


A generic framework for anytime execution-driven
planning in robotics

Florent Teichteil-Königsbuch, Charles Lesire, Guillaume Infantes

CAR 2011 — Grenoble, France — May 2011



Motivations Design principles Experiments Conclusion

Illustrative example: autonomous emergency landing

I unknown environment
I map a rectangular zone and

quickly find a place to land
I candidate landing zones after

automated mapping

I candidate zones not necessary
landable!

I need for a long-term planning of
candidate landing zones to explore
in order to minimize the mission’s
duration

I Which contingent strategy to
apply depending on hazards?

3/15 A generic framework for anytime execution-driven planning in robotics – F. Teichteil, C. Lesire, G. Infantes –



Motivations Design principles Experiments Conclusion

Illustrative example: autonomous emergency landing

I Huge state space due to many state variables:
. (on-ground)
. (explored ?z - zone)
. (landable ?z - zone)
. (at ?z - (either base zone))
. (com)
. (fuel-level)
. (available-memory)

I Modeled as a Markov Decision Process necessary solved on-line after image
processing

I Worst-case optimization time with an embedded computer running at 2
Ghz (assuming on-board memory is sufficient): 55 minutes with 5 zones
(540 years with 10 zones) but mission’s typical duration is about 15
minutes!

I Need for a (different) deterministic planner for generating exploration
paths in candidate landing zones

I Need to formally validate the safety of the entire mission

reactivity

genericity
validation

4/15 A generic framework for anytime execution-driven planning in robotics – F. Teichteil, C. Lesire, G. Infantes –



Motivations Design principles Experiments Conclusion

Automated planning: definition

Automated planning: definition
Automated planning is a branch of artificial intelligence concerning the automatic
generation of strategies or action sequences that achieve a given objective knowing
an initial state and actions effects.

Automated planning: features
I long-term and deliberative reasoning
I combinatorial explosion
I consumes memory and CPU time

Automated planning: challenges for robotics
I interaction with other functionalities (perception and action)
I real-time decisions
I validation of decisions w.r.t. the entire architecture

5/15 A generic framework for anytime execution-driven planning in robotics – F. Teichteil, C. Lesire, G. Infantes –



Motivations Design principles Experiments Conclusion

Automated planning: a generic formalism

I S: set of states
I SI : set of initial states
I SG : set of goal states
I A: set of actions
I O: set of observations
I T : S ×A → 2S : transition

function
I R : S ×A× S → R: reward

function
I O : S ×A → 2O:

observation function

POMDP

MDP

O = S

Classical Planning
T : S × A → S

Purpose: design a generic planning function based on the above concepts

6/15 A generic framework for anytime execution-driven planning in robotics – F. Teichteil, C. Lesire, G. Infantes –



Motivations Design principles Experiments Conclusion

A single planning component, with a variable planner

Planning
Component RFF

RTDP

LAO∗

PERSEUS

PBVI

CPT

A∗

CNT

I Same interface for all
planners

I Same behavior for all
planners

I Behavior’s code
independent from the
planner used (classical, MDP,
POMDP)

I Reasoning data structures
owned by planners

I Facilitates reusability and
validation

7/15 A generic framework for anytime execution-driven planning in robotics – F. Teichteil, C. Lesire, G. Infantes –



Motivations Design principles Experiments Conclusion

Basic concepts: planning request & action request
Planning request (plan construction)
I set of initial states from which the planner must compute an

optimized action (knowing long-term requirements) ;
I time allocated to the plan construction ;
I algorithm used to construct the plan ;
I algorithm parameters.

Action request (plan execution)
An optimized action to apply in a given state.

A component Planning componentplanning request

state

action
8/15 A generic framework for anytime execution-driven planning in robotics – F. Teichteil, C. Lesire, G. Infantes –



Motivations Design principles Experiments Conclusion

Anytime property, planning & action request interleaving

s0

plan from
state s0

during 10 s.

s1 modify plan from state s1 during 2 s.

s2 modify plan from state s2 during 2 s.

s3 modify plan from state s3 during 2 s.

Execute
bestaction

s0

s1

s2

s3

Execute
bestaction

s4

s5

modify plan from
s4 during 4 s.

s6

s7

s8

modify plan from
s8 during 2 s.

s9

s10

modify plan from
s9 during 1 s.

s0

s1

s2

s3

plan from s1
during 5 s. or

default action in s1

s4

s5

s6

s7

s8

s9

s10

Initial planning phase from the initial state (bootstrap)

// Execution of the best action planned in s0, approximate execu-
tion time is 6 s.
// Planning from possible next states during 2 s. each.

// Execution of the best action planned in current state s2, approxi-
mate execution time is 7 s.
// Planning from states of the most probable execution path.

- Model shift: state s1 was actually reachable from s2!
- Plan from current state s1 during 5 s. (or default action)
- Keep s4 and its potential successors as very likely reachable

9/15 A generic framework for anytime execution-driven planning in robotics – F. Teichteil, C. Lesire, G. Infantes –



Motivations Design principles Experiments Conclusion

Anytime property, planning & action request interleaving

s0

plan from
state s0

during 10 s.

s1 modify plan from state s1 during 2 s.

s2 modify plan from state s2 during 2 s.

s3 modify plan from state s3 during 2 s.

Execute
bestaction

s0

s1

s2

s3

Execute
bestaction

s4

s5

modify plan from
s4 during 4 s.

s6

s7

s8

modify plan from
s8 during 2 s.

s9

s10

modify plan from
s9 during 1 s.

s0

s1

s2

s3

plan from s1
during 5 s. or

default action in s1

s4

s5

s6

s7

s8

s9

s10

Initial planning phase from the initial state (bootstrap)

// Execution of the best action planned in s0, approximate execu-
tion time is 6 s.
// Planning from possible next states during 2 s. each.

// Execution of the best action planned in current state s2, approxi-
mate execution time is 7 s.
// Planning from states of the most probable execution path.

- Model shift: state s1 was actually reachable from s2!
- Plan from current state s1 during 5 s. (or default action)
- Keep s4 and its potential successors as very likely reachable

9/15 A generic framework for anytime execution-driven planning in robotics – F. Teichteil, C. Lesire, G. Infantes –



Motivations Design principles Experiments Conclusion

Anytime property, planning & action request interleaving

s0

plan from
state s0

during 10 s.

s1 modify plan from state s1 during 2 s.

s2 modify plan from state s2 during 2 s.

s3 modify plan from state s3 during 2 s.

Execute
bestaction

s0

s1

s2

s3

Execute
bestaction

s4

s5

modify plan from
s4 during 4 s.

s6

s7

s8

modify plan from
s8 during 2 s.

s9

s10

modify plan from
s9 during 1 s.

s0

s1

s2

s3

plan from s1
during 5 s. or

default action in s1

s4

s5

s6

s7

s8

s9

s10

Initial planning phase from the initial state (bootstrap)
// Execution of the best action planned in s0, approximate execu-
tion time is 6 s.
// Planning from possible next states during 2 s. each.

// Execution of the best action planned in current state s2, approxi-
mate execution time is 7 s.
// Planning from states of the most probable execution path.

- Model shift: state s1 was actually reachable from s2!
- Plan from current state s1 during 5 s. (or default action)
- Keep s4 and its potential successors as very likely reachable

9/15 A generic framework for anytime execution-driven planning in robotics – F. Teichteil, C. Lesire, G. Infantes –



Motivations Design principles Experiments Conclusion

Anytime property, planning & action request interleaving

s0

plan from
state s0

during 10 s.

s1 modify plan from state s1 during 2 s.

s2 modify plan from state s2 during 2 s.

s3 modify plan from state s3 during 2 s.

Execute
bestaction

s0

s1

s2

s3

Execute
bestaction

s4

s5

modify plan from
s4 during 4 s.

s6

s7

s8

modify plan from
s8 during 2 s.

s9

s10

modify plan from
s9 during 1 s.

s0

s1

s2

s3

plan from s1
during 5 s. or

default action in s1

s4

s5

s6

s7

s8

s9

s10

Initial planning phase from the initial state (bootstrap)
// Execution of the best action planned in s0, approximate execu-
tion time is 6 s.
// Planning from possible next states during 2 s. each.

// Execution of the best action planned in current state s2, approxi-
mate execution time is 7 s.
// Planning from states of the most probable execution path.

- Model shift: state s1 was actually reachable from s2!
- Plan from current state s1 during 5 s. (or default action)
- Keep s4 and its potential successors as very likely reachable

9/15 A generic framework for anytime execution-driven planning in robotics – F. Teichteil, C. Lesire, G. Infantes –



Motivations Design principles Experiments Conclusion

On-line planning component: state machine

Waiting
Problem

Loading
Problem

Problem
Loaded

PlanningProblem
Solved

ErrorStopped

load_problem

add_
plan_

request

remove_plan_request

get_action

add_plan_request

get_action

stop stop
stop

stop
stop

blocking

non-blocking

automatic transition when
processing done

10/15 A generic framework for anytime execution-driven planning in robotics – F. Teichteil, C. Lesire, G. Infantes –



Motivations Design principles Experiments Conclusion

On-line planning component: requests management

PLANNER
P

π

sik−2 → aik−2
sik−1 → aik−1

sik → aik
sik+1 → aik+1
sik+2 → aik+2

π̃
sjk−2 → ajk−2
sjk−1 → ajk−1

sjk → ajk
sjk+1 → ajk+1
sjk+2 → ajk+2

solve_progress

add_plan_request

« compute a plan from ‘s’ during ‘t’ sec-
onds with algorithm ‘a’ and parameters ‘p’ »

get_action: « which action in ‘s’? »

« apply action ‘π̃(s)’ » π
de

fa
ul

t

remove_plan_request: « give up request ‘(s, t, a, p)’ »

load_problem: « construct data structures for planning problem ‘P’ »
get_actions: « which applicable actions in ‘s’? »

« ‘App(s)’ are applicable in ‘s’ »

get_effects: « which effects when applying ‘a’ in ‘s’? »

« possible next states are ‘T(s, a)’ »

I No need to assume the planner’s code is thread-safe
I Only the locally-copied policy π̃ is protected by mutex
I Default policy filtering action requests (validation & reactivity)

11/15 A generic framework for anytime execution-driven planning in robotics – F. Teichteil, C. Lesire, G. Infantes –



Motivations Design principles Experiments Conclusion

Variable planner as a template of the planning component

Each planner is a class that must define the following embedded
types and methods.

class Planner {

// Embedded types
class problem_type {...};
class state_type {...};
class state_set_type {...};
class action_type {...};
class action_set_type {...};
class policy_type {...};
typedef enum {...} algorithm_enum;
class algorithm_parameters_type {...};
class algorithm_statistics_type {...};

// Member functions
void problem(const problem_type&);
void load_problem_begin();
void load_problem_progress();
bool problem_loaded() const;
void load_problem_end();
void algorithm(algorithm_enum,

const algorithm_parameters_type&);

void solve_begin(const state_set_type&);
void solve_progress();
void solve_end();
bool converged() const;
bool plan_defined(const state_type&) const;
action_type get_action(const state_type&) const;
action_type default_action(const state_type&) const;
algorithm_statistics_type get_statistics() const;
void update_policy(policy_type&,

const state_set_type&) const;
static bool plan_defined(const policy_type&,

const state_type&);
static action_type get_action(const policy_type&,

const state_type&);
action_set_type get_actions(const state_type&) const;
state_set_type get_effects(const state_type&,

const action_type&) const;
};

12/15 A generic framework for anytime execution-driven planning in robotics – F. Teichteil, C. Lesire, G. Infantes –



Motivations Design principles Experiments Conclusion

Search & rescue mission

Goto
wA

Scanning

Zoning
Launch

Planning

Execute
Policy

Stationary

current
waypoint

==
wA

current
waypoint

==
wB

zones
extracted

planning
launched

current
action

executed

current
action
==

end_mission

Zones extracted after
Scanning + Zoning

Planning components used: PlanningComponent<HMDPPlanner>
PlanningComponent<AstarPlanner>

13/15 A generic framework for anytime execution-driven planning in robotics – F. Teichteil, C. Lesire, G. Infantes –



Motivations Design principles Experiments Conclusion

Conclusion and perspectives
I Design of a generic and reactive planning component for a

modular robotics architecture
I Provide immediate services on demand to other modules
I Separation between requests’ management (component) and

planning algorithms (planner)
⇒ same requests’ management for all planners
⇒ planners are (template) plugins of the component

I Implementation on the Orocos platform
I Experiments on a high dimensional search & rescue mission,

and random challenging benchmarks
I Close future: Validate the planning components’ behavior

. Validate the component (requests’ management) once and for
all, assuming satisfied properties on the planner side

. Validate all planners plugged to the planning component

. Validate the default policy for each mission
14/15 A generic framework for anytime execution-driven planning in robotics – F. Teichteil, C. Lesire, G. Infantes –



Motivations Design principles Experiments Conclusion

Questions?

Thank you for your attention :-)

15/15 A generic framework for anytime execution-driven planning in robotics – F. Teichteil, C. Lesire, G. Infantes –


	Motivations
	Illustrative example: autonomous emergency landing
	Automated planning

	Design principles
	A single planning component, with a variable planner
	Basic concepts: planning request & action request
	Anytime property, planning & action request interleaving
	On-line planning component: state machine
	On-line planning component: requests management
	Variable planner as a template of the planning component

	Experiments
	Search & rescue mission

	Conclusion
	Conclusion and perspectives
	Questions


