

An adaptive MP-SoC Architecture for embedded Systems

Gilles Sassatelli, Nicolas Saint-Jean, Pascal Benoit, Lionel Torres, Michel Robert
LIRMM, UMR 5506, University of Montpellier 2-CNRS, 161 rue Ada, 34392 Montpellier Cedex 5, France

Tel.: (33)(0)4-67-41-85-69-69

Email: {first_name.last_name@lirmm.fr}

Abstract. Scalability of architecture, programming model

and task control management will be a major challenge for

MP-SOC designs in the coming years. The contribution

presented in this paper is HS-Scale, a hardware/software

framework to study, define and experiment scalable

solutions for next generation MP-SOC. Our architecture,

H-Scale, is a homogeneous MP-SOC based on RISC

processors, distributed memories and an asynchronous

network on chip. S-Scale is a multi-threaded sequential

programming model with dedicated communication

primitives handled at run-time by a simple Operating

System we developed. The hardware validations and

experiments on applications such as MJPEG and FIR filters

demonstrate the scalability of our approach and draws

interesting perspectives for distributed strategies of task

control management.

1. Introduction

“MP-SOC is not just coming: it has arrived”1. The OMAP

platform [2] with the recent 34302 system is one of many

existing designs to date. If MP-SOC [3] is a reality, the

increasing number of general purpose or dedicated

processors on a single chip brings several issues to address:

architecture scalability, programming models, task control

management and debug are those referenced in [1].

IP core reuse has driven industrial system designers for

obvious productivity and performance reasons. One major

drawback is that these solutions are poorly scalable in terms

of software and hardware. Although being aware of these

economic constraints, we strongly believe that an

alternative is possible from a basis of a scalable hardware

and software framework.

The work presented in this paper aims at exploring and

defining principles which grant both hardware and software

scalability. The H-Scale architecture is based on a NPU

(Network Processing Unit), which is essentially a

programmable RISC processor, a small memory and a

routing unit. The communication infrastructure is based on

an asynchronous packet switching network-on-chip which

allows connecting the NPUs in a mesh-based fashion. The

S-Scale is a multi-threaded procedural programming model

with communication primitives. Implementations carried

out show that the HS-Scale framework guarantees any

application to be executed regardless the target platform

features (number of NPUs) and the chosen mapping.

Moreover, several experiments conducted on thread

duplications suggest some strategies to automate the task

control management and distribute it over the system.

In the following, Section 2 tackles the issues at stakes

regarding MP-SOC design and programming. Section 3

presents and details the intrinsic hardware principles.

1 Grant Martin, Design Automation Conference, 2006 [1]
2 Superscalar ARM CortexA8 core, IVA2+ accelerator for H264 video,

Image Signal Processor, 2D/3D Graphics accelerator

Section 4 is devoted to the programming model and more

generally the software part of the framework which includes

the online management mechanisms. Section 5 presents the

hardware realizations, particularly the FPGA prototype and

its debugging interface and provides some performance

figures of this realization. Section 6 gives application results

on a FIR filter and a MJPEG decoder.

2. Related works

During the last decades, improvements in microprocessor

design and compilers were mainly aimed at improving

Instruction Level Parallelism. It has nevertheless been stated

that trying to further increase ILP is not the best choice, D.

Patterson refers it to as the “ILP wall” [6]. Thread (or

Task3) Level Parallelism (TLP) enables significant speedups

and proves more flexible than ILP. TLP is now supported

by a growing spectrum of programming environments

through programming models, libraries, etc.

From an architecture point of view, a MP-SOC may be

either homogeneous, i.e. all the processing elements are the

same (e.g. for server applications), or heterogeneous (CMP,

or Chip Multi Processing, e.g. for embedded applications).

One typical example of a heterogeneous MP-SOC system is

a cell phone (for instance, those based on an OMAP

platform). One of the toughest aspects in heterogeneous

MP-SOC is that software modules have to interrelate with

hardware modules. For instance, the authors of [4] advocate

the use of high level programming for the abstraction of

HW-SW interfaces. Their programming model is made of a

set of functions (implicit and/or explicit primitives) that can

be used by the SW to interact with HW. In the

reconfigurable computing domain, alternative approaches

have also been investigated, as the original one in [5] where

a scalable programming model (SCORE) is associated to a

homogeneous scalable reconfigurable architecture. The

model allows indifferently computing a set of tasks in time

or in space, following the resources available: the advantage

is that software is reusable for any generation of component

based on that model.

There are two major programming models deriving from the

memory architecture: SMP (Symmetric Multi Processing)

where all the processors have a global vision of the memory

(shared memory) and AMP (Asymmetric Multi Processing)

where the processors are loosely coupled and have generally

dedicated local memory resources. Procedural sequential

programming (e.g. C) is generally the basis of MP-SOC

systems as it stands on compilers that are widely available

and because “Everybody knows C…”. As MP-SOC

provides resources to compute several tasks concurrently,

multi-threaded programming models have to be examined.

With multi-core processor architectures, libraries such as

open MP (SMP model) and MPI (Message Passing

Interface) (AMP model) provide an interface to the

3 Thread and task are interchangeable within the scope of the presented work

programmer for execution directives inside the source code.

Using this kind of library is currently not realistic for MP-

SOC designs for the overhead they imply.

Task control management is also an issue to consider.

Threads can be handled at execution time (dynamically on a

single processor) by an operating system or at design time

(statically) by complex scheduling techniques. A part of the

MP-SOC community focuses on static task placement and

scheduling in MP-SOC. Indeed, having a complex

operating system in memory taking care of run-time

mapping is often not feasible for a SOC, because of the

restricted memory resources and associated performance

overhead. Moreover, these systems are often heterogeneous

and dedicated to a few tasks, and a single but efficient

scheduling of tasks may be more adapted. For instance in

[7], the authors summarize the existing techniques (ILP

based or heuristics) and have developed a new framework

based on ILP solvers and constraint programming to solve

at design time the task allocation/scheduling problem.

There are also contributions for the improvement of local

performances in [8] and for energy savings in [9].

3. H-Scale architecture model

3.1. System overview

One of the leading principles of our approach relies in the

exploration of massive parallelism for embedded MP-SOC;

we target scalability of both hardware and software and

expect performance to emerge from multitude and not from

the intrinsic performance of the processing tile. For that

reason, the main concerns regarding the processing element

architecture are flexibility and compactness.

Figure 1 shows a system-level overview of the H-Scale

architecture and the surrounding components it is supposed

to be connected to. As illustrated in this figure, our

contribution is a homogeneous MP-SOC as a component of

a heterogeneous system. It is based on a scalable

architecture with distributed memory (AMP model). It is

made of a regular arrangement of processing elements (PE)

interconnected by a packet-switching communication

network. As we assume that the HS-Scale architecture is a

component of a realistic system, some of the PE of this

architecture is responsible of establishing the

communications with the rest of the system (interface PEs).

Host CPU

BUS INTERFACE

RAM

BUS INTERFACE

DMA Engine Peripheral Peripheral

HS-Scale Interface PEs

…

Figure 1: system-level overview

3.2. Network Processing Unit

The architecture we present is made of a homogeneous

array of PE communicating through a packet-switching

network. For this reason, the PE is called NPU, for Network

Processing Unit. Each PE, as detailed later, has

multitasking capabilities which enable time-sliced

execution of multiple tasks. This is implemented thanks to a

tiny preemptive multitasking Operating System4 which runs

on each NPU. The structure of the NPU is depicted in figure

2. It is built around two main layers, the network layer and

the processing layer.

Network layer

Processing layer

Network layer

Processing layer

CPU RAM

UART NITimer

Task1

µkernel

…
Task n

Task1

µkernel

…
Task n

Figure 2. Network Processing Unit

The Network layer is essentially a small routing engine (XY

routing). Packets are taken from incoming ports, then either

forwarded to outgoing ports or passed to the processing

layer. It is compliant with the communication infrastructure

presented below. When a packet header (the first flit)

specifies the current NPU address, the packet is forwarded

to the network interface (NI in figure 2). The network

interface buffers incoming data in a small hardware FIFO

and simultaneously triggers an interrupt to the processing

layer.

The processing layer is based on a simple and compact

RISC microprocessor, its static memory (no cache) and a

few peripherals (timers, one interrupt controller, UART) as

shown in figure 2. A multitasking OS implements the

support for time-multiplexed execution of multiple tasks.

The microprocessor we use has a compact instruction set

comparable to a MIPS-1 [10]. It has 3 pipelines stages, no

cache, no Memory Management Unit (MMU) no memory

protection support in order to keep it as small as possible.

3. 3. Communication infrastructure

For technology-related concerns, a regular arrangement of

processing elements (PEs) with only neighboring

connections is favored. This helps in a) preventing using

any long lines and their associated undesirable cross-talk

effects in deep sub-micron CMOS technologies b)

synthesizing the clock distribution network since an

asynchronous communication protocol between the PEs

might be used. Also, from a communication point of view,

the total aggregated bandwidth of the architecture should

increase proportionally with the numbers of PEs it

possesses, which is granted by the principle of abstracting

the communications through routing data in space. The

Network-on-Chip paradigm (NoC) enables that easily

thanks to packet switching and adaptive routing.

f0f1f2f3f4fn-1 adn

Target address

#flits in the payload

Payload (n flits)

…

Figure 3: Packet format

The communication framework of H-scale is derived from

the Hermes Network-on-chip, refer to [11] for more details.

4 Operating System are often refered to as microkernels in the area of SOC,

mainly because of their very limited memory footprint

The routing is of wormhole type, which means that a packet

is made of an arbitrary number of flits which all follow the

route taken by the first one which specifies the destination

address. Figure 3 depicts the simple packet format used by

the network framework constituted by the array of

processing elements. Incoming flits are buffered in input

buffers (one per port). Arbitration follows a round-robin

policy giving alternatively priority to incoming ports. Once

access to an output port is granted, the input buffer sends

the buffered flits until the entire packet is transmitted.

Inter-NPU communications are fully asynchronous, and are

based on the toggle-protocol. As depicted in figure 4, this

protocol uses two toggle signals for the synchronization, a

given data being considered as valid when a toggle is

detected. When the data is latched, another toggle is sent

back to the sender to notify the acceptance. This solution

allows using completely unrelated clocks on each PE in the

architecture.

Figure 4: The asynchronous toggle protocol

4. S-Scale programming model

Our goal is to provide a complete scalable solution which

assumes first that the architectural model is scalable, but

also the programming model. Our model is based on

distributed memories (AMP) and allows computing

multiple tasks in time (single processor), and in space

(multi-processor). For a given application any possible

mapping scenario between computing in time and

computing in space is supported.

4.1 Multi-Threaded Procedural model, with

Communication Primitives

S-scale is a mixed model composed of a Sequential

Procedural Programming basis, a Multi-threaded support

and Communication Primitives for inter thread

communications.

A process is an instance of a program in memory. It

consists generally of several functions. When these

functions may be scheduled separately, they are called

threads. On multiprocessor machines, it is more natural to

program applications with multiple threads since they have

the possibility to be executed on several processors. The

threads in our model are described in C language, the most

famous and widely used sequential and procedural language

for programming embedded systems.

Since threads may be time-sliced, which means they can

run in arbitrary bursts as directed by the operating system,

the property of confluence (same result yielded regardless

thread execution order) must be guaranteed. The underlying

programming style for ensuring the synchronization of the

computation in our approach is Kahn Process Networks

(KPN) [12]. KPN is a distributed model of computation

where processes are connected to each other by unbounded

FIFO channels to form a network of processes. KPN can be

represented functionally by a Petri net as depicted figure 5.

Reading from a channel is blocking: the single token in the

place P forbids that the process is executed before the place

FIFO IN is filled with data. Writing is non-blocking: when

the data has been written to the FIFO OUT, place P is filled

with its initial marking again allowing new data to be read.

A set of communication primitives has been derived from

this formalism for ensuring confluence of application

execution regardless thread execution order.

Figure 5. KPN Model of a single task computation

4.2 Communication primitives

They essentially abstract communications so that tasks can

communicate with each other without knowing their

position on the system (either on the same NPU or a

different one). The communication primitives were derived

from 5 of the 7 layers of the OSI model as shown on figure

6.

Read_Socket()

Application

Transport

Network

Data Link

Physical

Router Router

Router Router

Write_Socket()

Send_Data() Receive_Data()

Send_Packet() Receive_Packet()

Encapsulate() Decapsulate()

XY Routing

Application

Transport

Network

Data Link

Physical

Figure 6. Communication Protocol and Communication

Functions on 5 OSI layers

Firstly, communication management between tasks is

insured by two dedicated functions. In order to route the

packets, these functions use a dynamically updated routing

table. Read_Socket() and Write_Socket() read and write to

software FIFO supervised by the operating system. These

functions allow transparent data communications between

tasks either locally or remotely: the routing is done

following this dynamic routing table. When the task is local,

the writing of data is done on a local software FIFO. When

the task is remote, the operating system must insure that

there is enough space for the remote software FIFO to avoid

deadlocks on the network. This is done thanks to dedicated

functions. As soon as the OS gets a positive answer, he can

start encapsulating and sending the data packets to the

remote task (Encapsulate(), Send_Data()) while the remote

task can deencapsulate and receive the data packets and

write them to its local software FIFO (Decapsulate(),

Receive_Data()).

4.3 Operating System

In order to schedule tasks on a single processor, to handle

communications between local and remote tasks with the

communication primitives described above, it is necessary

to use an Operating System offering these functionalities.

After checking the literature and existing embedded OS

(uClinux, eCos, etc.), it appeared that our memory

restrictions (less than 100kB for data and program on one

NPU) were too strong to use these costly solutions.

Therefore, we have developed a lightweight operating

system which was designed for our specific needs. Despite

being small, this OS does preemptive switching between

tasks and also provides them with the communication

support for tasks interactions (communication primitives).

Figure 7 gives an overview of the operating system

infrastructure and the services it provides.

O
p
e
ra
ti
n
g
 S
y
s
te
m

Figure 7: Operating System overview

The interrupts manager may receive interrupts from

hardware: UART, Timer and FIFO In. When this happens,

it disables the interrupts and save the processor context.

Following the type of interruption, it reads from UART,

schedules the tasks (timer) or use a communication

primitive (interrupt from the FIFO). Afterwards, it restores

the processor context and enables again the interrupts. The

scheduler is the core of the OS but is quite simple. Each

time a timer interrupt occurs, it checks if there is a new task

to run. In the positive case, it executes this new task. Else, it

has two possibilities: either there is no task to schedule then

just runs an idle task, or there is at least one task to

schedule. This way, each task is scheduled periodically in a

round robin fashion (there is no priority management

between tasks).

Figure 8: FIR example

4.4 Programming Example

In the following, we give a very simple example on how to

program our architecture with the proposed programming

model. It shows how from a classical C code of a 2-TAP

FIR filter we introduce thread directives based on our

communication primitives. This is just an illustration of

what a programmer could do with this model and would not

make sense “in the real world” to improve the performances

of such an algorithm. However, it demonstrates the

scalability of the programming model.

The figure 8 illustrates the filter with two representations:

the first one is a simple data-flow graph and the other one is

a KPN process networks with Petri net.

On a classical processor, the C-code could look like that:

int main()

{

 int data_in,r1,r2,r1p=0,a0=1,a1=2,data_out;

 data_in=0;

 while(1)

 {

 r1=data_in*a0; // Compute 1
st
 tap

 r2=data_in*a1; // Compute 2
nd
 tap

 data_out = r2 + r1p;

 r1p = r1; //Delay

 data_in++; // data increment

 }

 return 0;

}

With our programming model, it is possible to fork the

process in 3 different threads as shown below:

Type_task thread1(void)

{

 int data_in=0;

 while(1)

 {

 write_socket(21, &data_in, 1, 1);

 write_socket(31, &data_in, 1, 1);

 data_in++; // data increment

 }

 return 0;

}

Type_task thread2(void)

{

 int data_in, r1 ,a0 = 1, zero=0;

 /*Data synchronization*/

 write_socket(31, &zero, 1, 1);

 while(1)

 {

 read_socket(21,&data_in,1,1);

 r1 = data_in * a0; // Compute 1
st
 tap

 write_socket(32, &r1, 1, 1);

 }

 return 0;

}

Type_task thread3(void)

{

 int data_in, r1 ,r2 ,a1 = 2, data_out;

 while(1)

 {

 read_socket(31, &data_in, 1, 1);

 read_socket(32, &r1, 1, 1);

 r2 = data_in * a1; // Compute 2
nd
 tap

 data_out = r2 + r1;

 }

 return 0;

}

One can notice that the functions Write_socket() and

Read_socket() are used to establish communication

channels between the three tasks. The parameters represent

the socket identifiers (21, 31, …) which are used in the

routing tables of the NPU, the address of the data block and

the number of data in the block.

Figure 9: 3 functionally equivalent mappings on 1, 2 or 3 NPUs,

with the same C program

By the way, this program can be mapped (statically) to the

architecture on a single or multiple NPU indifferently as

depicted figure 9, i.e. with the same functionality since the

communication primitives of the OS ensure task

interactions.

5. Validations

5.1. Hardware Prototype

A complete synthesizable RTL level description of the NPU

has been developed. It has allowed us to validate the

hardware prototype, estimate areas and power

consumptions (post place and route, with AMS 0.35µ

design kit), and improve the design. Any instance of the H-

Scale MP-SOC system may be easily generated with our

generic parameters, and then evaluated with CAD Tools

(Encounter Cadence flow).

NPU 1 2 4 (2*2) 9 (3*3)

Area (mm²) 18.22 36.63 73.61 165.30

Power Cons. (mW/MHz) 2.56 5.14 10.34 23.26

Table 1: Area and Power consumption5 scalability

Table 1 summarizes these evaluations. The hardware

prototype has been placed and routed with a 64KB local

memory, which actually represents in a single NPU 87% of

the total area. In the 13% remaining, the Processor

represents 54% (1.2 mm²), the router 38% (0.85 mm²) and

the rest (UART, interrupt controller, Network Interface,

etc.) about 7%. The power consumption has been evaluated

thanks to simulation database dump (vcd files) and Cadence

tools. It has been then optimised with Gated Clock

insertion. The power consumption repartition figure is

slightly the same compared to the area. The table above

clearly shows the scalability of area and power

consumption of our H-Scale System (the very low overhead

is due to the wires needed to interconnect the NPU).

5.2. FPGA Prototype

RTL Simulations are too slow for significant applications

such as MJPEG performed on streams of data. We decided

5 Average power consumption performed on NPUs running the OS and

several tasks

then to use a Xilinx Development Kit to synthesize and

validate our design. 6 NPUs could be fitted on a XC2VP30

FPGA from Xilinx. A NPU occupied 2151 slices on the

FPGA which is rather small.

Figure 10: FPGA prototyping board and its debugging

interface

Debugging on the prototype takes place thanks to a UART

interface between one interfacing NPU and the workstation;

some additional services were added to the NPU kernel for

feeding back debugging information directly to the PC

(figure 10).

5.3. Software Tool Chain

Figure 11: Software flow

Figure 11 depicts the software flow used in our framework

to port an application from its original C-code to the HS-

Scale MP-SOC. A thread partitioning is first done by the

programmer. This can be helped by the original procedure

partitions (function calls) and profiling tools. The

communication primitives are then used to elaborate the

communications between the threads. Then, a hand-made

mapping of each thread is performed on the H-Scale

instance and a routing table is derived. The final C-code is

composed of each thread C-code, and then is compiled with

the OS C file, allowing thus generating the binaries to load

into the memories of the NPU.

OS Min. Time

(cycles)

OS Max. Time

(cycles)

Communication

Primitives (KB)

Total OS

Size (KB)

325 373 2.73 5.75

Table 2: Operating System Time and Memory costs

Table 2 is provided to give an overview of the overhead

issued by our Operating System. In terms of time penalty,

each time the OS is invoked (each time an interrupt

happens), it requires between 325 and 373 cycles to perform

its job. The effective time penalty regarding applications

performances will be analysed in the next section. In terms

of memory overhead, it requires 5.75 KB, which represents

less than 10% of the 64KB memories we used in our

experiments. The communication primitives represent

almost half of the total memory required by our OS.

6. Application Results

6.1. FIR

In order to evaluate the overhead introduced by the OS we

carried out some experiments for the FIR application. This

application has a very high communication over

computation ratio which reveals a much too fine task

granularity. Hence, both the kernel scheduler and its

communication primitives are highly solicited and therefore

tend to slowdown the computation. Table 3 shows the FIR

performance results for different task mappings, with and

without operating system. The results are given for the

processing of 10.000 input samples.

 w/o OS With OS

NPU 1 1 1 3

Threads 1 1 Local 3 Local 3 Remote

Cycles 550634 553992 5982187 2036976

Tp (MB/s) 7.09 7.05 0.669 1.92

Table 3: Throughput (Tp) Performance of a 2-TAP FIR Filter

Comparing the results of the two first columns of Table 3

shows that both in terms of processing time and Throughput

(Tp) the overhead remain below 1%. As expected, when the

FIR algorithm is split into several tasks running

sequentially on the same NPU, the communication

overhead highly degrades the performance (column 3).

Distributing the processing among several NPUs (column

4) shows the benefit of using task-level parallelism; without

however matching the performance of the single task

implementation.

6.2. MJPEG

In order to evaluate the performance of HS-Scale for

realistic applications, we have implemented a MJPEG

decoder. We naturally chose to use a traditional task

partitioning as depicted in figure 12 with both a task-level

dataflow description and a functional Petri net equivalent.

The first step of the processing is the inverse variable length

coding (IVLC) which relies on a Huffman decoder. This

processing time for that task is data dependent. The two last

tasks of the processing pipelines are respectively the inverse

quantization (IQ) and the inverse discrete cosine transforms

(IDCT). The atomic data transmitted from task to task is a

8x8 pixel block which has a size of 256 bit.

Figure 12: MJPEG Data-Flow and Petri Net Representation

a. From Simple pipeline implementation to multi-threads

Table 4 summarizes the performance figures obtained for

several implementations of the MJPEG decoder. Similarly

to the FIR implementation, the operating system

communication primitives induce a performance overhead

when the decoder is splitted into 3 tasks (Table 4, column

2). Distributing the processing on 2 NPUs (Table 4, column

4) immediately pays nevertheless with a significant increase

in the throughput. The fully distributed implementation

exhibits no performance improvement, which is due to the

fact that the critical task in the processing pipeline already

fully employs the processing resources of a given NPU.

 w/o OS With OS

NPU 1 1 1 2 3

Threads 1 1

Local

3

Locals

2 Locals,

1 Remote

3

Remotes

Tp (KB/s) 229 228 161 244 246

Table 4: MJPEG Throughputs (Tp) comparisons

b. From multi-threads, to thread Replication

Many applications such as dataflow applications present

tasks that exhibit different and potentially time-changing

computational loads over time. Data compression

algorithms for instance always feature a variable-length

coding task that can be very demanding in performance

depending on processed data. In such scenarios, allocating

hardware resources at run-time may help better meeting

performance requirements without the traditional over-

dimensioning problem of static allocation. The principle

developed in this section relies in a multi-graph description

of the same application; the processors are then responsible

to switch from one graph to another depending on run-time

requirements.

Figure 13.a depicts a synthetic task graph. A profiling may

show that task2 is (i) the most demanding and (ii) exhibit

data-dependent computational load. Replicating it helps in

increasing the performance which would lead to the

scenarios depicted on Figure 13.b and Figure 13.c. In such

cases, of course all three instances of task 2 would be hosted

on a dedicated processor. The experiments conducted

implement the automated replication strategy based on a

multi-graph description of the application. Strategies

enabling run-time replication may either be simple (fork()

and join() in this case) or more difficult, therefore requiring

programmer attention.

1

2

4

3

Input

Output

1

2

4

3

Input

Output

1

2

4

3

Input

Output

2’

1

2

4

3

Input

Output

2’

(b) First duplication of critical task(a) Initial graph task (c) Second duplication of critical task

1

2

4

3

Input

2’2’’

Output

1

2

4

3

Input

2’2’’

Output

 Figure 13: Initial application task graph(a) and replica-

tion of task 2 (b and c).

In the case of the MJPEG application the replication is

permitted by the absence of inter-block dependencies in the

MJPEG application Table 5 shows the performances

achieved for replications of some tasks. As clearly

suggested by the throughput values, the IVLC task is the

critical one in our case since duplicating and triplicating it

(columns 5 and 6) significantly increase the performance.

Allocating a fourth NPU to this task does not further

improve the performance meaning that another task then

became the critical step in the processing pipeline.

w/o

Duplic.

IQ

Duplic.

IDCT

Duplic.

IVLC

Duplic.

IVLC

Triplic.

NPU 3 4 4 4 5

Threads 3

Remote

4

Remote

4

Remote

4

Remote

5

Remote

Tp (KB/s) 246 220 241 332 432

Table 5: MJPEG comparisons with or without thread

duplications

c. Load balancing

As mentioned previously, many applications feature highly

asymmetric computational load for their constituting tasks.

Similarly to the process explained above, where demanding

tasks are replicated, we have statically observed the

potential benefits of merging several sub-critical tasks onto

the same processor. This results in time-sliced execution of

those tasks. Figure 14 schematically explains that principle,

where task2 fully exploits the processing resource of a

given processor (since it has been identified as critical) and

task3 and task4 are executed onto a single processor.

1

2

4

3

Input

Output

1

2

4

3

Input

Output

(a) Initial graph task

1

2

4

3

Input

Output

1

2

4

3

Input

Output

(b) task merging

CPU1

CPU2

CPU3

CPU4

CPU1

CPU2

CPU3

Figure 14 – Principle of load balancing.

Implementing such a mechanism at run-time implies to

migrate tasks; which translates in a performance over-head

directly proportional to the task code and state to migrate.

The testbench used in this case is similar in every respect to

the previous one but a single additional FIR task was

moved from NPU to NPU. Table 6 shows the

corresponding results, where one can see how much the

performance of each application is affected depending on

the task mapping. Assigning the FIR filter to the NPU

hosting the critical IVLC task (column 3) yields to a

significant slowdown of both applications (40% for the

FIR, 46% for the MJPEG). Contrarily, assigning the FIR

task to one of the other NPUs hosting the sub-critical tasks

marginally affects the performance of both applications

(columns 3 and 4). The FIR was also assigned for IVLC-

duplicated versions of the MJPEG decoder; likewise a

similar slowdown is observed only when the FIR is

assigned to one of the NPU hosting a critical task.

NPU 1 3 3 3

Threads FIR 1 Local 1 with IVLC 1 with Iquant 1 with IDCT

Tp (MB/s) 3.8 4.0 5.7 6.0

Threads MJPEG 1 Local 3 Remote 3 Remote 3 Remote

Tp (KB/s) 122 134 245 246

Table 6: MJPEG and FIR simultaneous execution performance

results

7. Conclusion and Perspectives

A scalable hardware and software framework has been

proposed and detailed throughout this paper. Based on a

regular arrangement of homogeneous processing units

endowed with multitasking capabilities our architecture is

capable to support an almost unlimited number of task

mapping combinations. The tiny and efficient OS combined

to the packet-switching communication architecture we use

gives the programmers a huge flexibility at reasonable cost.

We have highlighted through some examples that in the

case of multiple applications, some mappings may allow to

map additional applications at almost no cost.

Regarding the performances obtained in the results section,

our current work aims now at extending the OS

functionalities to automate the task mapping, migration and

duplication (dynamic and continuous task mapping) for

achieving run-time adaptability.

8. References
[1] Grant Martin “Overview of the MPSoC Design Challenge”,

Proceedings of the 43rd annual conference on Design

automation, San Francisco, USA, 2006

[2] OMAP, Texas Instrument Technology, http://www.omap.com

[3] Ahmed A. Jerraya and Wayne Wolf (editors), Multiprocessor

Systems-on-Chip, Elsevier Morgan Kaufmann, San Francisco,

California, 2005

[4] Ahmed A. Jerraya, Aimen Bouchhima, Frédéric Pétrot,

“Programming Models and HW-SW Interfaces Abstraction

for Multi-Processor SoC”, Proceedings of the 43rd annual

conference on Design automation, San Francisco, USA, 2006

[5] Caspi E., Chu M., Huang R., Weaver N., Yeh J., Wawrzynek

J., and A. DeHon, “Stream Computations Organized for

Reconfigurable Execution (SCORE)”, FPL’2000, LNCS

1896, pp. 605-614, 2000

[6] David A. Patterson, “Future of Computer Architecture”,

Berkeley EECS Annual Research Symposium (BEARS),

College of Engineering, UC Berkeley, US, February 23, 2006

[7] M. Ruggiero, A. Guerri, D. Bertozzi, F. Poletti and M.Milano,

“Communication-Aware Allocation and Scheduling

Framework for Stream-Oriented Multi-Processor Systems-on-

Chip”, IEEE Design Automation and Test inEurope,

Munich, Germany, March 2006

[8] M.T. Kandemir, G. Chen, ”‘Locality-Aware Process

Scheduling for Embedded MPSoCs,”’ Proceedings of DATE,

pp. 870–875, 2005

[9] Hu J., Marculescu R., “Energy-Aware Communication and

Task Scheduling for Network-on-Chip Architectures under

Real-Time Constraints.” DATE 04, 234-239

[10] MIPS corp., http://www.mips.com

[11] Moraes, F. G.; Mello, A. V. de; Möller, L. H.; Ost, L.;

Calazans, N. L. V.. “HERMES: an Infrastructure for Low

Area Overhead Packet-switching Networks on Chip.”,

Elsevier Integration, The VLSI journal / Special issue:

Networks on chip and reconfigurable fabrics, Vol. 38,

Number 1, pp 69-93; Oct. 2004.

[12] G. Kahn, “The semantics of a simple language for parallel

programming”, Information Processing, pages 471-475, 1974

