
A generic architectural framework for the

closed-loop control of a system

Gérard Verfaillie and Michel Lemâıtre
ONERA

2 av. Édouard Belin, BP 74025, F-31055 Toulouse Cédex 4
Gerard.Verfaillie@onera.fr, Michel.Lemaitre@onera.fr

Marie-Claire Charmeau
CNES

18 av. Édouard Belin, F-31401 Toulouse Cédex 9
Marie-Claire.Charmeau@cnes.fr

Abstract
In this article, we present a generic framework for the functional ar-

chitecture of the closed-loop control of an engine or a system. Besides
its genericity, its main features are (1) a decomposition of the system
control into hierarchically organized modules, (2) an encapsulation of
control and data inside each module, (3) standardized communications
between modules via requests, reports about request execution, and in-
formation about the system state, (4) a standardized organization of
each module around the following four components: tracking of the re-
ceived requests, tracking of the emitted requests, tracking of the system
state, and decision-making upon request emission, and (5) a common
framework for the interaction between reactive and deliberative tasks
inside the module components and especially inside the state tracking
and decision-making ones.

We show how this framework can be applied to the control of an
autonomous satellite dedicated to Earth watching and observation.

1 The AGATA project

The architectural framework presented in this paper is one of the first results
of the AGATA project (Autonomy Generic Architecture: Tests and Appli-
cations, http://agata.cnes.fr). From mid-2004, this project brings engineers



and researchers from CNES1, ONERA2, and LAAS-CNRS3 together around
the global objective of increasing spacecraft autonomy [CB05].

Most of the satellites and space probes that are today in operation are
permanently and tightly controlled by human operators in ground control
centers. Except for specific tasks, such as thermal, energy, attitude, teleme-
try, or telecommand control, for which a reactive control loop is necessary
onboard, they have no autonomous control capability. They cannot reconfig-
ure themselves autonomously after a subsystem failure. They cannot decide
and control autonomously orbital manoeuvres in case of a too large drift
from their reference orbit. In case of satellites or probes dedicated to ob-
servation of Earth, of other planets, comets, or asteroids, or of the universe
outside the solar system, they cannot decide autonomously on the observa-
tions they perform. In case of rovers at the surface of planets, they cannot
decide on the areas they explore.

For all these tasks, they must wait for decisions made on the ground
by human operators or at least under their supervision. The first difficulty
is that communication may not be permanently possible between satellites
and space probes, on the one hand, and their ground control centers, on
the other hand. This is the case with Earth observation satellites for which
visibility windows may be rare (about 10% of time) due to their low orbit
altitude. This is also the case with planet exploration probes or rovers when
they are hidden by the planet. The second difficulty is that communica-
tion and normal mission execution may be incompatible. This is the case
with planet exploration probes for which communication with Earth, on the
one hand, and planet observation, on the other hand, require incompatible
spacecraft orientations. The third difficulty is that the communication time
may be incompatible with the requirements in terms of onboard reactivity.
This is the case with planet exploration probes or rovers. For example, com-
munication takes some tens of minutes between Mars and Earth at the light
speed.

The result is a loss in terms of reactivity. In case of subsystem failure,
the whole system is unavailable until a communication be possible with the
ground control center, human operators make decisions, and send them to
the satellite or to the probe. In case of observation systems, observation

1CNES: Centre National d’Études Spatiales, French Space Agency, http://www.cnes.fr
2ONERA: Office National d’Études et de Recherches Aérospatiales, French Aerospace

Lab, http://www.onera.fr
3LAAS-CNRS: Laboratoire d’Analyse et d’Architecture des Systèmes du Centre Na-

tional de la Recherche Scientifique, Laboratory for Analysis and Architecture of Systems
of the French Research Center, http://www.laas.fr



opportunities may be missed. This is the case with the satellites that are
currently under consideration for the surveillance of phenomena at the Earth
surface, such as forest fires, volcanic eruptions, pollutions, or floods. If they
are not equipped with autonomous decision-making capabilities in terms of
observation, they may miss important observation opportunities immedi-
ately after detection. This is also the case with planet exploration rovers.
If they are not equipped with autonomous decision-making capabilities in
terms of movement and observation, they may miss scientifically important
observation opportunities. To take another example, most of the images
taken today by optical Earth observation satellites (about 80%) are lost be-
cause of the presence of clouds. To put this right, cloud detection systems in
front of these satellites are currently under consideration, but autonomous
decision-making capabilities in terms of observation are necessary to take
into account onboard the information provided by these systems.

In all cases, autonomy can improve system dependability and global
mission return in terms of quantity, quality, and quick delivery of collected
data.

Studies about satellite and space probe autonomy have been active since
the nineties. One can cite the generic seminal work performed at NASA
Ames and JPL in the context of the DS-1 technological space probe
[MNPW98] and works performed at JPL in the context of the technologi-
cal Earth surveillance and observation EO-1 satellite [CST+05, CCD+05],
which demonstrated operationally the feasibility of onboard ground phenom-
ena detection and autonomous observation planning and replanning. One
can also cite works performed at MIT in the domain of autonomous failure
diagnosis and reconfiguration [WICE03]. In Europe, one can cite works in
the domain of autonomous Earth surveillance and observation [DVC05] and
in the domain of autonomous orbital manoeuvres [LCL+04] whose feasibility
has been operationally demonstrated in the context of the Demeter satellite.

On this basis, the goal of the AGATA project is to check off, to under-
stand, to adapt, to develop, and to combine all the technological pieces that
are necessary to the development of spacecraft autonomy. To progress in
this direction, its short-term objective is to develop a ground simulator of
an autonomous spacecraft which will demonstrate, at least in the context
of some specific missions, that the current technology allows a spacecraft to
be autonomously correctly controlled.



2 A generic architectural framework

One of the first works in the AGATA project was to define what should be
the architecture of the software responsible for the control of an autonomous
satellite. For that, classical architectures used in robotics were considered.
Among them, one can cite the classical three-level planning-centered archi-
tectures independently developed at NASA-Ames [MNPW98] and at LAAS-
CNRS [ACF+98] and the execution-centered architecture developed at ON-
ERA [BL99]. But, we were especially interested in modular architectures
such as the GENOM architecture developed at LAAS-CNRS [FHC94] for
the hardware-software interface and the IDEA architecture developed at
NASA-Ames [MDF+02]. For the AGATA project, the result has been the
definition of a generic architectural framework whose main features are:

1. a decomposition of the system control into hierarchically organized
modules;

2. an encapsulation of control and data inside each module;

3. standardized communications between modules via requests, reports
about request execution, and information about the system state;

4. a standardized organization of each module around the following four
components: tracking of the received requests, tracking of the emit-
ted requests, tracking of the system state, and decision-making upon
request emission;

5. a common framework for the interaction between reactive and delib-
erative tasks inside the module components and especially inside the
state tracking and decision-making ones.

One must stress that, although this architectural framework has been
developed in the context of the specific AGATA project, its principles are
applicable far beyond the space domain, in fact for the architectural design
of any autonomous system.

It may be also important to stress that what is discussed in this paper
is a functional control architecture and not a software architecture. There
are certainly many ways of implementing such an architectural framework.



3 Control decomposition into hierarchically orga-
nized modules

The first very simple idea is that, due to the increasing complexity of satel-
lites, it is not reasonable to try and build a unique software module responsi-
ble for the control of the whole satellite. As far as possible, independencies
must be exploited. This led us to the decomposition of the satellite con-
trol into a hierarchy of control modules, each one being responsible for the
control of a subsystem.

One can see in Figure 1 a possible decomposition of the control of a
satellite dedicated to Earth surveillance and observation. This satellite is
equipped with a permanently active detection instrument of wide swath,
able to detect phenomena at the Earth surface in front of the satellite, such
as forest fires, volcanic eruptions, . . . In case of detection, it is able to send
an alarm to the ground using the relay of geostationary satellites. Moreover,
the satellite is equipped with an observation instrument of narrow swath,
active on request and able to take images of the areas where phenomena
have been detected. Data produced by this instrument can be downloaded
to users on the ground when the satellite is within the visibility of a ground
station.

Starting from the top, one can see that the satellite control is, as usu-
ally in the space domain, decomposed into a platform control module and
a payload control module. Both modules are then decomposed into lower
level control modules, each one being responsible for the management of
one of the main functionalities in the satellite: orbit, attitude, energy, ther-
mal, telecommand, and telemetry control for the platform, and detection,
observation, and data downloading control for the payload. Going deeper,
each of these modules is itself decomposed into lower level control modules,
called monitors, each monitor being in charge of handling a set of hardware
equipments. For example, the GPS monitor is in charge of handling the
two GPS receivers present onboard and the thruster monitor in charge of
controlling the pool of thrusters that can be activated when one wants to
correct the satellite orbital trajectory. Following the ideas of the GENOM
architecture [FHC94], the monitors allow the control software to access the
hardware via a software interface which is independent from the precise hard-
ware configuration, for example independent from the number of redundant
equipments and from the one that is currently used.

In Figure 1, the arcs between modules represent possible requests emit-
ted from one module to another one. For example, the observation module



Sa
te

lli
te

P
la

tf
or

m
P

ay
lo

ad

O
rb

it
A

tt
it

ud
e

E
ne

rg
y

T
he

rm
al

T
el

e
T

el
e

m
et

ry
co

m
m

an
d

D
et

ec
ti

on
do

w
nl

oa
di

ng
D

at
a

O
bs

er
va

ti
on

So
la

r
pa

ne
ls

m
em

or
y

M
as

s
H

ig
h 

ra
te

tr
an

sm
it

te
r

da
ta

m
ir

ro
r

Si
gh

t
T

ra
ns

m
it

te
rs R

ec
ei

ve
rs

H
ea

te
rs

G
P

S
tr

ac
ke

rs
Su

n
tr

ac
ke

rs
St

ar

T
hr

us
te

rs

w
he

el
s

R
ea

ct
io

n

P
ro

be
s

B
at

te
ri

es
M

ag
ne

to
to

rq
ue

rs
m

et
er

s
M

ag
ne

to

P
ow

er
su

pp
ly

O
bs

er
va

ti
on

in
st

ru
m

en
t

tr
an

sm
it

te
r

in
st

ru
m

en
t

D
et

ec
ti

on
A

la
rm

Figure 1: Possible architecture of the control of an Earth surveillance and
observation satellite.



can send requests to the sight mirror monitor responsible for directing ob-
servation to the right area on the ground, to the observation instrument
monitor responsible for triggering observation, and to the mass memory
monitor responsible for recording observation data. These arcs result in a
directed acyclic graph: no request loop.

But possible dependencies cannot be forgotten. One can see for example
that the observation and data downloading modules can both emit requests
to the mass memory monitor. These requests must be coordinated by the
higher level payload module in order to guarantee that onboard memory be
never overflown.

In Figure 1, we only represent the top-down flow of requests from high
to low-level modules and do not represent the opposite bottom-up flow of
information (reports about request execution and information about the
system state) from low to high-level modules. For example, the attitude
module gathers information coming from the sun tracker, star tracker, and
magnetometer monitors

As dependencies between emitted requests cannot be ignored, depen-
dencies between received information cannot be ignored too. For example,
conflicts between information coming from the sun tracker, star tracker, and
magnetometer monitors are managed by the higher level attitude module in
order to build an estimate of the satellite attitude.

4 Encapsulation of control and data in each mod-
ule

The second very simple idea is to reuse the principles of encapsulation that
are at the basis of object programming. In terms of control, that means that,
if a module M is in charge of the control of a satellite subsystem S, S cannot
be controlled from any other control module M ′ without a request to M .
Moreover, information about the state of S cannot be obtained without an
access to the data that are maintained by S.

For example, any request for a change in the satellite attitude must be
sent to the attitude module and to no other module, and any information
about the satellite attitude must be obtained from it and from no other
module.

We think that these principles, although they do not remove all the
possible conflicts in terms of requests or information, can greatly help to
limit and to manage them.



5 Standardized communications between modules

On this basis, we think that it is possible to standardize the communications
between modules, taking into account the main three kinds of exchange that
are necessary between them:

1. control requests emitted from a module to a lower level one;

2. request reports emitted in the opposite direction from a module to a
higher level one;

3. information about the system state from a module to a higher level
one.

About requests, one must stress that they are not limited to basic com-
mands immediately and compulsorily executed. Some requests may be com-
plex, such as the regular observation of a ground area. Some are not im-
mediate, such as the observation of a ground area when the satellite will be
within its visibility. Some are not mandatory and must executed if possible,
such as observations which may conflict with each other. In this case, it may
be useful to associate with each request a priority degree which will guide
decision-making towards good choices.

About information, one must stress that actual communication mech-
anisms (systematic information, information on request, . . . ) and means
(message passing, shared memory, . . . ) depend on implementation choices.

6 Generic organization of each module

Beyond the communications between modules, we think that it is also possi-
ble to standardize the organization of each module and to propose a generic
organization built around four main components:

1. a received request tracking component responsible for receiving re-
quests from higher level modules and for tracking and reporting their
execution;

2. an emitted request tracking component responsible, in the opposite
direction, for emitting requests to lower level modules and for tracking
and reporting their execution;

3. a system state tracking component responsible for the tracking of the
state of the subsystem the module is responsible for;



4. a decision-making component in charge of deciding upon the emission
of requests to lower level modules in order to answer requests received
from higher level modules.

To these main four components, it may be useful to add:

1. a supervision component in charge of initializing the module and of
managing its possibly different control modes;

2. a model component in charge of managing the data that represents
the model of the subsystem the module is responsible for; differently
from the system state which evolves over time, this model is assumed
not to change or to change at a far lower rate;

3. an information processing service component which gathers all the
data processing services naturally associated with the module, for ex-
ample the software responsible for orbit, eclipse, and visibility predic-
tion inside the orbit module.

Figure 2 shows the generic scheme of a control module at any level in
the module hierarchy.

7 Generic scheme of interaction between reactive
and deliberative tasks

An autonomous system must be always correctly controlled in a dynamic
environment, with possible changes in the system itself due for example to
subsystem failures or in its environment due for example to new observation
conditions or new observations to perform. As a consequence, its control
must be globally reactive: the control system must be able to react imme-
diately to any event.

Some of the tasks we identified in each control module can be considered
as reactive, such as received request tracking, emitted request tracking and,
in some cases, system state tracking and decision-making. By knowing the
maximum event rhythm or by imposing event buffering, we can guarantee
that each set of instantaneous events be managed before the following one.

However, some of these tasks cannot be considered as reactive, such
as, in some cases, system state tracking and decision-making, or any other
complex data processing task. For example, building a failure diagnosis, a
predictive resource profile, or an activity plan over a given temporal horizon



making

Emitted
request
tracking

Reasoning tasks

Received request
state

Current belief
on system state Current decision

Emitted request
state

model
Static and dynamic

and parameters
Control modes

Reasoning tasks

Communication

Supervision

Control module

request
Received

tracking

Model

Information
processing

services

state
System

tracking
Decision

Figure 2: Generic scheme of a control module.

may take a time much greater than the maximum event rhythm or than the
buffering rhythm. We refer to these tasks as deliberative.

The problem is to define what must be the temporal behavior of the
deliberative tasks and what must be their interaction with the reactive ones,
if we want them to be useful to the reactive control.

The generic scheme of interaction between reactive and deliberative tasks
we propose is summarized in Figure 3. See [LV07] for more details.

According to this scheme, reactive control tasks are in charge of the
interaction between the environment, on the one hand, and deliberative
reasoning tasks, on the other hand. The latter are never in direct inter-
action with the environment. Reactive control tasks receive changes from
the environment. They may react to them by immediately committing to
actions. Note that waiting may be a candidate action. Concurrently, they
may compute a deadline for deciding latter on the next action to perform.
Then, they may run deliberative reasoning tasks, by providing them with
relevant information about changes. On their side, deliberative tasks use
this information to produce what we call deliberations, which can be state
estimates, failure diagnoses, action proposals, or any other result useful for



decision-making. We assume that deliberative tasks are designed to have
an anytime behavior, that is the ability to produce quickly a first result
and to improve on it as long as time is available for reasoning. When the
deadline occurs, reactive control tasks use the successive deliberations they
received from deliberative tasks to make the right decision. If they received
no deliberation, they make a reactive default decision.

This scheme requires only that reactive control tasks be able to compute
a deadline, to check deliberations before making decisions, to make decisions
even when no deliberation has been received, and to perform all of this
reactively.

TASKTASK

ENVIRONMENT REASONING

DELIBERATIVEREACTIVE

CONTROL
commitments

changes
runs / aborts

information

deliberations

Figure 3: Generic scheme of interaction between reactive and deliberative
tasks.

8 Conclusion

We are currently working on applying all these architectural principles to the
design and the implementation of a control architecture for an autonomous
satellite dedicated to Earth surveillance and observation, such as the one
that has been roughly described in Section 3.

The following scenario we will consider is an autonomous agile satellite
dedicated to Earth observation, equipped with an optical observation in-
strument and a cloud detection instrument in front of the satellite, able to
provide the module in charge of deciding upon observations with informa-
tion about the actual cloud cover, in order to avoid imaging clouds, as it is
too often the case with currently operational satellites.

Beyond these experiments, we hope that the architectural principles we
presented in this paper be applicable for the closed-loop control of many
other autonomous systems.



9 Acknowledgements

We would like to thank the people who took part in most of the AGATA
brainstorming meetings about architecture, especially Solange Lemai-Chene-
vier from CNES and Félix Ingrand from LAAS-CNRS.

References

[ACF+98] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand.
An Architecture for Autonomy. The International Journal of
Robotics Research, 17(4):315–337, 1998.

[BL99] C. Barrouil and J. Lemaire. Advanced Real-time Mission Man-
agement for an AUV. In Proc. of the SCI NATO Symposium on
Advanced Mission Management and System Integration Tech-
nologies for Improved Tactical Operations, Florence, Italy, 1999.

[CB05] M.-C. Charmeau and E. Bensana. AGATA: A Lab Bench
Project for Spacecraft Autonomy. In Proc. of the 8th Interna-
tional Symposium on Artificial Intelligence, Robotics, and Au-
tomation for Space (i-SAIRAS-05), Munich, Germany, 2005.

[CCD+05] S. Chien, B. Cichy, A. Davies, D. Tran, G. Rabideau, R. Cas-
tano, R. Sherwood, D. Mandl, S. Frye, S. Shulman, J. Jones,
and S. Grosvenor. An Autonomous Earth-Observing Sensor-
web. IEEE Intelligent Systems, 2005.

[CST+05] S. Chien, R. Sherwood, D. Tran, B. Cichy, G. Rabideau, R. Cas-
tano, A. Davies, D. Mandl, S. Frye, B. Trout, S. Shulman, and
D. Boyer. Using Autonomy Flight Software to Improve Science
Return on Earth Observing One. Journal of Aerospace Com-
puting, Information, and Communication, 2005.

[DVC05] S. Damiani, G. Verfaillie, and M.-C. Charmeau. Cooperating
On-board and On the ground Decision Modules for the Manage-
ment of an Earth Watching Constellation. In Proc. of the 8th In-
ternational Symposium on Artificial Intelligence, Robotics, and
Automation for Space (i-SAIRAS-05), Munich, Germany, 2005.

[FHC94] S. Fleury, M. Herbb, and R. Chatila. Design of a modular
architecture for autonomous robot. In Proc. of the IEEE Inter-



national Conference on Robotics and Automation (ICRA-94),
San Diego, CA, USA, 1994.

[LCL+04] A. Lamy, M.-C. Charmeau, D. Laurichesse, M. Grondin, and
R. Bertrand. Experiment of Autonomous Orbit Control on the
DEMETER Satellite. In Proc. of the 18th International Sympo-
sium on Space Flight Dynamics (ISSFD-04), Münich, Germany,
2004.

[LV07] M. Lemâıtre and G. Verfaillie. Interaction entre tâches réactives
et délibératives pour la décision en ligne. In Actes des Journées
Françaises sur la Planification, la Décision et l’Apprentissage
pour la Conduite de Systèmes (JFPDA-07), Grenoble, France,
2007.

[MDF+02] N. Muscettola, G. Dorais, C. Fry, R. Levinson, and C. Plaunt.
IDEA: Planning at the Core of Autonomous Reactive Agents.
In Proc. of the 3rd NASA International Workshop on Planning
and Scheduling for Space, Houston, TX, USA, 2002.

[MNPW98] N. Muscettola, P. Nayak, B. Pell, and B. Williams. Remote
Agent: To Boldly Go Where No AI System Has Gone Before.
Artificial Intelligence, 103(1-2):5–48, 1998.

[WICE03] B. Williams, M. Ingham, S. Chung, and P. Elliott. Model-Based
Programming of Intelligent Embedded Systems and Robotic
Space Explorers. Proc. of the IEEE, 91(1):212–237, 2003.


