ONERA

 J_{Ω}

THE FRENCH AEROSPACE LAB

retour sur innovation

www.onera.fr

Validation of real-time properties of a robotic software architecture

<u>Charles Lesire</u> (Onera - DCSD), David Doose (Onera - DTIM), Hugues Cassé (IRIT)

CAR 2011 — Grenoble, France — May 2011

THE FRENCH AEROSPACE LAB

retour sur innovation

Schedulability analysis

Results 000000000 Conclusion

Robots are critical systems that must be safe, otherwise:

▷ they may hurt people,

▷ they may fail and be unusable.

3/23 Validation of real-time properties of a robotic software architecture - C. Lesire, D. Doose, H. Ca

Motivations ○●○

Motivations

Schedulability analysis

Results 000000000 Conclusion

- ▶ The temporal constraints are crucial in the safety analysis:
 - ▷ embedded software are designed to be executed at specific rates,
 - any overshooting of software deadlines could disturb the system behavior;
- The schedulability analysis allows to check offline that all the tasks will be executed on time;
- Schedulability analysis in robotics usually consists in measuring the response time of embedded software;
- Formal schedulability analysis in embedded systems based on WCRT computation;

Results 000000000 Conclusion 00

- Motivations
- Plan
- Schedulability analysis
 The Mauve DSI
 - Validation process
 - Validation process
- 3 Results
 - Illustrative example
 - Schedulability results

ConclusionFuture work

The Mauve DSL

Schedulability analysis

Results 000000000 Conclusion

Component model approach

- Service: provides operations and requires methods
- Ports: oriented data communication
- Properties: set of component parameters
- Real-time properties: period, deadline, priority
- Behavior: defined by a finite state machine
- call elementary processing functions, codels
- Components allocated to tasks
- Prototype created using Eclipse MDT

Schedulability analysis

Results 000000000 Conclusion

ONER

Validation process

Transform an instance of the Mauve DSL into a classical tasks model:

- Extract the component behavior into a simple formalism: PSM (Periodic State Machine)
- Convert each PSM representing a component into a classical task representation
- Analyze the system schedulability

Schedulability analysis

Results 000000000 Conclusion

PSM:

- Transition : computation time
- Activation : one transition

PSM Transformation:

- Component behavior (finite state machine)
- Component communication (methods & operations)
- Component mode
- Component dynamic properties

Schedulability analysis

Results 000000000 Conclusion

ONFR

WCET computation

- Estimation of the Worst Case Execution Time of component codels
- ▶ Take into account architecture specificities (caches, pipelines)
- Analyze the assembly code:
 - ▷ build the codel Control Flow Graph (CFG)
 - ▷ solve a Integer Linear Programming system

Schedulability analysis

Results

Example

Conclusion

WCET computation

Motivations 000	Schedulability analysis	Results 00000000	
WCET comput	ation	Example	
<pre>int sum(int int i, s; s = 0; for(i = 0; s += t[i] return s; }</pre>	i < 100; i++)		
$W_{CET} = MAX$ $x_0 = 1$ $x_1 = a + x_2 = b = x_3 = c$ $d \leq 100$ $x_2 = x_2^h + x_2^m \leq 1$	$\begin{aligned} & \mathcal{L}(t_0 x_0 + t_1 x_1 + t_2^h x_2^h + t_2^m x_2^m + t_3 x_3) \\ & d = b + c \\ & d \\ & - x_2^m \end{aligned}$	x_1 *b c x_2 x_3	

Schedulability analysis

Results 000000000 Conclusion

PSM to Tasks

Classical tasks model:

- Monoprocessor
- Scheduler: Fixed Priority (FP, RM, DM)

Task

- \triangleright Worst Case Execution Time (C_i)
- \triangleright Priority (P_i)
- \triangleright Period (T_i)
- \triangleright Deadline (D_i)

Transformation:

- Compute "all" the PSM timelines
- Compute an approximation of the timelines
- PSM approximation: set of instances of the same task

- Compute task (i.e. component) worst case response time (\mathcal{R}_i)
- Modification of the classical worst case response time computation in order to take into account tasks instances
- A task is schedulable iff $\mathcal{R}_i \leq D_i$

The fix point computation is defined by the following process:

9
$$\mathcal{R}_{i}^{0} = C_{i,1}$$

9 $\mathcal{R}_{i}^{n+1} = C_{i,1} + \sum_{(j,l),j \in hp(i), l=1..k_{j}/r_{j,l} \leq \mathcal{R}_{i}^{n}} C_{j,l}$

If $\mathcal{R}_i^{n+1} \ge D_i$, the deadline is exceeded;

④ If
$$\mathcal{R}_i^{n+1} = \mathcal{R}_i^n$$
 then $\mathcal{R}_i = \mathcal{R}_i^n$

() Otherwise, $\mathcal{R}_i^n := \mathcal{R}_i^{n+1}$ and go back to step 2.

Schedulability analysis

Results •00000000 Conclusion

Illustrative example

Schedulability analysis

Results

Hardware architecture

Conclusion

ONER

Illustrative example

 The Command and Decision Architecture runs Linux with the Xenomai RT patch;

▶ The software architecture is built over **Orocos**.

Schedulability analysis

Results

Conclusion

Real-Time Toolkit

 Orocos/RTT (Real-Time Toolkit): an open-source library for developing and deploying real-time components

Schedulability analysis

Results

Conclusion

17/23 Validation of real-time properties of a robotic software architecture – C. Lesire, D. Doose, H. Ca

Schedulability analysis

Results

Component architecture

Conclusion

Illustrative example

18/23 Validation of real-time properties of a robotic software architecture - C. Lesire, D. Doose, H. Cas

ONERA

Schedulability analysis

Results 0000000000 Conclusion

Illustrative example

Mauve models

Component	Period (ms)	Priority	Codel
CICAS	-	-	send
CHR-6dm	1	1	update
IG500	10	2	update
StateFusion	10	3	update
		4	update
Command	10		Rotating
			Reaching

Schedulability analysis

Results 000000000 Conclusion

ONERA

Schedulability results

WCET computation with Otawa

http://www.otawa.fr

Schedulability analysis

Results 000000000 Conclusion

ONERA

Schedulability results

Component	T (ms)	Pr.	Codel	WCET (μ s)	WCRT (μ s)
CICAS	-	-	send	5'512	-
CHR-6dm	1	1	update	145	145
IG500	10	2	update	1	146
StateFusion	10	3	update	2	413
			update	5'324	
Command	10	4	Rotating	69	6'607
			Reaching	173	

- The system is schedulable;
- The processor load is about 67%.

Conclusion

Results 000000000

ONFR

- ▶ Mauve: a DSL for component-based (robotic) systems
- Direct mapping into Orocos/RTT (a robotic framework)
- Codel WCET computation with Otawa
- ► Component WCRT computation and schedulability results

Schedulability analysis

Results 000000000 Conclusion

Future work

Enhance the example architecture with more complex components

- vision-based object recognition
- Iaser-based SLAM
- motion planning
- task planning

▶ Integrate Orocos primitives into the WCET/WCRT analysis

- Data exchange
- Operation calls
- > Task management
- ⊳ etc.

Generate (Orocos) code from Mauve specifications