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Abstract

On-board FDIR (Fault Detection, Isolation and Recovery) is contem-
plated for autonomous satellite formations. Several FDIR strategies have
been specified using the Petri net - based software ProCoSA (for the dynamic
aspects) on the one hand, and the set theory - based Z specification language
(for the static aspects) on the other hand. ProCoSA enables to specify the
different state changes triggered by the different events within the formation;
Z enables to describe the relations and constraints (invariants) between the
state variables.
The paper focuses on a global specification including both the dynamic and
static aspects, through a formal link between ProCoSA and Z. The link is
implemented and allows some properties of the strategies to be checked.

1 Introduction

The autonomous formation flying of multiple spacecraft to replace a single large
satellite will be an enabling technology for a number of future missions. Potential
applications include synthetic apertures for surveillance and high-resolution inter-
ferometry missions, or for taking widespread field measurements for atmospheric
survey missions [Cra].Very precise autonomous coordination and control differen-
tiate formations from constellations. The challenge is to develop both the software
and the hardware to allow separate, unconnected spacecraft to function as if they
were a single, solid structure [Nas]. Spacecraft within a formation may be differ-
ent from one another and the different parts of one instrument may be distributed
among several spacecraft.
FDIR (Fault Detection, Isolation and Recovery) is the means to detect off-nominal
conditions, isolate the problem to a specific subsystem/component, and recover of
vehicle systems and capabilities [NAS05]. Formation flying brings a new concept
in FDIR, i.e. the formation has to be considered as an entity in itself. Indeed the
scientific mission is performed by the formation (and not by the individual space-
craft). Therefore specific FDIR strategies [CGL+06] have to be considered in order
to deal with formation specific failures e.g. instrument failure, problems with the
formation geometry, inter-spacecraft communication failures.



In this paper, FDIR is considered as an operational function that contributes to the
autonomy of the system and whose main purpose is to maintain the availability of
each satellite of the formation for the mission. A global specification of FDIR con-
cepts including both the dynamic and static aspects, through a formal link between
ProCoSA and Z, is presented. The link is implemented and allows some properties
of the strategies to be checked. As an example, a typical anomaly that may affect
the formation integrity, namely a violation of the “Keep Out Zone”1 is considered
with a centralised centralised strategy.
The paper is organised as follows : after a short presentation of the Z notation,
the next section describes FDIR concepts for a satellite formation and their im-
plementation for a unique anomaly case by using Z specification language. Then
the centralised strategy we have designed is executed with a ProCoSA simulation
refined by Z data and constraint definitions. We explain the linking between Z
schemas and ProCoSA Petri nets for our case study. An analysis section presents
the interest to associate Z-modelling and ProCoSA simulation for a safety-critical
system like a satellite formation called Simbol-X.

Figure 1: Simbol-X mission (http://apc-p7.org/APC CS/Experiences/SIMBOLX/index.phtml)

2 Z-modelling of FDIR within a satellite formation

Z [Spi00, But01] is a formal specification language based on the set theory and
the predicate logic. The Z specification of a system consists of state variables, an
initialisation and a set of operations on state variables. Invariants, which represent
constraints which must always be satisfied, are associated with state variables. The
basic element of Z specification is the schema.

1Keep Out Zone (KOZ) is defined as a safety sphere around each satellite that another satellite
must not enter.



2.1 Z-modelling of FDIR concepts

The first step is to model the main concepts that take part into the formation FDIR.
This is a static view of FDIR agents with their main constraints.

FDIR Regardless of the components implementing it, FDIR is considered as a
kind of operational function FONCTION OP, including non-empty finite sets of
functions for detection (detections) and recovery (reconfigurations), and dealing
with a fixed non-empty finite set of defaults (traite).

FDIR
FONCTION OP
detections : F1 DETECTION
traite : F1 DEFAUT
reconfigurations : F1 RECONFIGURATION

SIMBOLX We focus on a particular system called Simbol-X [Sim07], com-
posed of two satellites, sat1, sat2 within a formation, and a non-empty set of
ground stations, stationsol. This system is characterised by a set of operational
functions, fct ops in relation to each other (participe a).
The predicate part states that the formation is composed of one detector satellite
and one mirror satellite whose KOZ radius are specified, and the different oper-
ational functions are clearly distinct if they relate to either the formation or the
detector satellite or the mirror satellite.

SIMBOLX
sat1, sat2 : SATELLITE
formation : FORMATION
stationsol : F1 SOL
fct ops : F1 FONCTION OP
participe a : FONCTION OP ↔ FONCTION OP

formation.satellites = {sat1, sat2}
sat1.type = detecteur ∧ sat1.koz = 18
sat2.type = miroir ∧ sat2.koz = 15
〈formation.dispose de fop, sat1.dispose de fop,
sat2.dispose de fop〉 partition fct ops
dom participe a = fct ops
ran participe a = fct ops
∀ fct : FONCTION OP | fct ∈ fct ops • {(fct 7→ fct)} ∩ participe a = ∅

SATELLITE A satellite is a kind of FDIR actor (ACTEUR) characterised by a
type (detector or mirror), a koz radius and some operational functions (dispose de fop)



such as a FDIR function (dispose de fdir), an intersatellite communication func-
tion (dispose de fcom sat), and a communication function with a ground station
(dispose de fcom sol).
The single constraint relates to a minimum value for the KOZ radius.

SATELLITE
ACTEUR
type : ROLE
koz : N1

chainefonctionnelle : F1 CHAINE FCT
dispose de fop : F1 FONCTION OP
dispose de fdir : FDIR
dispose de fcom sat : FCT COM SAT
dispose de fcom sol : FCT COM SOL

koz ≥ 5

SOL A ground station is a kind of actor (ACTEUR) characterised by some oper-
ational functions (dispose de fop) and a communication function with a satellite
(dispose de fcom sat).

SOL
ACTEUR
dispose de fop : F1 FONCTION OP
dispose de fcom sat : FCT COM SAT

FORMATION The formation is a kind of FDIR actor (ACTEUR), composed
of a non-empty finite set of satellites (satellites) characterised by a distance (dis-
tance), a status related to the KOZ, status vkoz which can take two values that are
normal for a normal status and en panne for a failure status, and some operational
functions (dispose de fop) such as a FDIR function (dispose de fdir).
The predicate part states properties concerning distance between both satellites for
a normal status.



FORMATION
ACTEUR
satellites : F1 SATELLITE
distance : SATELLITE × SATELLITE 7→ N1

dispose de fop : F1 FONCTION OP
dispose de fdir : FDIR
status vkoz : ETAT V KOZ

dom distance ⊆ satellites× satellites
status vkoz = normal ⇔
(∀ sat1, sat2 : SATELLITE | (sat1, sat2) ∈ dom distance
• distance(sat1, sat2) > sat1.koz + sat2.koz)

As far as FDIR itself is concerned, several strategies have been defined [CGL+06]
and have been implemented with ProCoSA. Only a centralised strategy is dealt
with in this paper.

OPERATION A recovery operation is characterised by its type (nature), i.e.
reset, redundancy switch or movement operations.

OPERATION
nature : TYPE OPERATION

STRATEGIE FDIR An FDIR strategy has a type, type strat, i.e. centralised,
mixed or distributed. It concerns the relationship between a recovery operation
and an operation function, connects FDIR function to FDIR cases, implies FDIR
functions, intersatellite communications and communications with the ground, and
a non-empty set of defaults.
The invariant relationships stipulate that these functions are well associated to the
concerned satellites.



STRATEGIE FDIR
type strat : TYPE STRATEGIE FDIR
reconfig : OPERATION ↔ RECONFIGURATION
satisfait : FDIR ↔ FDIR CAS
fdir sat : SATELLITE ↔ FDIR
com sat : SATELLITE ↔ FCT COM SAT
com satsol : SATELLITE ↔ FCT COM SOL
defauts : F1 DEFAUT

∀ sat : SATELLITE; fd : FDIR • (sat, fd) ∈ fdir sat
⇒ fd = sat.dispose de fdir
∀ sat : SATELLITE; fc : FCT COM SAT • (sat, fc) ∈ com sat
⇒ fc = sat.dispose de fcom sat
∀ sat : SATELLITE; fc sol : FCT COM SOL • (sat, fc sol) ∈ com satsol
⇒ fc sol = sat.dispose de fcom sol

S CENTR 1 This is one of the centralised FDIR strategies that we have de-
signed for satellite formations. This strategy is such as each satellite carries its
own detection function and only the detector satellite sat1 carries the recovery ca-
pabilities. Moreover, only sat1 communicates with the ground for FDIR.

S CENTR 1
STRATEGIE FDIR
SIMBOLX

type strat = centralisee
defauts ⊆ sat1.dispose de fdir.traite ∪ sat2.dispose de fdir.traite
fdir sat = {(sat1, sat1.dispose de fdir), (sat2, sat2.dispose de fdir)}
sat1.dispose de fdir.detections 6= ∅
sat2.dispose de fdir.detections 6= ∅
sat1.dispose de fdir.reconfigurations 6= ∅
sat1.dispose de fdir.reconfigurations ⊆ ran reconfig
sat2.dispose de fdir.reconfigurations ∩ ran reconfig = ∅
com sat = {(sat1, sat1.dispose de fcom sat), (sat2, sat2.dispose de fcom sat)}
com satsol = {(sat1, sat1.dispose de fcom sol)}

2.2 State evolution for a KOZ violation case

The initial values of the Simbol-X formation are given by the following Z schema:



Init FORMATION
FORMATION
ΞSIMBOLX

status vkoz = normal
sat1.type = detecteur ∧ sat1.koz = 18
sat2.type = miroir ∧ sat2.koz = 15

Let us consider the operations due to a formation fault such as a KOZ violation.
This fault (ev fdir?) is detected when both satellites get closer.

PANNE V KOZ
ΞSIMBOLX
∆FORMATION
ev fdir? : DEFAUT

ev fdir? ∈ formation.dispose de fdir.traite
(sat1, sat2) ∈ dom distance
distance(sat1, sat2) > sat1.koz + sat2.koz
distance′(sat1, sat2) ≤ sat1.koz + sat2.koz

For the detector satellite and for the mirror satellite, the fault is respectively ex-
pressed by anom S1? and anom S2? and detected by their detection functions:

NORMAL2PANNE
ΞSIMBOLX
∆FDIR
anom S1? : DEFAUT
anom S2? : DEFAUT

anom S1? ∈ sat1.dispose de fdir.traite
anom S2? ∈ sat2.dispose de fdir.traite
sat1.dispose de fdir.detections ∩ detections′

6= detections ∩ sat1.dispose de fdir.detections
sat2.dispose de fdir.detections ∩ detections′

6= detections ∩ sat2.dispose de fdir.detections

To express intersatellite communication, we define a non-exhaustive enumerated
type of messages:

MESSAGE ::= messok | messperteISL | messperteRF | messalarme
| messreconf | messmanoeuvre | messsol | messcritique

The mirror satellite sends an alarm message to the detector satellite in order for it
to deal with this default and develop an operational strategy.

INFO2S1 =̂ [mess! : MESSAGE | mess! = messalarme]



The KOZ violation requires a quick reaction of the formation. A high priority
recovery strategy is planned by the FDIR satellite, i.e. the detector satellite, for the
whole formation.

RECONF F
ΞSIMBOLX
∆STRATEGIE FDIR

reconfig = ∅
reconfig′ 6= ∅

A message stating the appropriate manoeuvre is sent by the detector to the mirror
satellite.

RECONF S2 =̂ [mess! : MESSAGE | mess! = messreconf ∧ mess! = messmanoeuvre]

The manoeuvre is finished when a normal state is recovered.

FIN MANOEUVRE
ΞSIMBOLX
∆FORMATION

status vkoz = en panne
status vkoz′ = normal

Therefore the KOZ violation processing is: first detection, then a manoeuvre exe-
cuted by both the satellites.

ViolationKOZ =̂ NORMAL2PANNE o
9 INFO2S1 o

9 RECONF F o
9

RECONF S2 o
9 FIN MANOEUVRE

3 ProCoSA simulation of KOZ violation

3.1 Petri nets

The simulation of KOZ violation with ProCoSA (figure 2) distinguishes three be-
haviours corresponding to the detector satellite state (etat S1), the mirror satellite
state (etat S2), and the FDIR satellite (FDIR S1), namely the detector satellite.
A KOZ violation fault affects both satellites and makes the state-Si (etat Si) Petri
nets pass from the nominal (normal) to the fault state (en panne) whereas FDIR S1
net passes from the nominal (nominal formation) to the detection state (D). For
etat S2, an additional fault state is introduced to take into account the sending of
an alarm message to the FDIR satellite if the intersatellite communication link is
available (COM OK S2 vers S1 2). Then FDIR S1 passes to state reactif S1

2COM OK S2 vers S1 and COM OK S1 vers S2 are two global places used in other Petri
nets modelling the intersatellite communication state. In this paper, we don’t focus on this aspect.



meaning that a security reaction is performed for this type of fault whereas etat S1
passes to state reconf en cours. Indeed, as FDIR S1 carries all the FDIR knowl-
edge and algorithms, only FDIR S1 can perform a reaction, even if the fault is
detected on another spacecraft. FDIR S1 then passes to state att reconf S2 if the
intersatellite link is available (COM OK S1 vers S2) meaning that actions nec-
essary to recovery are expected from the mirror satellite. Thus each state-Si net
passes to state on-going reconfiguration (reconf en cours), before going back to
the nominal state. At last FDIR S1 goes back to the nominal state.

Figure 2: KOZ violation recovery simulated with ProCoSA

3.2 Linking Z schemas and ProCoSA Petri nets

As pointed out in [HH99, Xud01, PJ03], Z schemas are well suited to define data
structures, system constraints and functional processing whereas Petri nets are a
graph-based formal model for representing the control structures and dynamic be-
haviours of concurrent and distributed systems that cannot be explicitly described
in Z. Accordingly a relationship between Z and Petri nets offers a coherent formal-
ism of specification for designing reliable systems.

In this section, we present how to combine Z schemas and ProCoSA Petri nets
for the specification of FDIR in a satellite formation. The first step consists in
building a relevant Z model of a satellite formation. By analysing the require-
ment description of the system, we identify its main components (FORMATION,
SATELLITE, SOL) and functionalities (FDIR, OPERATION, STRATEGIE FDIR)



which define the overall system structure. Then, the definition of Z-operations
(PANNE V KOZ, NORMAL2PANNE, INFO2S1, RECONF F, RECONF S2,
FIN MANOEUVRE) refines the model for the specific case of the KOZ violation.
Furthermore, ProCoSA simulation enables to link Z-operations to Petri net transi-
tions: one Z operation defines one Petri net transition. In the predicate part of a Z
operation schema, the pre-condition part which is expressed through non-dashed
variables is the guard specifying the enabling condition of the corresponding tran-
sition, whereas the post-condition part expressed through dashed variables defines
its firing result. Moreover, ProCoSA events and messages can be associated with
transitions and may respectively correspond to input and output variables in Z op-
erations. According to the rule stated above, the Petri net transitions panne v koz,
normal2panne, info2S1, reconf f, reconf S2, fin manoeuvre correspond to opera-
tion schemas described in the Z model. The transition reconf S1 is added to mean
that formation recovery strategy reconf f is composed of an internal S1 recovery
function. This recovery function is partially hinted in the reconfig variable of the
Z-operation called RECONF F. In fact, this transition is similar to reconf f, so it
corresponds to the same Z-operation RECONF F.

In our model, there is only an implicit relationship between local variables in Z
operation schemas and input or output places of a transition in ProCoSA Petri
nets. Some expressions relate to the system state before and after transition firing,
like the expression concerning detection functions in the predicate part of NOR-
MAL2PANNE Z operation schema.

Furthermore, the initial marking of the ProCoSA Petri nets is consistent with the
initial state schema in Z (Init FORMATION).

For a complete simulation, a new ProCoSA procedure will be developed to simu-
late the intersatellite distance variation and the Z property concerning the distance
and KOZ.

4 Analysis of Z-ProCoSA relationship

For consistency reasons, the two processes, i.e. the Z specification and the Pro-
CoSA simulation, were jointly carried out in order to fully benefit from the ad-
vantages of each method. Z provides the formal aspect for the specification of the
system, whereas ProCoSA allows to focus on dynamic aspects and the sequences
of the state variations. This has enabled a better understanding of the formation
behaviour faced with a KOZ violation anomaly by revealing not very precise re-
quirements, e.g. which satellite first operates the collision avoidance manoeuvre.

Thanks to data and constraint definitions, the Z specification has allowed to modify
an existing ProCoSA simulation of an FDIR centralised strategy that only took into



account the state evolutions.
Conversely, the ProCoSA simulation also contributes to develop the Z model by
describing state changes and control flows between the various Petri nets, i.e. the
behavioural aspect. The causal relation or state sequence is represented graphi-
cally: normal state, then fault detection, at last recovery with manoeuvre.

Compared to other models [HH99, Xud01, PJ03], the complexity of the approach
seems lower and the Z-ProCoSA relationship analysis weakly relates to net places
and their corresponding Z schemas and confidently relies on ProCoSA property
analysis tool (place safety, detection of dead markings).

5 Conclusion

ProCoSA is suitable to take into account the behaviour of concurrent and dis-
tributed systems like FDIR for a satellite formation, whereas Z is well known for
data abstraction and functional specification. The idea is that the combination of
both formalisms leads to very reliable models.
The next steps in our work are the following:

• implement a hybrid simulation with discrete and continuous state variables,
e.g. to simulate the intersatellite distance variation and the Z properties con-
cerning the distance and KOZ ;

• refine the simulation by taking time into account, i.e. state duration, delay
between satellite operations and concurrence between both satellites ; thus,
we will test other FDIR strategies that need more time for converging or
involve ground stations.

• define a formal methodology applying proof checking that is based on com-
bined Z and Petri net specifications.

Appendix: ProCoSA

A Petri net < P, T, F, B > is a bipartite graph with two types of nodes: P is a finite
set of places; T is a finite set of transitions [DA05]. Arcs are directed and represent
the forward incidence function F : P × T → N and the backward incidence func-
tion B : P× T → N respectively. The marking of a Petri net is defined as function
M : P → N: tokens are associated with places. The evolution of tokens within
the net follows transition firing rules. Petri nets allow sequencing, parallelism and
synchronization to be easily represented. An interpreted Petri net is such that con-
ditions and events are associated with transitions.

ProCoSA [BGVBT06] is a software environment meant for controlling and moni-
toring highly autonomous systems. System autonomy is usually obtained by putting



together various functions, among which: data analysis (sensor data, monitor-
ing data, operator’s inputs), nominal mission monitoring and control (vehicle and
payload control actions), decision (management of disruptive events, replanning).
These functions, which are often developed as separate subsystems, have to co-
operate in order to fulfil the autonomous system behaviour requirements for the
specified missions. More precisely, the needs are the following:

• off-line tasks: specification of the co-operation procedures between subsys-
tem software; subsystem coding for embedded operation;

• on-line tasks: procedure monitoring, event monitoring, and management of
the dialog with the operator.

ProCoSA includes the following components:

• EdiPet, a graphical interface for Petri nets which is used both by the devel-
oper for procedure design and by the operator for execution monitoring;

• JdP, the Petri net player, that executes the procedures, fires the event-triggered
transitions of the Petri nets and synchronises the activation of the associated
sub-system functions; a socket-based communication protocol allows data
to be exchanged with external subsystem software;

• Tiny, a Lisp interpreter dedicated to distributed embedded applications.

The Petri nets used by ProCoSA are interpreted Petri nets: triggering events such
as activation or event generation requests are attached to the transitions. Timers
can be programmed: a special activation request enables a timer variable to be
instantiated, which allows actions with a limited duration to be modelled.
The ProCoSA procedures are used to model the desired behaviours of the au-
tonomous system; the hierarchical modelling features offered by ProCoSA enable
to structure the whole application in a generic way: at the highest description level,
generic behaviours can be described, regardless of the characteristics of a given
vehicle; at the lowest level, they specify the sequences of elementary actions to be
performed by the vehicle or the payloads; this modular approach enables a quick
adaptation to system changes (e.g. taking into account a new payload).
An important feature of ProCoSA lies in the fact that there is no code translation
step between the Petri net procedures and their execution: they are directly inter-
preted by the Petri net player, thus avoiding any supplementary error causes.
ProCoSA finally includes a verification tool, which makes use of the Petri net anal-
ysis techniques to check that some ”good” properties are satisfied by the proce-
dures, both at the single procedure level and at the whole project level (that is to say
taking into account inter-net connections); the following properties are checked:
place safety (not more than one token per Petri net place), detection of dead mark-
ings (deadlocks), detection of cyclic firing sequences (loops).
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