ONERA

Formal techniques for embedded safety critical systems

P. Bieber, C. Castel, C. Kehren, C. Seguin

Office National d'Études et de Recherches Aérospatiales www.cert.fr

Presentation objectives

Give a detailed introduction to formal approach for the assessment of safety critical systems

- > Overview of the assessment process
- Focus on formal models and techniques that assist the failure propagation analysis
- Launch the discussion about the applicability of the approach for robotics systems

(Very) simplified assessment process for safety critical systems

Starting point: hazard analysis

Soal: provide safety requirements to ensure that the probabilities of occurrence of feared events remain acceptable

Failure propagation analysis

Soal: verify if a system architecture meets the safety requirements depending on some hypothesis about fault models and Fault Detection, Identification and Recovery mechanisms

System verification

Soal: check if the implemented system is compliant with the hypothesis about fault models and FDIR

ONERA

Model based failure propagation analysis: the example of the A320 like hydraulic system

_ Safety architecture: 3 independent lines

About 20 components of 8 classes: reservoir, pumps, pipes, valves ...

ONERA

Model based failure propagation analysis: example of safety requirements

> Requirement : "Total loss of hydraulic power is classified Catastrophic, the probability rate of this failure condition shall be less than 10⁻⁹ /FH. <u>No single event shall lead to this failure</u> <u>condition</u> " (SSA ATA29)

Extended qualitative requirements could be added to reveal architecture design concerns:

"if up to N individual failures occur then failure condition FC should not occur",

with N= 0, 1, 2 if FC is Minor, Major or Hazardous, Catastrophic.

Model based failure propagation analysis: the AltaRica proposal

Language (University of Bordeaux, 2000),

- > formal,
- well suited to safety
- > able to deal with complex models :
 - _ hierarchical and compositional

Several available tools

- By Dassault Aviation, Apsys EADS, Arboost, Bordeaux University, ...
- > user friendly graphical model editor
- Gateways to safety and validation tools
 - _ boolean formulae _automatic FT generation ...
 - _ (Petri nets, Markov chains) _stochastic simulation ...

_transition systems (SCADE, SMV, Mec V) _qualitative safety requirement assessment by model-checking ...

ONERA

Model based failure propagation analysis: system modelling with AltaRica

AltaRica model is a set of interconnected nodes

Node has 3 parts : variable declaration, transitions and assertions

Model based failure propagation analysis: formal requirement modelling

Formalization of the failure condition using Propositional Logic : _ instantaneous view

3_hyd_loss : (blue_output = no) and (green_output = no) and (yellow_output = no)

_ observation of the state of the system at one moment _ reconfigurations not taken into account

Formalization of the requirement using Temporal Logic : _ dynamic view

_ reach permanent loss of hydraulic power :

Eventually Always 3_hyd_loss

Qualitative requirement to check :

Always upto_2_failures -> not(Eventually Always 3_hyd_loss)

Interactive simulation

_ observers added into the model to detect requirement violation

_ play simple combination of failures (in the style of FMEA)

OCAS Fault-Tree generation

The fault tree can be exported to other tools (Simtree, Arbor,...) to compute minimal cut sets and probabilities

OCAS Sequence Generator

- Automatic generation of sequence of failure that lead to the violation of Safety Requirements
- Limit on the number of failures to be considered

r get nctionalView.NPhyd.O = false
nctionalView.NPhyd.O = false
a name :
ix. order : 2 👻

Cadence Labs SMV Model-checker

Translation from Altarica to SMV

Formalisation of Temporal S/R Requirements in SMV code

/* Loss of three electric Systems */
/* -----/* Two failures -> DCsidel or DCside2 or DCess_ok */
DCside1_DCside2_DCess_ok : assert G F (elec.el.observer.DCside1_DCside2_DCess_ok);
using two_failures prove DCside1_DCside2_DCess_ok;
/* Two failures -> ACside1 or ACside2 or ACess_ok */
ACside1_ACside2_ACess_ok : assert G F (elec.el.observer.ACside1_ACside2_ACess_ok);
using two_failures prove ACside1_ACside2_ACess_ok;

event	ev_el_n1XP_loads_breaker_fail_opened	ev_el_BAT2_fail_short_circuit	ev_update
fail_evt	1	1	0
failures.count	0	1	2
failures.fail_evt	1	1	0

Specificities of robotic architectures

Robotic architecture consist in

- > Sensor, actuators, controllers, ... as traditional embedded systems
- + a deliberative part to transform high level goals into achievable sequences of basic control actions
- Issue for failure propagation analysis: identify all possible goals and plans used to control the basic devices

Track of solution:

- do not specify the plans at all, the failure propagation analysis will identify the hazardous sequences
- 2. check whether the robot architecture enable to filter such sequences
 - >A priori: thanks to constraints put in the model used to build the plans

ONERA

>>A posteriori: by monitoring the plan execution