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Abstract. Scalability of architecture, programming model 

and task control management will be a major challenge for 

MP-SOC designs in the coming years. The contribution 

presented in this paper is HS-Scale, a hardware/software 

framework to study, define and experiment scalable 

solutions for next generation MP-SOC. Our architecture, 

H-Scale, is a homogeneous MP-SOC based on RISC 

processors, distributed memories and an asynchronous 

network on chip. S-Scale is a multi-threaded sequential 

programming model with dedicated communication 

primitives handled at run-time by a simple Operating 

System we developed. The hardware validations and 

experiments on applications such as MJPEG and FIR filters 

demonstrate the scalability of our approach and draws 

interesting perspectives for distributed strategies of task 

control management. 

1. Introduction 

“MP-SOC is not just coming: it has arrived”1. The OMAP 

platform [2] with the recent 34302 system is one of many 

existing designs to date. If MP-SOC [3] is a reality, the 

increasing number of general purpose or dedicated 

processors on a single chip brings several issues to address: 

architecture scalability, programming models, task control 

management and debug are those referenced in [1]. 

IP core reuse has driven industrial system designers for 

obvious productivity and performance reasons. One major 

drawback is that these solutions are poorly scalable in terms 

of software and hardware. Although being aware of these 

economic constraints, we strongly believe that an 

alternative is possible from a basis of a scalable hardware 

and software framework. 

The work presented in this paper aims at exploring and 

defining principles which grant both hardware and software 

scalability. The H-Scale architecture is based on a NPU 

(Network Processing Unit), which is essentially a 

programmable RISC processor, a small memory and a 

routing unit. The communication infrastructure is based on 

an asynchronous packet switching network-on-chip which 

allows connecting the NPUs in a mesh-based fashion. The 

S-Scale is a multi-threaded procedural programming model 

with communication primitives. Implementations carried 

out show that the HS-Scale framework guarantees any 

application to be executed regardless the target platform 

features (number of NPUs) and the chosen mapping. 

Moreover, several experiments conducted on thread 

duplications suggest some strategies to automate the task 

control management and distribute it over the system. 

In the following, Section 2 tackles the issues at stakes 

regarding MP-SOC design and programming. Section 3 

presents and details the intrinsic hardware principles. 

                                                 
1 Grant Martin, Design Automation Conference, 2006 [1] 
2 Superscalar ARM CortexA8 core, IVA2+ accelerator for H264 video, 

Image Signal Processor, 2D/3D Graphics accelerator 

Section 4 is devoted to the programming model and more 

generally the software part of the framework which includes 

the online management mechanisms. Section 5 presents the 

hardware realizations, particularly the FPGA prototype and 

its debugging interface and provides some performance 

figures of this realization. Section 6 gives application results 

on a FIR filter and a MJPEG decoder.  

2. Related works 

During the last decades, improvements in microprocessor 

design and compilers were mainly aimed at improving 

Instruction Level Parallelism. It has nevertheless been stated 

that trying to further increase ILP is not the best choice, D. 

Patterson refers it to as the “ILP wall” [6]. Thread (or 

Task3) Level Parallelism (TLP) enables significant speedups 

and proves more flexible than ILP. TLP is now supported 

by a growing spectrum of programming environments 

through programming models, libraries, etc.  

From an architecture point of view, a MP-SOC may be 

either homogeneous, i.e. all the processing elements are the 

same (e.g. for server applications), or heterogeneous (CMP, 

or Chip Multi Processing, e.g. for embedded applications). 

One typical example of a heterogeneous MP-SOC system is 

a cell phone (for instance, those based on an OMAP 

platform). One of the toughest aspects in heterogeneous 

MP-SOC is that software modules have to interrelate with 

hardware modules. For instance, the authors of [4] advocate 

the use of high level programming for the abstraction of 

HW-SW interfaces. Their programming model is made of a 

set of functions (implicit and/or explicit primitives) that can 

be used by the SW to interact with HW. In the 

reconfigurable computing domain, alternative approaches 

have also been investigated, as the original one in [5] where 

a scalable programming model (SCORE) is associated to a 

homogeneous scalable reconfigurable architecture. The 

model allows indifferently computing a set of tasks in time 

or in space, following the resources available: the advantage 

is that software is reusable for any generation of component 

based on that model. 

There are two major programming models deriving from the 

memory architecture: SMP (Symmetric Multi Processing) 

where all the processors have a global vision of the memory 

(shared memory) and AMP (Asymmetric Multi Processing) 

where the processors are loosely coupled and have generally 

dedicated local memory resources. Procedural sequential 

programming (e.g. C) is generally the basis of MP-SOC 

systems as it stands on compilers that are widely available 

and because “Everybody knows C…”. As MP-SOC 

provides resources to compute several tasks concurrently, 

multi-threaded programming models have to be examined. 

With multi-core processor architectures, libraries such as 

open MP (SMP model) and MPI (Message Passing 

Interface) (AMP model) provide an interface to the 
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programmer for execution directives inside the source code. 

Using this kind of library is currently not realistic for MP-

SOC designs for the overhead they imply. 

Task control management is also an issue to consider. 

Threads can be handled at execution time (dynamically on a 

single processor) by an operating system or at design time 

(statically) by complex scheduling techniques. A part of the 

MP-SOC community focuses on static task placement and 

scheduling in MP-SOC. Indeed, having a complex 

operating system in memory taking care of run-time 

mapping is often not feasible for a SOC, because of the 

restricted memory resources and associated performance 

overhead. Moreover, these systems are often heterogeneous 

and dedicated to a few tasks, and a single but efficient 

scheduling of tasks may be more adapted. For instance in 

[7], the authors summarize the existing techniques (ILP 

based or heuristics) and have developed a new framework 

based on ILP solvers and constraint programming to solve 

at design time the task allocation/scheduling problem. 

There are also contributions for the improvement of local 

performances in [8] and for energy savings in [9]. 

3. H-Scale architecture model 

3.1. System overview 

One of the leading principles of our approach relies in the 

exploration of massive parallelism for embedded MP-SOC; 

we target scalability of both hardware and software and 

expect performance to emerge from multitude and not from 

the intrinsic performance of the processing tile. For that 

reason, the main concerns regarding the processing element 

architecture are flexibility and compactness. 

Figure 1 shows a system-level overview of the H-Scale 

architecture and the surrounding components it is supposed 

to be connected to. As illustrated in this figure, our 

contribution is a homogeneous MP-SOC as a component of 

a heterogeneous system. It is based on a scalable 

architecture with distributed memory (AMP model). It is 

made of a regular arrangement of processing elements (PE) 

interconnected by a packet-switching communication 

network. As we assume that the HS-Scale architecture is a 

component of a realistic system, some of the PE of this 

architecture is responsible of establishing the 

communications with the rest of the system (interface PEs). 

Host CPU

BUS INTERFACE

RAM

BUS INTERFACE

DMA Engine Peripheral Peripheral

HS-Scale Interface PEs

…
 

Figure 1: system-level overview 

3.2. Network Processing Unit 

The architecture we present is made of a homogeneous 

array of PE communicating through a packet-switching 

network. For this reason, the PE is called NPU, for Network 

Processing Unit. Each PE, as detailed later, has 

multitasking capabilities which enable time-sliced 

execution of multiple tasks. This is implemented thanks to a 

tiny preemptive multitasking Operating System4 which runs 

on each NPU. The structure of the NPU is depicted in figure 

2. It is built around two main layers, the network layer and 

the processing layer. 

Network layer

Processing layer

Network layer

Processing layer

CPU RAM

UART NITimer

Task1

µkernel

…
Task n

Task1
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Figure 2. Network Processing Unit 

The Network layer is essentially a small routing engine (XY 

routing). Packets are taken from incoming ports, then either 

forwarded to outgoing ports or passed to the processing 

layer. It is compliant with the communication infrastructure 

presented below. When a packet header (the first flit) 

specifies the current NPU address, the packet is forwarded 

to the network interface (NI in figure 2). The network 

interface buffers incoming data in a small hardware FIFO 

and simultaneously triggers an interrupt to the processing 

layer. 

The processing layer is based on a simple and compact 

RISC microprocessor, its static memory (no cache) and a 

few peripherals (timers, one interrupt controller, UART) as 

shown in figure 2. A multitasking OS implements the 

support for time-multiplexed execution of multiple tasks. 

The microprocessor we use has a compact instruction set 

comparable to a MIPS-1 [10]. It has 3 pipelines stages, no 

cache, no Memory Management Unit (MMU) no memory 

protection support in order to keep it as small as possible. 

3. 3. Communication infrastructure 

For technology-related concerns, a regular arrangement of 

processing elements (PEs) with only neighboring 

connections is favored. This helps in a) preventing using 

any long lines and their associated undesirable cross-talk 

effects in deep sub-micron CMOS technologies b) 

synthesizing the clock distribution network since an 

asynchronous communication protocol between the PEs 

might be used. Also, from a communication point of view, 

the total aggregated bandwidth of the architecture should 

increase proportionally with the numbers of PEs it 

possesses, which is granted by the principle of abstracting 

the communications through routing data in space. The 

Network-on-Chip paradigm (NoC) enables that easily 

thanks to packet switching and adaptive routing. 

f0f1f2f3f4fn-1 adn

Target address

#flits in the payload

Payload (n flits)

…                            

 

Figure 3: Packet format 

The communication framework of H-scale is derived from 

the Hermes Network-on-chip, refer to [11] for more details. 
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The routing is of wormhole type, which means that a packet 

is made of an arbitrary number of flits which all follow the 

route taken by the first one which specifies the destination 

address. Figure 3 depicts the simple packet format used by 

the network framework constituted by the array of 

processing elements. Incoming flits are buffered in input 

buffers (one per port). Arbitration follows a round-robin 

policy giving alternatively priority to incoming ports. Once 

access to an output port is granted, the input buffer sends 

the buffered flits until the entire packet is transmitted. 

Inter-NPU communications are fully asynchronous, and are 

based on the toggle-protocol. As depicted in figure 4, this 

protocol uses two toggle signals for the synchronization, a 

given data being considered as valid when a toggle is 

detected. When the data is latched, another toggle is sent 

back to the sender to notify the acceptance. This solution 

allows using completely unrelated clocks on each PE in the 

architecture. 

 

Figure 4: The asynchronous toggle protocol 

4. S-Scale programming model 

Our goal is to provide a complete scalable solution which 

assumes first that the architectural model is scalable, but 

also the programming model. Our model is based on 

distributed memories (AMP) and allows computing 

multiple tasks in time (single processor), and in space 

(multi-processor). For a given application any possible 

mapping scenario between computing in time and 

computing in space is supported. 

4.1 Multi-Threaded Procedural model, with 

Communication Primitives 

S-scale is a mixed model composed of a Sequential 

Procedural Programming basis, a Multi-threaded support 

and Communication Primitives for inter thread 

communications. 

A process is an instance of a program in memory. It 

consists generally of several functions. When these 

functions may be scheduled separately, they are called 

threads. On multiprocessor machines, it is more natural to 

program applications with multiple threads since they have 

the possibility to be executed on several processors. The 

threads in our model are described in C language, the most 

famous and widely used sequential and procedural language 

for programming embedded systems.  

Since threads may be time-sliced, which means they can 

run in arbitrary bursts as directed by the operating system, 

the property of confluence (same result yielded regardless 

thread execution order) must be guaranteed. The underlying 

programming style for ensuring the synchronization of the 

computation in our approach is Kahn Process Networks 

(KPN) [12]. KPN is a distributed model of computation 

where processes are connected to each other by unbounded 

FIFO channels to form a network of processes. KPN can be 

represented functionally by a Petri net as depicted figure 5. 

Reading from a channel is blocking: the single token in the 

place P forbids that the process is executed before the place 

FIFO IN is filled with data. Writing is non-blocking: when 

the data has been written to the FIFO OUT, place P is filled 

with its initial marking again allowing new data to be read. 

A set of communication primitives has been derived from 

this formalism for ensuring confluence of application 

execution regardless thread execution order. 

 

Figure 5. KPN Model of a single task computation 

4.2 Communication primitives 

They essentially abstract communications so that tasks can 

communicate with each other without knowing their 

position on the system (either on the same NPU or a 

different one). The communication primitives were derived 

from 5 of the 7 layers of the OSI model as shown on figure 

6. 
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Figure 6. Communication Protocol and Communication 

Functions on 5 OSI layers 

Firstly, communication management between tasks is 

insured by two dedicated functions.  In order to route the 

packets, these functions use a dynamically updated routing 

table. Read_Socket() and Write_Socket() read and write to 

software FIFO supervised by the operating system. These 

functions allow transparent data communications between 

tasks either locally or remotely: the routing is done 

following this dynamic routing table. When the task is local, 

the writing of data is done on a local software FIFO. When 

the task is remote, the operating system must insure that 

there is enough space for the remote software FIFO to avoid 

deadlocks on the network. This is done thanks to dedicated 

functions. As soon as the OS gets a positive answer, he can 

start encapsulating and sending the data packets to the 

remote task (Encapsulate(), Send_Data()) while the remote 

task can deencapsulate and receive the data packets and 

write them to its local software FIFO (Decapsulate(), 

Receive_Data()). 

 

 



 

4.3 Operating System 

In order to schedule tasks on a single processor, to handle 

communications between local and remote tasks with the 

communication primitives described above, it is necessary 

to use an Operating System offering these functionalities. 

After checking the literature and existing embedded OS 

(uClinux, eCos, etc.), it appeared that our memory 

restrictions (less than 100kB for data and program on one 

NPU) were too strong to use these costly solutions. 

Therefore, we have developed a lightweight operating 

system which was designed for our specific needs. Despite 

being small, this OS does preemptive switching between 

tasks and also provides them with the communication 

support for tasks interactions (communication primitives). 

Figure 7 gives an overview of the operating system 

infrastructure and the services it provides.  
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Figure 7: Operating System overview 

 

The interrupts manager may receive interrupts from 

hardware: UART, Timer and FIFO In. When this happens, 

it disables the interrupts and save the processor context. 

Following the type of interruption, it reads from UART, 

schedules the tasks (timer) or use a communication 

primitive (interrupt from the FIFO). Afterwards, it restores 

the processor context and enables again the interrupts. The 

scheduler is the core of the OS but is quite simple. Each 

time a timer interrupt occurs, it checks if there is a new task 

to run. In the positive case, it executes this new task. Else, it 

has two possibilities: either there is no task to schedule then 

just runs an idle task, or there is at least one task to 

schedule. This way, each task is scheduled periodically in a 

round robin fashion (there is no priority management 

between tasks). 

 
Figure 8: FIR example 

4.4 Programming Example 

In the following, we give a very simple example on how to 

program our architecture with the proposed programming 

model. It shows how from a classical C code of a 2-TAP 

FIR filter we introduce thread directives based on our 

communication primitives. This is just an illustration of 

what a programmer could do with this model and would not 

make sense “in the real world” to improve the performances 

of such an algorithm. However, it demonstrates the 

scalability of the programming model. 

The figure 8 illustrates the filter with two representations: 

the first one is a simple data-flow graph and the other one is 

a KPN process networks with Petri net. 

On a classical processor, the C-code could look like that: 
 

int main() 

{ 

  int data_in,r1,r2,r1p=0,a0=1,a1=2,data_out; 

  data_in=0;    

  while(1) 

    { 

     r1=data_in*a0;  // Compute 1
st
 tap  

     r2=data_in*a1;  // Compute 2
nd
 tap 

     data_out = r2 + r1p; 

     r1p = r1; //Delay 

     data_in++; // data increment 

    } 

  return 0; 

}  

With our programming model, it is possible to fork the 

process in 3 different threads as shown below: 
 

Type_task thread1(void) 

{ 

  int data_in=0; 

  while(1) 

    { 

  write_socket(21, &data_in, 1, 1); 

       write_socket(31, &data_in, 1, 1); 

        

       data_in++; // data increment 

  } 

  return 0; 

} 

 

Type_task thread2(void) 

{ 

  int data_in, r1 ,a0 = 1, zero=0; 

  /*Data synchronization*/ 

  write_socket(31, &zero, 1, 1);   

  while(1) 

    { 

  read_socket(21,&data_in,1,1);  

     r1 = data_in * a0; // Compute 1
st
 tap                 

        write_socket(32, &r1, 1, 1);  

    } 

  return 0; 

}  

 

Type_task thread3(void) 

{ 

  int data_in, r1 ,r2 ,a1 = 2, data_out; 

  while(1) 

    { 

  read_socket(31, &data_in, 1, 1); 

  read_socket(32, &r1, 1, 1); 

     r2 = data_in * a1; // Compute 2
nd
 tap                   

 data_out = r2 + r1;   

    } 

  return 0; 

}  



 

One can notice that the functions Write_socket() and 

Read_socket() are used to establish communication 

channels between the three tasks. The parameters represent 

the socket identifiers (21, 31, …) which are used in the 

routing tables of the NPU, the address of the data block and 

the number of data in the block. 

 
Figure 9: 3 functionally equivalent mappings on 1, 2 or 3 NPUs, 

with the same C program 

By the way, this program can be mapped (statically) to the 

architecture on a single or multiple NPU indifferently as 

depicted figure 9, i.e. with the same functionality since the 

communication primitives of the OS ensure task 

interactions. 

5. Validations 

5.1. Hardware Prototype 

A complete synthesizable RTL level description of the NPU 

has been developed. It has allowed us to validate the 

hardware prototype, estimate areas and power 

consumptions (post place and route, with AMS 0.35µ 

design kit), and improve the design. Any instance of the H-

Scale MP-SOC system may be easily generated with our 

generic parameters, and then evaluated with CAD Tools 

(Encounter Cadence flow). 
 

# NPU 1 2 4 (2*2) 9 (3*3) 

Area (mm²) 18.22 36.63 73.61 165.30 

Power Cons. (mW/MHz) 2.56 5.14 10.34 23.26 

Table 1: Area and Power consumption5 scalability 

Table 1 summarizes these evaluations. The hardware 

prototype has been placed and routed with a 64KB local 

memory, which actually represents in a single NPU 87% of 

the total area. In the 13% remaining, the Processor 

represents 54% (1.2 mm²), the router 38% (0.85 mm²) and 

the rest (UART, interrupt controller, Network Interface, 

etc.) about 7%. The power consumption has been evaluated 

thanks to simulation database dump (vcd files) and Cadence 

tools. It has been then optimised with Gated Clock 

insertion. The power consumption repartition figure is 

slightly the same compared to the area. The table above 

clearly shows the scalability of area and power 

consumption of our H-Scale System (the very low overhead 

is due to the wires needed to interconnect the NPU). 

5.2. FPGA Prototype 

RTL Simulations are too slow for significant applications 

such as MJPEG performed on streams of data. We decided 

                                                 
5 Average power consumption performed on NPUs running the OS and 

several tasks  

then to use a Xilinx Development Kit to synthesize and 

validate our design. 6 NPUs could be fitted on a XC2VP30 

FPGA from Xilinx. A NPU occupied 2151 slices on the 

FPGA which is rather small. 

 

Figure 10: FPGA prototyping board and its debugging 

interface 

Debugging on the prototype takes place thanks to a UART 

interface between one interfacing NPU and the workstation; 

some additional services were added to the NPU kernel for 

feeding back debugging information directly to the PC 

(figure 10). 

5.3. Software Tool Chain 

 
Figure 11: Software flow 

Figure 11 depicts the software flow used in our framework 

to port an application from its original C-code to the HS-

Scale MP-SOC. A thread partitioning is first done by the 

programmer. This can be helped by the original procedure 

partitions (function calls) and profiling tools. The 

communication primitives are then used to elaborate the 

communications between the threads. Then, a hand-made 

mapping of each thread is performed on the H-Scale 

instance and a routing table is derived. The final C-code is 

composed of each thread C-code, and then is compiled with 

the OS C file, allowing thus generating the binaries to load 

into the memories of the NPU. 
 

OS Min. Time  

(cycles) 

OS Max. Time 

(cycles) 

Communication 

Primitives (KB) 

Total OS 

Size (KB) 

325 373 2.73  5.75  

Table 2: Operating System Time and Memory costs 

Table 2 is provided to give an overview of the overhead 

issued by our Operating System. In terms of time penalty, 

each time the OS is invoked (each time an interrupt 

happens), it requires between 325 and 373 cycles to perform 

its job. The effective time penalty regarding applications 

performances will be analysed in the next section. In terms 

of memory overhead, it requires 5.75 KB, which represents 

less than 10% of the 64KB memories we used in our 

experiments. The communication primitives represent 

almost half of the total memory required by our OS. 

6. Application Results 

6.1. FIR  

In order to evaluate the overhead introduced by the OS we 

carried out some experiments for the FIR application. This 

application has a very high communication over 



 

computation ratio which reveals a much too fine task 

granularity. Hence, both the kernel scheduler and its 

communication primitives are highly solicited and therefore 

tend to slowdown the computation. Table 3 shows the FIR 

performance results for different task mappings, with and 

without operating system. The results are given for the 

processing of 10.000 input samples. 

 

 w/o OS With OS 

# NPU 1 1 1 3 

# Threads 1 1 Local 3 Local 3 Remote 

Cycles 550634 553992 5982187 2036976 

Tp (MB/s) 7.09  7.05 0.669 1.92  

Table 3: Throughput (Tp) Performance of a 2-TAP FIR Filter 

Comparing the results of the two first columns of Table 3 

shows that both in terms of processing time and Throughput 

(Tp) the overhead remain below 1%. As expected, when the 

FIR algorithm is split into several tasks running 

sequentially on the same NPU, the communication 

overhead highly degrades the performance (column 3). 

Distributing the processing among several NPUs (column 

4) shows the benefit of using task-level parallelism; without 

however matching the performance of the single task 

implementation. 

6.2. MJPEG 

In order to evaluate the performance of HS-Scale for 

realistic applications, we have implemented a MJPEG 

decoder. We naturally chose to use a traditional task 

partitioning as depicted in figure 12 with both a task-level 

dataflow description and a functional Petri net equivalent. 

The first step of the processing is the inverse variable length 

coding (IVLC) which relies on a Huffman decoder. This 

processing time for that task is data dependent. The two last 

tasks of the processing pipelines are respectively the inverse 

quantization (IQ) and the inverse discrete cosine transforms 

(IDCT). The atomic data transmitted from task to task is a 

8x8 pixel block which has a size of 256 bit.  

 

Figure 12: MJPEG Data-Flow and Petri Net Representation 

a. From Simple pipeline implementation to multi-threads 

Table 4 summarizes the performance figures obtained for 

several implementations of the MJPEG decoder. Similarly 

to the FIR implementation, the operating system 

communication primitives induce a performance overhead 

when the decoder is splitted into 3 tasks (Table 4, column 

2). Distributing the processing on 2 NPUs (Table 4, column 

4) immediately pays nevertheless with a significant increase 

in the throughput. The fully distributed implementation 

exhibits no performance improvement, which is due to the 

fact that the critical task in the processing pipeline already 

fully employs the processing resources of a given NPU. 

 

 w/o OS With OS 

# NPU 1 1 1 2 3 

# Threads 1  1 

Local  

3 

Locals  

2 Locals,  

1 Remote 

3 

Remotes 

Tp (KB/s) 229  228 161 244 246 

Table 4: MJPEG Throughputs (Tp) comparisons 

b. From multi-threads, to thread Replication 

Many applications such as dataflow applications present 

tasks that exhibit different and potentially time-changing 

computational loads over time. Data compression 

algorithms for instance always feature a variable-length 

coding task that can be very demanding in performance 

depending on processed data. In such scenarios, allocating 

hardware resources at run-time may help better meeting 

performance requirements without the traditional over-

dimensioning problem of static allocation. The principle 

developed in this section relies in a multi-graph description 

of the same application; the processors are then responsible 

to switch from one graph to another depending on run-time 

requirements. 

Figure 13.a depicts a synthetic task graph. A profiling may 

show that task2 is (i) the most demanding and (ii) exhibit 

data-dependent computational load. Replicating it helps in 

increasing the performance which would lead to the 

scenarios depicted on Figure 13.b and Figure 13.c. In such 

cases, of course all three instances of task 2 would be hosted 

on a dedicated processor. The experiments conducted 

implement the automated replication strategy based on a 

multi-graph description of the application. Strategies 

enabling run-time replication may either be simple (fork() 

and join() in this case) or more difficult, therefore requiring 

programmer attention. 
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 Figure 13: Initial application task graph(a) and replica-

tion of task 2 (b and c). 

In the case of the MJPEG application the replication is 

permitted by the absence of inter-block dependencies in the 

MJPEG application Table 5 shows the performances 

achieved for replications of some tasks. As clearly 

suggested by the throughput values, the IVLC task is the 

critical one in our case since duplicating and triplicating it 

(columns 5 and 6) significantly increase the performance. 

Allocating a fourth NPU to this task does not further 

improve the performance meaning that another task then 

became the critical step in the processing pipeline. 

 

 

 

w/o 

Duplic. 

IQ 

Duplic. 

IDCT 

Duplic. 

IVLC 

Duplic. 

IVLC 

Triplic. 

# NPU 3 4 4 4 5 

# Threads 3 

Remote  

4 

Remote  

4 

Remote  

4 

Remote 

5 

Remote 

Tp (KB/s) 246  220  241 332 432 
 

Table 5: MJPEG comparisons with or without thread 

duplications 

 



 

c. Load balancing 

As mentioned previously, many applications feature highly 

asymmetric computational load for their constituting tasks. 

Similarly to the process explained above, where demanding 

tasks are replicated, we have statically observed the 

potential benefits of merging several sub-critical tasks onto 

the same processor. This results in time-sliced execution of 

those tasks. Figure 14 schematically explains that principle, 

where task2 fully exploits the processing resource of a 

given processor (since it has been identified as critical) and 

task3 and task4 are executed onto a single processor. 
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Figure 14 – Principle of load balancing. 

Implementing such a mechanism at run-time implies to 

migrate tasks; which translates in a performance over-head 

directly proportional to the task code and state to migrate. 

The testbench used in this case is similar in every respect to 

the previous one but a single additional FIR task was 

moved from NPU to NPU. Table 6 shows the 

corresponding results, where one can see how much the 

performance of each application is affected depending on 

the task mapping. Assigning the FIR filter to the NPU 

hosting the critical IVLC task (column 3) yields to a 

significant slowdown of both applications (40% for the 

FIR, 46% for the MJPEG). Contrarily, assigning the FIR 

task to one of the other NPUs hosting the sub-critical tasks 

marginally affects the performance of both applications 

(columns 3 and 4). The FIR was also assigned for IVLC-

duplicated versions of the MJPEG decoder; likewise a 

similar slowdown is observed only when the FIR is 

assigned to one of the NPU hosting a critical task. 

 
 

# NPU 1 3 3 3 

# Threads FIR 1 Local  1 with IVLC 1 with Iquant 1 with IDCT  

Tp (MB/s)  3.8  4.0 5.7 6.0 

# Threads MJPEG 1 Local  3 Remote  3 Remote 3 Remote  

Tp (KB/s)  122  134 245 246 

Table 6: MJPEG and FIR simultaneous execution performance 

results 

 

 

 

 

 

 

 

 

 

7. Conclusion and Perspectives 

A scalable hardware and software framework has been 

proposed and detailed throughout this paper. Based on a 

regular arrangement of homogeneous processing units 

endowed with multitasking capabilities our architecture is 

capable to support an almost unlimited number of task 

mapping combinations. The tiny and efficient OS combined 

to the packet-switching communication architecture we use 

gives the programmers a huge flexibility at reasonable cost. 

We have highlighted through some examples that in the 

case of multiple applications, some mappings may allow to 

map additional applications at almost no cost. 

Regarding the performances obtained in the results section, 

our current work aims now at extending the OS 

functionalities to automate the task mapping, migration and 

duplication (dynamic and continuous task mapping) for 

achieving run-time adaptability.  
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