A Formal Approach to Designing Autonomous Systems:

from Intelligent Transport Systems to Autonomous Robots

Fabrice Kordon¹ Laure Petrucci²

¹LIP6, University Paris 6 Paris, France

²LIPN, University Paris 13 Villetaneuse, France

F. Kordon, L. Petrucci

CAR'07 — 31 may/1 june 2007 1 / 16

Motivation

Motivation

Specifics critical complex systems

- Intrinsically highly distributed systems
- ensure correct behaviour
- real-time properties: durations, timeouts,
- real-space aspects: safety distances, ...

- describe the problem

- formal methods are mathematically sound
- provide automated tools

I ≡ ▶ <</p>

Motivation

Motivation

Specifics critical complex systems

- intrinsically highly distributed systems
- ensure correct behaviour
- real-time properties: durations, timeouts, ...
- real-space aspects: safety distances, ...

Use of formal methods

- describe the problem
- verify that expected properties are satisfied
- simulation not sufficient
- formal methods are mathematically sound
- provide automated tools

★ ∃ → ★ ∃

</l

Outline

Running example: Intelligent Transport Systems

- ITS example: safe insertion in a motorway
- Modelling issues

Specification

- Specification issues
- Symmetric Nets

Modelling methodology

- Structure and abstraction level
- Oynamic actors
- Plus time and space
- ITS analysis

Intelligent Transport Systems

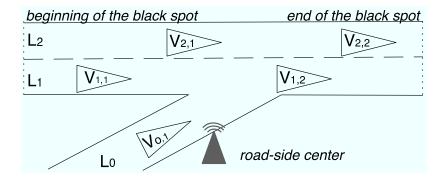
Characteristics

- highly critical: failures may lead to fatal accidents
- involve a significant number of partners
- cooperation between partners must be both efficient and secure

Partners involved

- road operators
- infrastructure
- vehicles with or without embedded equipment
- odrivers

Intelligent Transport Systems


Characteristics

- highly critical: failures may lead to fatal accidents
- involve a significant number of partners
- cooperation between partners must be both efficient and secure

Partners involved

- road operators
- infrastructure
- vehicles with or without embedded equipment
- odrivers

ITS example: safe insertion in a motorway

Black-spot functionning

Requirements

- minimum distance between vehicles within a same lane
- vehicles in the entrance lane must eventually enter the motorway
- vehicles should not stop

A cyclic functionning

- vehicles get their position
- 2 they send their position to the infrastructure
- when the infrastructure has received all positions, it issues commands according to a predefined strategy

Black-spot functionning

Requirements

- minimum distance between vehicles within a same lane
- vehicles in the entrance lane must eventually enter the motorway
- vehicles should not stop

A cyclic functionning

- vehicles get their position
- 2 they send their position to the infrastructure
- when the infrastructure has received all positions, it issues commands according to a predefined strategy

Modelling issues

Requirements

- managing dynamic actors
- modelling physical aspects
- preserving a fair progression of the system: actors perform actions at a similar pace.

Development steps

- first formal specification
- qualitative analysis: is the global behaviour correct?
- refinement including time or space features
- quantitative analysis: do the envisionned strategies satisfy the physical constraints?

Modelling issues

Requirements

- managing dynamic actors
- modelling physical aspects
- preserving a fair progression of the system: actors perform actions at a similar pace.

Development steps

- first formal specification
- Q qualitative analysis: is the global behaviour correct?
- refinement including time or space features
- quantitative analysis: do the envisionned strategies satisfy the physical constraints?

Modelling issues

Requirements

- managing dynamic actors
- modelling physical aspects
- preserving a fair progression of the system: actors perform actions at a similar pace.

Development steps

- first formal specification
- Q qualitative analysis: is the global behaviour correct?
- refinement including time or space features
- quantitative analysis: do the envisionned strategies satisfy the physical constraints?

Specification issues

UML

- + industrial standard
- + structured models
- semantics not formal enough
- analysis by simulation

Algebraic methods

- + formally defined
- tools require experienced users

Model-checking

- + structured models
- + large automated tools support
- + exhaustive and efficient analysis techniques
- cope with models complexity

< ∃ >

Choosing the formalism

Requirements

- capture relevant aspects of the problem
- simple enough
- allow for efficient verification techniques
- tool support

→ Ξ →

Choosing the formalism

Requirements

- capture relevant aspects of the problem
- simple enough
- allow for efficient verification techniques
- tool support

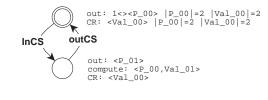
\Rightarrow Symmetric Nets

< ∃ >

Symmetric nets basic features

SN characteristics

- high-level features
- simple data and functions: enumerated types, intervals, tuples ; predecessor, successor, selector and *broadcast*

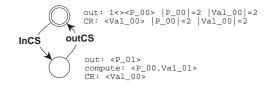


Dedicated analysis techniques

Symbolic reachability graph

- nodes represent a set of states with a similar structure
- based on symmetries computation

 ⇒ well-suited for ITS which enjoy intrinsic symmetries (e.g. same algorithm in all cars)


・ロト ・同ト ・ヨト ・ヨト

Dedicated analysis techniques

Symbolic reachability graph

- nodes represent a set of states with a similar structure
- based on symmetries computation

 \Rightarrow well-suited for ITS which enjoy intrinsic symmetries (e.g. same algorithm in all cars)

・ロト ・同ト ・ヨト ・ヨト

Components and abstraction level

Why is structure necessary?

- interaction between components
- communication mechanisms: asynchronous (place fusion) or synchronous (transition fusion)

Advantages

- reusability: try out several models for a single component
- use of modular analysis techniques

Abstraction

- apply a refinement process
- add details step by step until the desired abstraction level is reached
- start with general behaviour and add the real-time and real-space aspects at a later stage

Components and abstraction level

Why is structure necessary?

- interaction between components
- communication mechanisms: asynchronous (place fusion) or synchronous (transition fusion)

Advantages

- reusability: try out several models for a single component
- use of modular analysis techniques

Abstraction

- apply a refinement process
- add details step by step until the desired abstraction level is reached
- start with general behaviour and add the real-time and real-space aspects at a later stage

Components and abstraction level

Why is structure necessary?

- interaction between components
- communication mechanisms: asynchronous (place fusion) or synchronous (transition fusion)

Advantages

- reusability: try out several models for a single component
- use of modular analysis techniques

Abstraction

- apply a refinement process
- add details step by step until the desired abstraction level is reached
- start with general behaviour and add the real-time and real-space aspects at a later stage

Dynamic actors

How to handle dynamicity?

create new vehicles getting in and discard those getting out not suitable

- numbers associated with vehicles ⇒ state space explosion (even if there is a maximal id)
- identities are not important as long as the vehicles can be distinguished

maximal number of vehicles in the system (due to physical reasons) \Rightarrow reuse identity of exiting vehicles

Dynamic actors

How to handle dynamicity?

create new vehicles getting in and discard those getting out not suitable

- numbers associated with vehicles ⇒ state space explosion (even if there is a maximal id)
- identities are not important as long as the vehicles can be distinguished

maximal number of vehicles in the system (due to physical reasons) \Rightarrow reuse identity of exiting vehicles

・ロト ・同ト ・ヨト ・ヨト

Adding real-time and real-space aspects

Complex functions

- discretisation of complex functions
- use timed or hybrid formalisms

Fair execution of components

- use of a timeline as in timed Petri nets
- state space construction with branching criteria discarding unsuitable sequences

・ロト ・同ト ・ヨト ・ヨト

Adding real-time and real-space aspects

Complex functions

- discretisation of complex functions
- use timed or hybrid formalisms

Fair execution of components

- use of a timeline as in timed Petri nets
- state space construction with branching criteria discarding unsuitable sequences

More advanced analysis techniques

Analysis techniques inadequate for systems where types have many values (due to discretisation)

⇒ more elaborate techniques:

- symbolic/symbolic approaches combine:
 - symbolic reachability graphs
 - symbolic encoding of states
 - sharing features
 - hierarchical structuring

distributed model-checkers running on clusters of machines

More advanced analysis techniques

Analysis techniques inadequate for systems where types have many values (due to discretisation)

 \Rightarrow more elaborate techniques:

- symbolic/symbolic approaches combine:
 - symbolic reachability graphs
 - symbolic encoding of states
 - sharing features
 - hierarchical structuring

distributed model-checkers running on clusters of machines

★ Ξ → ★

Similarities between ITS and autonomous robots

- robots evolve in an environment which may have unexpected behaviour
- information obtained from sensors gives an abstract vision of the environment
- real-time and real-space features

Analogies between ITS and autonomous robots

- opots ↔ vehicles
- interacting agents ↔ infrastructure

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト …

Similarities between ITS and autonomous robots

- robots evolve in an environment which may have unexpected behaviour
- information obtained from sensors gives an abstract vision of the environment
- real-time and real-space features

Analogies between ITS and autonomous robots

- o robots ↔ vehicles
- interacting agents ↔ infrastructure