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Abstract 
 
Recently, ONERA was involved in the ISAACS European project. The aim of this project was to investigate new 
safety assessment techniques based on the use of formal design languages and associated tools. ONERA studied 
more specifically the applicability of the AltaRica language and the Cecilia OCAS environment to perform the 
safety assessment of some Airbus aircraft systems. In this paper, we first recall the methodology developed for such 
traditional embedded safety critical system. Then we discuss its applicability to robotics systems. 

 
Introduction 

 
During the last three years, ONERA was involved in the ISAAC (Improvement of Safety Activities on Aeronautical 
Complex Systems) European project (ref. 1, http://www.isaac-fp6.org/). This project aimed at developing safety 
assessment techniques based on the use of formal specification languages and associated tools. So called formal 
models are traditionally used to specify the expected normal behaviours of software based system. ISAACS partners 
investigated first how to generalize such models to deal with faulty behaviours of various kinds of systems. Then 
they proposed new tools or new uses of existing tools to check whether the generalized formal models met 
qualitative safety requirements. These tools provide not only interactive simulation capabilities but also take 
advantage of formal language features to support advanced capabilities such as model-checking or fault tree 
generation. The approach was validated on some existing aircraft systems.  
 
In this paper we first present how AIRBUS and ONERA tackled modelling and safety assessment of aircraft 
systems using the AltaRica language and a subset of the associated tools. Moreover, the concepts are illustrated by a 
case study inspired by the hydraulic system of the Airbus A320. 
Safety assessment based on formal models raised two main issues. The first issue is to get formal system models 
meaningful for safety analysis whereas models more often used are fault trees. ISAACS partners are interested in 
failure propagations in complex dynamic systems. So they consider formal notations for reactive systems, used to 
support system design such as Statechart (models are automata), Scade (models are equations between synchronous 
data flows) or dedicated to safety such as AltaRica (models mixing automata and equation concepts). To cope with 
failure propagations, system models can either be produced by system designers and then extended with failure 
modes specified by safety engineers, or can directly be produced by safety specialists using libraries. It is worth 
noting that formal models of failure propagations should have the correct granularity level to ease model 
exploitation. On one hand, advanced simulation capabilities have good performances when the analyzed model does 
not go into detailed arithmetic computations. On the other hand, a correct granularity is reached when the scenarios, 
leading to a failure condition, extracted by the tools are similar to what safety analysts would have envisioned if 
they had to design a fault tree. In order to get the appropriate granularity at first shot, we chose to define libraries of 
AltaRica components that focus on failure mode propagation and abstract details of nominal behaviours.  
The second issue is related to the choice of the adequate techniques for assessing qualitative safety requirement of 
complex dynamic systems. Interactive simulation facilities enable to perform a preliminary bottom up analysis since 
failures can be injected and their effects computed not only locally but at system or even aircraft level. This will be 
detailed later on. Top down analyses are guided by qualitative requirements such as “no single failure leads to the 
system loss”. We propose to use model-checkers to assess such kind of requirements. They perform “exhaustive” 
simulation to check whether a requirement is always met. Moreover, they can distinguish subtle temporal situations 
such as a transient loss of a function (during a recovery phase for instance) from a permanent one.  
 
 



The paper has the following structure. First section describes one traditional safety critical aircraft system: a 
hydraulic system inspired by A320 system. We focus on its safety requirements and architecture. Section 2 
introduces the AltaRica language through examples. We explain the modeling philosophy used to build the 
hydraulic formal model at a satisfying granularity level for safety assessment. Section 3 deals with the benefit of 
advanced simulation capabilities to assess qualitative safety requirements on dynamic models. We show how the 
models were analyzed using interactive simulation facilities of Cecilia OCAS and SMV (Symbolic Model Verifier) 
model-checker. The last section discusses the applicability of such formal assessment techniques for robotic 
systems. 
 

Case-study Presentation 
 
The role of the hydraulic system is to supply hydraulic power to devices which ensure aircraft control in flight like 
the flaps, slats, or spoilers as well as devices which are used on ground like the braking system. As the loss of 
devices powered by this system could lead to the loss of aircraft control, the main safety requirement of this system 
is:  

A total loss of hydraulic power is considered to be catastrophic. The probability of occurrence of this 
failure condition should be smaller than 10-9 per flight hour and no single failure should lead to this failure 
condition. 

The hydraulic system is mainly composed of three independent sub-systems which generate and transmit the 
hydraulic power to the consumers. Three kinds of pumps were used in the model of an A320-like hydraulic system. 
The first one is the Electric Motor Pump (EMP) which is powered by the electric system, the second one is the 
Engine Driven Pump (EDP) that is powered by one of the two aircraft engines and the last one is the RAT pump 
that is powered by the Ram Air Turbine. The hydraulic system also contains other types of components such as 
tanks, valves and gauges.  

To meet its main safety requirement, the system is constituted of three channels: Green, Blue and Yellow. The Blue 
channel is made of one electric pump EMPb, one RAT pump and two distribution lines: prioritary (Pdistb) and non-
prioritary (NPdistb). When priority valve PVb is closed consumers connected to Npdistb do not receive hydraulic 
power. The Green system is made of one pump driven by engine 1 EDPg and two distribution lines Pdistg and 
NPdistg. The Yellow system is made of one pump driven by engine 2 EDPy, one electric pump EMPy and two 
distribution lines Pdisty and NPdisty. Moreover a reversible Power Transfer Unit (PTU) transmits pressure between 
green and yellow channels as soon as the differential pressure between both channels exceeds a given threshold.  

These components are controlled by crew actions and reconfiguration logics. The RAT is automatically activated in 
flight when both engines are lost. The EMPb is automatically activated when the aircraft is in flight or on ground 
when one engine is running. EMPy is activated by the pilot on ground. We assumed that EDPy, EDPg were 
activated whenever the corresponding engine was started. 
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Figure 1 ! Hydraulic System Architecture 



  
System Modelling in AltaRica 

 
The AltaRica Language:  AltaRica (ref. 2) is a formal language developed at LaBRI (Laboratoire Bordelais de 
Recherche en Informatique) for modelling both functional and dysfunctional behaviours of systems. Thanks to the 
language well defined semantics and syntax, safety assessments of AltaRica models can be analysed by numerous 
reliability or validation tools. Moreover, its capacity to realise compositional and hierarchical models is a great 
advantage when complex systems must be modelled. The development of AltaRica models is supported by Cecilia 
OCAS workshop (ref. 3) of Dassault Aviation that provides graphical edition and simulation facilities and integrates 
fault tree generators. We will now briefly describe this language. 
Each system component is modelled by a "node". A node is a mode automaton (ref. 4) defined by three well 
identified parts. First part is the declaration of the different kinds of node parameters: state, flow and event. States 
are internal variables which memorize current functioning modes (failure modes or normal ones). Flows are node 
inputs or outputs. Possible types of states and flows are integer interval, enumeration and boolean. Events are 
phenomena, which trigger transitions from an internal state to another. They can model pilot actions or the 
occurrence of failures, or reactions to input conditions (the key word "no_event" is used in this case). This particular 
event plays a significant role when modelling the impact of cascading failures in the system. 
 
The second part describes the automaton transitions. A transition is a tuple g |- evt -> e where g is the guard of 
the transition, evt is an event name and e is the effect of the transition. The guard is a boolean formula over state or 
flow variables. It defines the configuration in which the transition is fireable if the event evt occurs. The effect e is 
a list of assignations of value to state variables. So the transition part describes how functioning or failure states can 
evolve.  
 
The third part is a set of assertions. Assertions are atomic equalities or more structured equations using if-then-
else or case construction. They establish relations between the states and the flows of the component and so, 
describe how component outputs are determined by component inputs and current functioning mode. 
 
These concepts are illustrated by the following example. The component block has one input, one output flow 
ranging over the domain {no, low, ok, max}, one boolean internal state ok and one failure event. The 
transition means "if the system is ok and if failure occurs then the system is no more ok". The assertion means "if 
the system is ok then the output is equal to the input else the output value is no". We used here the case 
structure but we could use similarly an if then else structure. 
       
      node block 
       state  
        ok : boolean; 
       flow 
        input : {no, low, ok, max} : in; 
        output :{no, low, ok, max} : out; 
       event 
        failure; 
       trans 
        ok |- failure -> ok:= false; 
       assert 
        output = case {ok : input, 
        else : no}; 
      edon 
 
In a system model, instances of such nodes are interconnected by assertions which plug input-output flows. 
Hierarchy of nodes can be used to build complex components and structure the system model. 
 
Case-Studies Modelling:  The main step prior to model a system is to collect information on it (e.g. architecture, 
failure modes). We particularly paid attention to Airbus Functional Hazard Assessment document performed on 
aircraft functions that describes the failure conditions, effects and severity levels (i.e. catastrophic, hazardous, major 
or minor) and to the System Safety Assessment which demonstrates that safety objectives are met. In this section we 



describe how to model a system using these documents as inputs and use the example of the hydraulic pipe as an 
illustration. 
 
Failure Modes:  Failure modes that could cause the loss of energy supply were modelled. We considered that all 
components could fail to generate, transmit or deliver energy. We also supposed that leaks could occur in pipes.  
Finally, blocked positions for valves and PTU were also considered. Table 1, hereunder, sums up the failure modes 
considered in our component libraries. 
 

Components Failure modes 
Pipe Leakage 

Reservoir Failed, leakage 
Pump Failed, overheat 
Valve Failed, stucked 

Consumer Failed, leakage 
PTU Failed, stucked 

Table 1 ! Failure Modes of the hydraulic components 
 
Failure Propagation:  We have to know what kinds of information are exchanged between the components and how 
failures will be propagated through pipes. This information is really specific to each system. If we consider a 
hydraulic circuit pipe we cannot model a leakage only by considering the absence or the presence of fluid in the 
pipe. Indeed, the real consequence of a leakage is a sudden pressure decrease for all the components located 
downwards the faulty component and, at last, a lack of fluid in the circuit. As a result, a pipe must transmit the 
couple fluid/pressure in order to take into account and to correctly propagate the leakage information throughout the 
model. Moreover, as all the components (i.e. downwards but also upwards) have to be informed of such a failure, 
the fluid/pressure signal has to be bidirectional. 

 
Figure 3 ! Pipe section 

 
In the component models, failure propagation will be modelled by assertions that constrain the values of flow 
variables. The following example shows in details the failure propagation in the pipe model. 
 
Example: 
      node pipe 
       flow 
        output_pressure : {max,ok,low,no} : out; 
        output_fluid : {yes,low,no} : out; 
        output_pressure_reverse_info : {max,ok,low,no} : in; 
        output_fluid_reverse_info : {yes,low,no} : in; 
        input_pressure : {max,ok,low,no} : in; 
        input_fluid : {yes,low,no} : in; 
        input_pressure_reverse_info : {max,ok,low,no} : out; 
        input_fluid_reverse_info : {yes,low,no} : out; 
       state 
        state_ : {ok,leakage}; 
       event 
        leak; 
       trans 
        (state_ = ok) |- leak -> state_ := leakage; 



       assert 
        output_fluid = (case { 
        (state_ = ok) : input_fluid, 
        (state_ = leakage) and ((input_fluid = yes) or (input_fluid = low)) : low, 
        else no}), 
        input_fluid_reverse_info = (case { 
        (state_ = ok) : output_fluid_reverse_info, 
        (state_ = leakage) and ((input_fluid = yes) or (input_fluid = low)) : low, 
        else no}), 
        output_pressure = (case { 
        (state_ = ok) and not((input_fluid = no)) : input_pressure, 
        else no}), 
        input_pressure_reverse_info = (case { 
        (state_ = ok) and not((input_fluid = no)) : output_pressure_reverse_info, 
        else max}); 
       init 
        state_ := ok; 
      edon 
 
When a pipe is not leaking, output pressures and output fluid levels are equal to input ones. When a leak occurs, the 
fluid level decreases from yes to low until the reservoir is empty (the input fluid level is no). Moreover, while the 
pipe is not empty (fluid different from no), the leak increases the upwards pressure and decreases the downwards 
one. 
 
In Cecilia OCAS workshop, each node is associated to an icon and belongs to a library. Once the component library 
created, the system is easily and quickly modelled. Components are dragged and dropped from the library to the 
system architecture sheet and then linked graphically. The whole hydraulic system model is made of about 15 
component classes. 
 

Safety Assessment Techniques 
 
Formal Safety Requirements:  As stated in the case-study presentation section, the main safety requirement for the 
hydraulic system is: "Total loss of hydraulic power is classified catastrophic". We also considered two related 
requirements: "Loss of two hydraulic channels is classified major", "Loss of one hydraulic channel is classified 
minor". We associate with this set of safety requirements three qualitative requirements of the form "if up to N 
individual failures occur then the loss of N+1 power channels of hydraulic system  shall not occur" with N = 0,1,2.  
 
To model these qualitative requirements we first have to model the loss of N+1 power channels. Let N = 2, so we 
consider the total loss of hydraulic power. A first approach consists in using propositional formula 3_Hyd_Loss that 
would be true whenever the value of flow output_pressure of the distribution lines of the three hydraulic channels is 
equal to no. But this formula fails to adequately describe the failure condition. It could hold in evolutions of the 
system during a small period of time and then it would no longer hold as the hydraulic power is recovered due to 
appropriate activation of a backup such as the RAT for instance. The correct description of the failure condition 
should model the fact that hydraulic power is definitively lost. Hence we use Linear Temporal Logic (ref. 5) 
operators to model a failure condition. The following temporal formula models the permanent loss of hydraulic 
power: 
 
      Permanent_3_Hyd_Loss: F G 3_Hyd_Loss  
 
where F is the eventually (or Finally) operator, G is the always (or Globally) operator. Formula 
Permanent_3_Hyd_Loss can be read "eventually Hydraulic power is totally lost in all future time steps". So the 
general form of qualitative requirements we check is: 
 
      No_N+1_S_Loss: G upto_N_failures -> ~ F G N+1_S_Loss 
with N = 0,1,2 and upto_N_failures is a property that holds in all states of a system such that up to N individual 
failures have occurred.  
 
Graphical Interactive Simulation:  A Safety Engineer can check the effect of failure occurrences on the system 
architecture using Cecilia OCAS graphical interactive simulator.  The system architecture is depicted by a set of 
interconnected boxes that represent nodes of the AltaRica model. Icons are associated with a node state. For 



instance, a green box is displayed if a distribution line delivers power and a red box is displayed otherwise. These 
icons help to rapidly assess the component current state. 
 

  
 

Figure 4 ! Cecilia OCAS Graphical Simulator 
 
To observe more complex situation such as the loss of several channels, special nodes called "observers" are added 
into the model. An observer internal state only depends on the value of other components outputs.  
First, the simulator computes the initial state. Then, when the safety engineer selects a node the simulator proposes 
the set of events that can be performed at this step. This is the set of events with a guard that is true in the current 
state. The safety engineer chooses an event and the resulting state is computed by the simulator. As failures are 
events in the AltaRica model, the safety engineer can inject several failure events into the model in order to observe 
whether a failure condition is reached (such as loss of one or several power channels).   
 
Figure 4 shows the graphical user interface of Cecilia OCAS. The Hydraulic system is displayed in the right 
window. All basic icons represent a component (tank, pump, distribution line …) of this system. The left window 
displays a set of observers that show whether aircraft devices powered by the hydraulic system are available or not. 
At the top of this window, we designed a control panel similar to the aircraft panel with button components that are 
used to activate or inactivate components in the hydraulic system. 
 
Model-checking:  A model-checker as Cadence Labs SMV (ref. 6) performs symbolically an exhaustive simulation 
of a finite-state model. The model-checker can test whether the qualitative requirements stated as temporal logic 
formulae are valid in any state of the model. Whenever a formula is not valid, the model-checker produces a 
counter-example that gives a sequence of states that lead to a violation of the safety requirement.  
 
We developed tools to translate a model written in Altarica into a finite-state SMV model. Thus, we were able to 
check that both system models enforced their qualitative safety requirements. All requirements were verified in less 
than ten seconds although the truth value of some formulae depended in each state on as much as 100 boolean 
variables. 
 



Applicability of the approach to robotic systems 
 

Applicability scope of the approach with respect to traditional safety assessment process: The kinds of models and 
analysis presented before are devoted to a pivot step of the safety assessment process. Former analysis aim at 
identifying and classifying the failure conditions according to their criticality. The pivot step is used to demonstrate 
that a system architecture enable to meet safety requirements. Following steps deal with the verification of the 
hypothesis used to build the pivot models: are the considered failure modes the good ones? For quantitative part of 
the analysis, how representative are the considered failure rates? The verification process depends on the kind of 
system components. In the simplest case, it may consist in checking the compliance of the hypothesis with available 
data base. When considering software based component, it requires testing the software more or less heavily 
according to its criticality. Formal assessment techniques like the one presented before were primarily defined to 
perform such software verification. Nevertheless their application is today more or less successful according to the 
software complexity. The interested reader may consult for instance ref. 7 and ref 8 for further details. 
 
The case of robotic systems: In the following, we focus on the applicability of the pivot step previously detailed to 
robotic systems. According to our understanding, such systems consist in a physical devices (sensors, actuators, …) 
monitored and controlled by embedded software that are structured in a more or less sophisticated control 
architecture.  
We insisted in section 2 on building system models at the right granularity level with respect to the analysis 
purpose. The selected granularity level identifies the main functions provided by basic component and highlights 
how the quality of the function outputs depend on the quality of the function inputs, on the current (faulty or 
nominal) function modes and on protections inserted in the component. Such generic principles can be applied to 
model and assess simplest robot control architectures against safety requirements. 
In most sophisticated architectures where plans are computed on board, the applicability is not straightforward but 
seems still possible. In such architecture, a part of the policy used to control the robot may be implicitly defined by a 
plan generation module in order to cope with a numerous number of procedures. In this context, it is useless to enter 
into the details of the planning algorithms since one is interested only in finding dependencies between components 
that propagate failure. Nevertheless, these dependencies can be numerous depending on the combination of use of 
basic components generated by the planner. We already met a similar case when studying a highly reconfigurable 
aircraft electrical system (ref. 9). In such a case, one can left open the control of the devices piloted by plan. The 
analysis enables to find out bad plans (with our without combination of failures) that lead to critical situations. The 
proposal is to derive new safety requirements to avoid the generation of such plans. Then, the analysis can be 
conducted under these new requirements. 

 
Conclusion and Future Work 

 
Our experiment about traditional embedded safety critical systems shows that safety system modelling and analysis 
are possible and fruitful using a formal approach provided that models have the right level of detail. We have to 
observe that our models should not confine to failure propagation related with the functional analysis. They should 
also include failure propagations that could be related to system-level risks as specification errors, assumptions, 
synergistic considerations through-out the life-cycle, energy effects, …Previous works such as references 10 and 11 
present modelling approaches that, as ours, abstract nominal physical details and focus on failure propagation. 
However, the author main goal was to generate fault trees, so their models focus on system architecture and do not 
enable temporal analysis of highly dynamic reconfiguration mechanisms. Following our approach, we could state 
formally interesting qualitative and temporal safety requirements of aircraft systems and perform assessment 
analysis with interactive simulation and model-checking tools without performance problems.  
 
Nevertheless, as discussed in section 4, it is worth noting that this fruitful approach assists only one specific step of 
the safety assessment process. Moreover, if our paper gives a flavour of the use of model-checking techniques for a 
specific purpose, it does not pretend to give a comprehensive view of the available formal techniques and their uses. 
For instance, model-checking techniques are also used to generate plan in the robotic field (e.g. ref 12) or to validate 
the model for some model based planners. Future works at ONERA intends to build such a more comprehensive 
approach of the safety analysis for autonomous systems and more specifically unmanned vehicle like. Such a step is 
mandatory if one wants to use more widely drone submitted to stringent regulations. 
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