actors
in companies or institutions dealing with critical applications acknowledge the necessity
of using formal methods, they also agree on the fact they should be able to scale up:
today, only parts of systems are formally analysed.

Up to now, two main types of formal methods are available: algebraic approaches
and model checking. Algebraic approaches such as B [Abr96] allow for describing a

system with axioms and then proving a property on the specification as a theorem to
be demonstrated from these axioms. These methods are very interesting since the proof
is parameterised. However, theorem provers that are required to elaborate the proof are
difficult to use and still require highly skilled and experienced engineers.

In contrast, model checking [CGP00,BBF+01] is the exhaustive investigation of
a system state space and can be automated very easily. This technique is theoretically
limited by the combinatorial explosion and can mainly address finite systems. However,
recent symbolic techniques3 scale up to more complex systems.

Thus, since formal verification techniques are getting more mature, our capability to
build even more complex systems also grows quickly. To catch up with problems com-
plexity and get significant results with formal analysis, we must cope with the complex-
ity at every stage of the process: from the specification phase to the verification itself.
The methodology to be applied makes a pragmatic use of formal methods, i.e. assump-
tions simplifying the system under study should be made, which are usually domain
specific. Hence, variations of the traditional (unified) process development approaches
are necessary.

This paper proposes to tackle the design methodology and techniques that can be
applied in order to handle very large systems throughout the modelling and verifica-
tion processes. Such techniques are here concerned with Intelligent Transport Systems
(ITS), i.e. mechanisms which provide driving assistance to a vehicle. This application
domain is particularly representative of tomorrow distributed systems including real-
time and real-space features, for which traditional programming approaches cannot
guarantee the required security, and must thus be adapted.

The paper is structured as follow. Section 2 presents ITS concerns and the related
verification problems. Then, section 3 describes the formal notations that we shall use
to model such systems. A design methodology is sketched in section 4. Section 5 ad-
dresses verification using appropriate model checkers. Finaly, section 6 shows the par-
allel between Intelligent Transport Systems and autonomous robots.

2 Intelligent Transport Systems

Intelligent Transport Systems (ITS) are highly critical since a failure can lead to dra-
matic consequences such as fatal accidents. They also involve a significant number of
partners that must thus cooperate in an efficient and secure manner. The agents of such
a system are road operators, infrastructure, vehicles and their drivers. Some of these
might be equipped with active embedded software while the others travel in the usual
fashion. Their reaction is then unpredictable and it is essential to obtain relevant and
often updated information from captors in order to take them into account.

Development of ITS is a challenge supported by research programs in Europe, USA
and Japan [Bis05].

In this section, some ITS issues are first illustrated through a simple example. Then,
major problems encountered during the formal specification are discussed.

3 The word symbolic is associated with two different techniques. The first one is based on state
space encoding and was introduced in [BCM92]. The second one relies on set-based represen-
tations of states having similar structures and was introduced in [CDFH91].

2.1 ITS Example: Safe Insertion in a Motorway

A typical example of an ITS problem is the so-called black-spot, which is a dangerous
section in the motorway. It is basically a freeway entrance in which safe insertion should
be guaranteed. Figure 1 represents a motorway with two lanes: L1 (right lane) and L2
(left lane). An entrance to the motorway, L0, is connected to L1. Vehicles already on the
motorway use both lanes L1 and L2. Vehicles are supposed to carry an identity which is
a number. The notation Vi, j indicates that vehicle j is circulating on lane number i. We
aim at studying a cooperative insertion of vehicles arriving in the entrance lane L0.

Fig. 1. Safe Insertion in a motorway.

The vehicles on the insertion lane L0 must enter the motorway without violating the
following properties:

1. the distance between two vehicles in the same lane must be greater than a minimum
safe distance to let drivers react to sudden and maybe unexpected events;

2. V0, j vehicles must eventually get into the motorway;
3. Vi, j vehicles should not have to stop.

We propose the following strategy to ensure a safe motorway entrance:

(a) The motorway has a road-side center (RSC) enabling communication with vehicles
and which can compute commands related to safety or flow control.

(b) Vehicles receive their positions using satellite localisation technology [Blo05] which
may also be combined with ground installations and digitised maps). They periodi-
cally their position to the infrastructure. Subsequently, the infrastructure maintains
a dynamic map of all vehicles in its communication range.

(c) The infrastructure, vehicles behaviour and interactions operate the following inter-
action cycle:
(i) vehicles get their position;

(ii) they send this information to the infrastructure;
(iii) when the infrastructure has received all vehicles positions, it issues commands

w.r.t. a predefined strategy.

In order to simplify the problem, we assume that all vehicles are equipped with com-
munication devices and drivers follow the instructions issued by the road-side center.
Vehicles without the embedded equipment are considered and modelled differently.

2.2 Modelling Issues for ITS

For such critical and reactive systems, both quantitative and qualitative properties should
be ensured.Quantitative properties express performance requirements while qualitative
properties allow for checking whether a faulty behaviour may occur.

Modelling and verifying such systems require:

– managing dynamic actors such as cars that enter and leave the black-spot;
– modelling of physical aspects;
– preserving a fair progression of the system so that actors perform actions at a similar

pace.

A qualitative analysis is a first step in the development process: it will ensure a
global correct functionning. Then, the specification can be refined so as to include tim-
ing or hybrid features, reflecting the actual real-time and real-space behaviour. Quanti-
tative analysis will determine whether the envisionned strategies satisfy physical con-
straints. In this paper, we will focus on the qualitative aspects.

2.3 Specification Issues

The first issue consists in selecting an appropriate specification formalism [HKP06].
Of course, the formalism should be able to capture the relevant aspects of the problem
under study, and allow for the necessary verifications. Moreover, a design methodology
will prove useful, to carry out verifications step by step on more amenable models.

The choice of a specification formalism and the design methodology are of utmost
importance for verification to be as successful as possible.

A very popular candidate for specification is UML [COTM05]. Even though, it is
useful for structuring a system and having a better view of the interactions between
components, UML is not suitable for formal analysis of the system behaviour. Normal-
isation efforts tends to counter this problem by giving a more precise semantics, but the
connection between diagrams is still too loose and leads to various interpretations.

Algebraic techniques such as B can be useful for the verification of behavioural
components as Siemens proved in the METEOR project [B]. However, it was also
known as a difficult technique to automate compared to model checking based ap-
proaches. Thus, this latter type of techniques seems better suited to provide more auto-
mated tools.

Many tools allow for model checking. They address different kinds of models. In a
first approach, we will focus on the verification of behavioural properties of the system,
i.e. qualitative analysis. Thus, we will be able to check that the chosen strategies are
relevant, indepently of real-time or real-space constraints. Therefore, a simple model
is selected, which is powerful enough for our modelling purposes and provides up-to-
date efficient analysis techniques, namely Symmetric Nets4. The CPN-AMI tool [cpn]
constitutes a complete spefication and verification environment for symmetric nets.

4 Symmetric Netswere formerly known asWell-Formed Nets, a subclass ofHigh-level Petri Nets.
The new name was chosen in the context of the ISO standardisation of Petri nets [HKPT06].

In a further step of our modelling and verification process, the models will be
enhanced so as to capture the real-time and real-space aspects, i.e. perform quantita-
tive analysis. Model checking tools can handle time (e.g. UPPAAL [upp], based on
timed automata; or TINA [tin] based on Timed Petri Nets) or hybrid constructs (e.g.
HYTECH [hyt]). It will then be necessary to design a methodology which guarantees
a compatibility between the models designed for qualitative analysis and those derived
for quantitative analysis purposes.

The remainder of this paper will on behavioural properties. Therefore, section 3
presents the symmetric nets formalism.

3 Symmetric Nets

This section provides an informal presentation of Symmetric Nets as well as associated
analysis techniques. Formal definitions can be found in [CDFH91,GV03].

3.1 Formalism Basic Features

Symmetric Nets are Petri nets enhanced with high-level features: tokens can carry data.
Therefore, a data type is associated with each place, indicating the data type for tokens
sitting in that place. In contrast with Coloured Petri Nets [Jen92], only simple data and
manipulation functions are permitted, allowing for powerful analysis techniques. Finite
enumerated types, intervals, tuples are allowed and the basic functions are predecessor,
successor, selector (in a tuple) and “broadcast”. The latter function allows for generat-
ing one copy of each possible value in the data type. This is very convenient for e.g.
modelling network protocols where a station sends messages to all other stations on the
network.

Let us now illustrate Symmetric Nets (SN) by means of a small example. The Petri
net in figure 2 represents a class of threads (identified by an identity in type P) accessing
a critical resourceCR. Threads can get a value within the type Val from CR. Constants
PR and V are parameters for the system.

Class
 P is 1..PR;
 Val is 1..V;
Domain
 D is <P,Val>;

CR
<Val.all>

outCS

compute

InCSout
<P.all>

Mutex1

<p> <v>

<v>
<p, v>

<p, v>

<p>

<v>

Var
 p in P;
 v, v2 in Val;

Fig. 2. Example of a Symmetric Net.

The class of threads is represented by places out (typed after P) and compute. Place
compute (typed afterD=P×Val) corresponds to some computation on the basis of the

value provided by CR. At this stage, each thread holds a value that is given back when
the calculus is finished. Place Mutex handles mutual exclusion between threads. Place
out initially holds one token for each value in P (the marking is then noted < P.all >)
and place CR holds one value for each value in Val (marking < Val.All >). Place
Mutex only contains one token with no value (like a black token in place/transition
nets).

Transitions represents evolution of the system. A transition is fired when all pre-
condition places hold a sufficient marking. For example, Transition inCS can be fired
if there is one token in out, one token in CR and one token in Mutex. When it fires,
variables p and v are bound to the values of tokens from place out and CR respectively
(placeMutex has no type, hence its tokens do not carry any data). When this transition
is fired, a token carrying the value of pair < p,v> is created in the postcondition place
compute.

3.2 From Symmetric Nets to Place/Transition Nets
A symmetric net can easily be unfolded into an equivalent place/transition net.

A SN-place is transformed into a set of PTN-places, one per possible value. The
place/transition net in figure 3 is the unfolding of the symmetric net in figure 2 with
P= [1..2] and Val = [1..2].

InCS_2_2InCS_1_2 InCS_2_1InCS_1_1

outCS_2_2outCS_1_2 outCS_2_1outCS_1_1

out_2 •out_1•

Mutex

•

CR_2
•

CR_1
•

compute_2_2

compute_1_2 compute_2_1

compute_1_1

Fig. 3. Unfolded P/T Net from figure 2.

Even large models can be handled, using decision diagram based techniques [KLPA06].
Then, structural properties of the model can be computed from the unfolded net.

They are formulas that can be computed without exploring the full state space [GV03],
and hold independently of the initial marking (in fact, it often intervenes in a constant
value only).

3.3 Symbolic Reachability Graph
One of the main analysis techniques is based on the state space (also called reachability
graph) exploration. It represents all concrete states and possible evolutions of the sys-
tem. Figure 4 presents the reachability graph for the Petri net of figure 2 with constants

PR and V equal to 2. This state space has 5 states (the initial state is represented by
a double circle). When increasing the number of possible values, the size of the state
space will grow following the cardinality of the cartesian product P×Val.

 Mutex: <..>
 out: <.1.> + <.2.>
 CR: <.1.> + <.2.>

 out: <.2.>
 compute: <.1,1.>
 CR: <.2.>

 out: <.2.>
 compute: <.1,2.>
 CR: <.1.>

 out: <.1.>
 compute: <.2,1.>
 CR: <.2.>

 out: <.1.>
 compute: <.2,2.>
 CR: <.1.>

outCS
 p = 2
 v = 2

outCS
 p = 2
 v = 1outCS

 p = 1
 v = 2

outCS
 p = 1
 v = 1

InCS
 p = 2
 v = 2

InCS
 p = 2
 v = 1

InCS
 p = 1
 v = 2InCS

 p = 1
 v = 1

Fig. 4. Reachability Graph of the Net in Figure 2.

Similar to symmetric nets which are a compact representation of a system, the sym-
bolic reachability graph is a condensed reprsentation of the states in the system, par-
ticularly adapted to the analysis of symmetric nets. A state in the symbolic reachability
graph does not represent a concrete state but a set of concrete states that have a similar
structure. The symbolic reachability graph of our example is depicted in figure 5. It is
composed of only two nodes and does not grow when the types P and Val allow for
more values.

 out: <P_01>
 compute: <P_00,Val_01>
 CR: <Val_00>

 out: 1<><P_00> |P_00|=2 |Val_00|=2
 CR: <Val_00> |P_00|=2 |Val_00|=2

InCS outCS

Fig. 5. Symbolic Reachability Graph of the Net in Figure 2.

The definition of states in figure 5 must be read as follow. In the initial state, all
possible values in type P are stored in place out and all possible values in type Val are
stored in place CR. In the other state (when transition InCS fires), all possible values
of type P but one are in place out and all possible values of type Val but one are in
place CR. Place compute then contains one token composed with one value of type P
(the one that is not in place out) and one value of type Val (the one that is not in place
CR). Thus, this symbolic state represents all possible permutations of the pair of tokens
extracted from places out and CR when firing transition InCS.

This symbolic technique is thus based on computed symmetries in the net [TMDM03].
It is successful when representing very large state spaces: there is an exponential gain
w.r.t. the construction of concrete states [HTMK+04]. This set-based representation is
very efficient, especially when systems are symmetric, which is the case in numerous
distributed and embedded systems.

Such a technique is well-suited for analysing Intelligent Transport Systems since
they present intrinsic symmetries as similar algorithms are supposed to be executed in
each car.

4 Modelling Methodology for ITSs

Considering that the specification formalism for Intelligent Transport Systems is Sym-
metric nets, we now aim at a suitable dedicated design method. Therefore, we will
consider the techniques that are optimal for this kind of systems.

4.1 Model Components and Abstraction Level

The whole ITS system to be modelled involves several components that interact via sev-
eral mechanisms. The communication can either be asynchronous (and is then modelled
by place fusion) or synchronous (corresponding to transition fusion).

It is thus necessary to enhance the symmetric nets formalism with both of these
communication mechanisms. They provide further advantages. In particular, several
designs of a same component can be tested without changing the models of the other
components, provided that all these designs communicate in the same manner with the
rest of the system. But they can operate different strategies or configurations.

This approach leads to a hierarchy of modules, which can have as many levels as
necessary. Analysing the system then starts by “flattening” the whole model into a single
symmetric net. It is also possible to take advantage of modular analysis techniques such
as [LP04].

Since the systems under study are complex, we also consider using refinement of
modules [LL01]. This approach allows for first designing an abstract model, analysing
it, and then include additional details in a consistent manner (so as to keep the analysis
results as much as possible). This process is repeated until the desired abstraction level
is obtained. A similar modelling approach will lead to include the real-time and real-
space features once the global functionning of the system is proved correct.

Finally, the specific problems identified in section 2.2 must be addressed.

4.2 Managing Dynamic Actors

The vehicles involved in the black-spot are dynamic: they can enter and leave the mo-
torway zone nder study. A natural way of modelling this aspect would be to create new
vehicles getting in and discarding vehicles getting out.

However, such an approach is not suitable for several reasons. First, that would
mean associating a new number with each new vehicle. The chosen formalism of sym-
metric nets permits only finite types, thus having a arbitrary high numbering of vehicles

is not feasible. Moreover, let us assume that there is a maximum numbering of vehicles.
The states space of the system will be uselessly large when taking into account many
different vehicle numbers.

An approach to managing this dynamic aspect is then to consider that there can be
a limited number of vehicles on the black-spot. This is a reasonnable assumption since
the cars and motorway lengths are a physical limit. Moreover, the identity of vehicles
has no consequence on the functionning of the system. They must still be distinguished
to consider e.g. different positionning or driving strategies. Hence, when a vehicle gets
out of the system, its number can be reused by a new vehicle.

This technique also brings forward an interesting feature. The corresponding sys-
tem is not expected to deadlock. Thus, a deadlock may correspond either to a property
violation or to some mistake in the model itself.

4.3 Modelling Complex Functions

As mentionned in section 3.1, symmetric nets only offer a limited set of mathematical
functions to the system designer. This is required for keeping the mathematical structure
that enables the computation of symmetries in the specification, necessary for using the
symbolic reachability graph [TMDM03].

To cope with the modelling of complex functions (for example, computation of
braking distance according to the current speed of a vehicle), they can be discretised
and represented in a dedicated place of the Petri net. This approach is similar to sam-
pling and can be applied to arbitrarily complex functions, deterministic or not. However,
the discretisation of a function becomes a modeling hypothesis and must be validated
separately (to evaluate the accuracy of the sampling).

The main drawback of this technique is a loss in precision compared to continuous
systems that require appropriate hybrid techniques [CEF05]. If such a discretisation en-
ables the use of more user-friendly techniques, they must be checked. For example, if
we consider distances in our black-spot example, we must ensure that uncertainty re-
mains in a safe range. This means that our metrics must be compliant with the precision
to ensure, for example, that if V1,1 follows V1,2, the minimum distance guarantees that
no intersection between the associated volumes is possible.

Using the discretisation technique may be a preliminary to putting in operation more
complex formalisms such as timed or hybrid ones which will allow for quantitative
analysis of continouous models.

4.4 Fair Execution among System Components

The different actors in an ITS behave in parallel. Their actions should evolve at a simi-
lar pace. This aspect is not guaranteed by Petri net behaviour unless appropriate mech-
anisms are set. To avoid the progress of one component while the other components are
stopped, several techniques can be used:

– the addition of a timeline, as in Timed Petri nets [Jen92] changes the firing condi-
tions so that time can advance only if there is no enabled transition at the current
time anymore;

– the state space construction could include a branching option that would discard
unsuitable sequences.

In the black-spot example, at each time slot, all vehicles should make a move and
the infrastructure take decisions, thus following the execution cycle described in sec-
tion 2.1.

5 Towards Analysis of Intelligent Transport Systems

As mentionned in section 4.2, ITSs include many components, namely the vehicles,
which have a similar behaviour. The vehicles identifiers are only used to track them
within the system. Therefore, this kind of system is highly symmetric: the diffrent ve-
hicles play the same role. Thus, the use of symmetric nets and the associated analysis
technique, i.e. the symbolic reachability graph (see section 3.3), is relevant.

Nevertheless, analysis remains quite difficult since currently implemented model
checkers are not sufficient. The ones that implements a concrete state space cannot
handle more than a few 108 states.

GreatSPN [gsp], a model checker implementing the symbolic reachability graph
was successfully used to analyse a middleware core having approximately 1018 concrete
states [HTMK+04], but it seems inadequate for the complexity of ITS systems when
discretisation is realistic and requires types with many values (in [BHKF06], only small
configurations could be analysed). Model checkers supporting a symbolic encoding of
the state space such as SVM [smv] present the same drawbacks.

A close examination of model checkers behaviour shows that current techniques
cannot scale up for these systems yet.

However, model checkers use new techniques that are promising for analysing ITSs:

– symbolic/symbolic techniques;
– distributed model checkers running on clusters of machines;
– handling stable markings;
– hierarchical encoding and modular techniques.

In the following subsections, we will sketch these.

5.1 Symbolic/Symbolic Techniques

The symbolic reachability graph, as described in section 3.3, allows for mastering the
complexity of large state spaces, similar to the encoding of states using decision dia-
grams [BCM92] (also called symbolic techniques). The term symbolic can thus have
sevral meanings. It can relate to:

– grouping of similar states represented by a single abstract one;
– adequate encoding of the states to have a better use of computer memory.

To illustrate the state encoding techniques, let us consider that a state in the system
is represented as a boolean vector defining the values of a set of variables. An action
in the system usually changes only part of the system state. Hence, we can consider a

differential encoding of states. It is not necessary to encode once more the value of the
unchanged variables. Binary Decision Diagrams (BDDs) promote sharinf of common
parts in the system. The main drawback of this technique is that its efficiency is strongly
related to the ordering of variables.

BDDs are dedicated to systems using booleans, but many decision diagrams based
techniques were introduced so as to capture more elaborate models. Among them, Data
Decision Diagrams (DDDs) [CEPA+02] encode discrete values instead of binary ones.
It is a basis to support symbolic/symbolic techniques [TMIP04] that combine symbolic
encoding and symbolic reachability graph. Experiments show that this technique is
promising for the storage of very large state spaces.

5.2 Distributed Model Checking

The main problem of model checking is memory consumption. However, with diagram
decision based techniques, another problem arises. The principle of these techniques
is to trade memory against CPU. As a typical example, when a new symbolic state is
computed, it has to be compared with the existing ones. This requires all states to be
canonised in order to have a common and comparable representation.

So, distributing a model checker on a cluster of machines has advantages [KP04]:

– states are generated in parallel using a hash function which distributes states on
machines;

– it takes advantage of the CPU and memory available in the whole system.

Initial results are promising and this is a currently active research area. SPIN model
checker has already been experimented in a parallel setting [LS99,BFLW05]. A dis-
tributed version of GreatSPN has been recently implemented, which provides a supra-
linear acceleration factor for many examples [HKTM07]. However, even though the
distributed generation of the state space has been implemented, analysing properties on
those is still to be developped further.

5.3 Management of Stable Marking

The discretisation technique presented in section 4.3 generates places with a large mark-
ing which remains constant. Most model checkers do not handle such cases, and the
stable marking is represented once per generated state, leading to a huge and useless
memory consumption.

Model checkers using a symbolic encoding of states, such places should be detected
since their marking is highly shared by all states in the system. An a priori analysis
of the specification can easily detect such configuration and provide hints for a more
appropriate encoding technique.

5.4 Hierarchical Encoding and Modular Techniques

Symbolic encoding of a state space (concrete or symbolic) relies on the sharing of
state patterns in the state space of a system. Recent work investigates a hierarchical

representation that could increase the sharing of such patterns on a larger scale. For
that purpose, new representations, such as Set Decision Diagrams (SDD) [CTM05]
are being investigated. In favourable cases (i.e. when the system exhibits very regular
symmetries), the results are impressive. E.g. it is possible, using a recursive folding of
the dining philosophers problem [phi], to store the state space for to 210000 philosophers
within 512 Mbytes of memory, as reported in [TM04]. The intrinsic high symmetry in
ITSs should allow for similar results.

An additional and complementary investigation axis is modular analysis [LP04].
Since the methodology applied for specifying large systems includes design by com-
ponent, this kind of analysis techniques is suitable. The idea consists in representing
the state space using not a single graph, but several: one per component, representing
the component local behaviour and local states, plus a synchronisation graph which ex-
plicits the synchronisations between the different components and the global states to
achieve those.

Combining modular and symbolic techniques should permit to handle very large
systems such as ITSs.

6 Towards Autonomous Robots

Autonomous robots are meant to evolve within an environment which may have unex-
pected behaviour. This can be due to e.g. unknown terrain to explore, other agents (e.g.
robots handled by another system, animals), . . . ‘Moreover, the human control on such
robots is rather minor. In order for autonomous robots to take into account the charac-
teristics of the environment, it is necessary for them to get information via sensors. This
allows for having an abstract vision of the current situation. Thus, as for ITSs, mod-
elling autonomous robots requires both real-time and real-space concerns to be taken
care of.

Thus, the approach developped here for ITSs can be used to tackle autonomous
robots verification as well. The analogy could be relating the robots themselves to the
vehicles and the interacting humans to the infrastructure. The map of the environment
for ITSs is rather simple and it may be more complex for robots. However, there is often
an intended route which can initially be modelled using simple data and symmetric nets
and can later be further refined when taking into account the space and time aspects.

7 Conclusion

Emerging transport systems involve more and more fully automatic parts that com-
municate together in order to optimise traffic and security. Such systems are highly
distributed, mobile and require physical constraints to be taken into account. The com-
municating entities may be included in vehicles or the infrastructure ; they must comply
with real time and real space constraints ; they should also have some autonomous be-
haviour in case of e.g. network failure. The systems designed should be proved reliable
before being put in operation.

In this paper, we have shown how the design methodologies and current analysis
techniques can handle such very large systems. The different approaches have their own

advantages and are complementary. Therefore, our efforts will focus on their combina-
tion. An obvious necessity emerging from preliminary analysis is to consider design
and analysis issues in parallel so as to capture and handle the relevant problems in a
consistent and efficient manner. In particular, domain specific features have to be taken
into account at a very early stage.

References

[Abr96] J-R. Abrial. The B book - Assigning Programs to meanings. Cambridge University
Press, 1996.

[B] Atelier B.
[BBF+01] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, and Ph. Sch-

noebelen. Systems and Software Verification. Model-Checking Techniques and
Tools. Springer, 2001.

[BCM92] J.R. Burch, E.M. Clarke, and K.L. McMillan. Symbolic model checking: 1020

states and beyond. Information and Computation (Special issue for best papers
from LICS90), 98(2):153–181, 1992.

[BFLW05] J. Barnat, V. Forejt, M. Leucker, and Michael Weber. DivSPIN - a SPIN compatible
distributed model checker. In M. Leucker and J. van de Pol, editors, 4th Interna-
tional Workshop on Parallel and Distributed Methods in verifiCation (PDMC’05),
Lisbon, Portuga, 2005.

[BHKF06] F. Bonnefoi, L. Hillah, F. Kordon, and G. Frémont. An approach to model varia-
tions of a scenario: Application to Intelligent Transport Systems. In Workshop on
Modelling of Objects, Components, and Agents (MOCA’06), Turku, Finland, June
2006.

[Bis05] R. Bishop. Intelligent Vehicle R&D: a review and contrast of programs worldwide
and emerging trends. Annals of Telecommunications - Intelligent Transportation
Systems, 60(3-4):228–263, March-April 2005.

[Blo05] J-M. Blosseville. Driving assistance systems and road safety: State-of-the-art and
outlook. Annals of Telecommunications - Intelligent Transportation Systems, 60(3-
4):281–298, March-April 2005.

[CDFH91] Giovanni Chiola, Claude Dutheillet, Giuliana Franceschinis, and Serge Haddad. On
well-formed coloured nets and their symbolic reachability graph. In Kurt Jensen and
Grzegorz Rozenberg, editors, Procedings of the 11th International Conference on
Application and Theory of Petri Nets (ICATPN’90). Reprinted in High-Level Petri
Nets, Theory and Application. Springer, 1991.

[CEF05] P. Christofides and N. El-Farra. Control Nonlinear And Hybrid Process Systems:
Designs for Uncertainty, Constraints And Time-delays. Springer, 2005.

[CEPA+02] J.-M. Couvreur, E. Encrenaz, E. Paviot-Adet, D. Poitrenaud, and P.-A. Wacrenier.
Data decision diagrams for Petri net analysis. In Proc. of ICATPN’2002, volume
2360 of Lecture Notes in Computer Science, pages 101–120. Springer, June 2002.

[CGP00] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.
[COTM05] B. Charroux, A. Osmani, and Y. Thierry-Mieg. UML 2. Pearson Education, 2005.
[cpn] The CPN-AMI Home page. http://www.lip6.fr/cpn-ami.
[CTM05] J-M. Couvreur and Y. Thierry-Mieg. Hierarchical decision diagrams to exploit

model structure. In 25th International Conference on Formal Techniques for Net-
worked and Distributed Systems (FORTE’05), Lecture Notes in Computer Science.
Springer, October 2005.

[GL97] J. Gogen and Luqi. Formal methods: Promises and problems. IEEE Software,
14(1):75–85, 1997.

[gsp] GreatSPN V2.0. http://www.di.unito.it/~greatspn/index.html.
[GV03] C. Girault and R. Valk. Petri Nets for Systems Engineering. Springer Verlag - ISBN:

3-540-41217-4, 2003.
[HKP06] S. Haddad, F. Kordon, and L. Petrucci. Méthodes formelles pour les systèmes ré-

partis et coopératifs. Hermès, November 2006.
[HKPT06] L. Hillah, F. Kordon, L. Petrucci, and N. Trèves. PN standardisation : a survey. In

International Conference on Formal Methods for Networked and Distributed Sys-
tems (FORTE’06), pages 307–322, Paris, France, September 2006. IFIP.

[HKTM07] A. Hamez, F. Kordon, and Y. Thierry-Mieg. libDMC: a Library to Operate Efficient
Distributed Model checking. Technical report, Master’s thesis, LIP6, Université P.
& M. Curie, 2007.

[HTMK+04] J. Hugues, Y. Thierry-Mieg, F. Kordon, L. Pautet, S. Baarir, and T. Vergnaud. On
the Formal Verification of Middleware Behavioral Properties. In 9th International
Workshop on Formal Methods for Industrial Critical Systems (FMICS’04), pages
139–157. Elsevier, September 2004.

[hyt] HYTECH homepage. http://www-cad.eecs.berkeley.edu/~tah/HyTech/.
[Jen92] K. Jensen. Coloured Petri Nets: Basic concepts, analysis methods and practical use.

Volume 1: basic concepts. Monographs in Theoretical Computer Science. Springer,
1992.

[KLPA06] F. Kordon, A. Linard, and E. Paviot-Adet. Optimized Colored Nets Unfolding. In
International Conference on Formal Methods for Networked and Distributed Sys-
tems (FORTE’06), pages 339–355, Paris, France, September 2006. IFIP.

[KP04] L. Kristensen and L. Petrucci. An approach to distributed state space exploration
for coloured Petri nets. In Proc. 25th Int. Conf. Application and Theory of Petri Nets
(ICATPN’2004), Bologna, Italy, June 2004, volume 3099 of Proc. 25th Int. Conf.
Application and Theory of Petri Nets (ICATPN’2004), Bologna, Italy, June 2004,
pages 474–483. Springer, June 2004.

[LL01] C. Lakos and G. Lewis. Incremental state space construction of coloured Petri
nets. In Proc. 22nd Int. Conf. Application and Theory of Petri Nets (ICATPN’01),
Newcastle, UK, June 2001, volume 2075 of Lecture Notes in Computer Science,
pages 263–282. Springer, 2001.

[LP04] C. Lakos and L. Petrucci. Modular analysis of systems composed of semiau-
tonomous subsystems. In Proc. 4th Int. Conf. on Application of Concurrency to
System Design (ACSD’04), Hamilton, Canada, June 2004, pages 185–194. IEEE
Comp. Soc. Press, June 2004.

[LS99] F. Lerda and R. Sisto. Distributed-memory model checking with SPIN. In Proc. of
the 5th International SPIN Workshop, volume 1680 of Lecture Notes in Computer
Science. Springer, 1999.

[phi] Dining philosophers problem. http://en.wikipedia.org/wiki/Dining_
philosophers_problem.

[smv] The SMV System. http://www.cs.cmu.edu/~modelcheck/smv.html.
[tin] TINA, TIme Petri Net Analyzer. http://www.laas.fr/tina.
[TM04] Y. Thierry-Mieg. Techniques for the model checking of high-level specifications.

PhD thesis, Université P. & M. Curie, 2004.
[TMDM03] Y. Thierry-Mieg, C. Dutheillet, and I. Mounier. Automatic symmetry detection in

well-formed nets. In Proc. of ICATPN 2003, volume 2679 of Lecture Notes in
Computer Science, pages 82–101. Springer, June 2003.

[TMIP04] Y. Thierry-Mieg, J-M. Ilié, and D. Poitrenaud. A symbolic symbolic state space rep-
resentation. In 24th International Conference on Formal Techniques for Networked
and Distributed Systems (FORTE’04), volume 3235 of Lecture Notes in Computer
Science, pages 276–291. Springer, July 2004.

[upp] UPPAAL home page. http://www.uppaal.com/.

