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Abstract— In this paper, the robust absolute stability prop-
erty of multi-agent systems by transforming the original system
into a Lur’e system is presented. Different configurations of
multi-agent systems are considered, which they include para-
metric uncertainty. These systems are primarily stabilized by
applying robust design techniques to further verify the absolute
stability property of the closed loop system, taking into account
the parametric uncertainty. To solve the problem of robust
absolute stability, the strict positive realness property (SPR)
of a fictitious transfer function needs to be verified. Sufficient
conditions to verify the robust absolute stability property of
leader-based multi-agent systems with parametric uncertainty
using a sign decomposition technique that guarantees the pos-
itivity of multivariable polynomials are presented. Therefore,
the aim of this work is to present a method to analyze the
robust absolute stability of uncertain leader-based multi-agent
systems.

I. INTRODUCTION

Multi-agent consensus and coordination has attracted
much attention in the recent years. Multi-agent consensus has
important applications including swarming [1], [2], flocking
[3]-[5], coordination and formation of aerial, ground or un-
derwater vehicles [6], [7], [8], etc. In the last few years, dif-
ferent approaches for coordination of multiple autonomous
robot systems have been developed such as Leader/Follower
[9], [10], Virtual Structure [11], [12], and Behavioral Control
[13], [14].

The distributed nature of a multi-agent (multi-robot) sys-
tem implies the need of information sharing among agents.
Generally, information flow among agents is modeled us-
ing graphs where every agent in the system is considered
as a node in the graph. By using this technique several
control strategies have been developed, e.g., [3], [4] and
[5] among others. A mechanical approach for multi-agent
systems has been developed in [15] and [16]. This approach
uses a passivity approach to decompose the system into two
passive subsystems called “shape” and “lock”. The shape
subsystems maintains the formation of the group while the
lock subsystem represents the translational dynamics of the
group. Another interesting approach has been adopted in
[17] where the multi-agent system is modeled as a bilateral
teleoperation system. The authors provide results to achieve
bilateral teleoperation one-master to multiple-slaves.

Recently, the attention has been focused on the dynamic
interaction among agents, i.e. the information topology may
change dynamically. For instance, communication links may
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be affected by disturbances, communication range limita-
tions, data corruption, packet lost, etc. Another phenomena
that has attracted the attention of many researchers is the
noise present in the sensors. In [18] and [19], the authors
analyze the consensus problem considering additive noise
disturbances.

The literature has shown that we can model multi-agent
systems using a mechanical approach where every agent
is represented by a mass and every communication link
is modeled as a damper and/or spring interconnecting any
two agents. In this case, we consider uncertainty in the
damping and/or spring coefficient(s) as shown in Figure 1.
On the other hand, we can assign a confidence index to
the communication links depending on the reliability of the
communication link as discussed in [20].

Fig. 1. Uncertainty in multi-agent systems

A common scenario of a leader-based multi-robot system
includes a group of agents sharing information as shown in
Figure 2. It can be observed that this scenario considers a

Fig. 2. Leader-based multi-agent system

group of robots acting as followers and at least one agent
acting as the leader of the platoon. We notice that the leader
is the only robot that can have access to external references.
The state of the art in multi-robot system has shown that



the authors consider either time delay, noise, packet drops
or combinations of them. In the particular case of multiple
mobile robot systems, it is quite often to find ourselves
facing the problem that all actuator have physical limits.
Therefore, the control action is saturated to avoid damages
to the electronic and/or mechanical devices used for control.
Then, we propose to analyze the robust absolute stability of
the multi-robot system shown in Figure 3.

Fig. 3. Leader-based multi-agent system with parametric uncertainty

The proposed scheme presents the form of a Lur’e problem
which consists in determining the asymptotic stability (or
absolute stability) property of a nonlinear system that is a
feedback connection of a linear part and a nonlinear element
that belongs to a sector [0, k], for more details see [21].

Fig. 4. Nonlinear function inside a sector [0, k]

We remark that there are many functions for which the
nonlinearity do not belong to the sector [0, k]. However, we
limit our study to nonlinear functions that belong to a sector
[0, k] as the one shown in Figure 4-b.

The present work addresses the robust absolute stability of
a leader-based multi-robot system over a wireless network
considering uncertainty in the communication links. First,
a robust optimal control method to design a controller that
robustly stabilize a forced consensus to a given reference for
all possible uncertainty q is presented. Secondly, a robust
strict positive realness (SPR) approach to verify that the
resulting closed loop system is robustly absolutely stable
is developed. Due to the distributed nature of multi-agent
systems, a Luenberger observer for the multi-agent system is
developed . The main contribution of this work is to provide
a methodology to analyze the robust absolute stability of
leader-based multi-agent systems considering uncertainties
in the communication links and a saturated control action.

This paper is organized as follows: section II presents
some preliminary definitions and results on graph theory,
wireless networks and robust control design. In section III,
the stability analysis for multi-agent systems with parametric
polynomic uncertainty is developed. The robust polynomial
positivity approach will be considered in order to verify
the robust absolute stability of the system. In section IV,
simulation results are presented. Finally, the conclusions are
provided in section V.

II. UNCERTAIN MULTI-AGENT SYSTEMS

In order to model the interactions among robots(agents),
a graph-based theoretical approach will be considered. A
graph G is a pair G(N , E) consisting of a set of nodes
N = {ni : ni ∈ N ,∀i = 1, ..., n} together with their inter-
connections E on N [24]. Each pair (n1, n2) is called an
edge e ∈ E . An undirected graph is one where nodes i and j
can get information from each other. In a directed graph or
simply digraph, the ith node can get information from the
jth node but not necessarily vice versa. Thus, information
flow between robots can be modeled as a directed graph
but also as an undirected graph. More complex graphs can
be used to model multi-robot systems including switching
graphs and weighted graphs. The interaction among robots in
a multiple mobile robot system over a wireless network can
be modeled using a switching graph while a multiple mobile
robot system over a wireless network with uncertainty on the
communication links can be modeled using weighted graphs.

Let us consider the kinematic model for a group of robots
as follows

ẋi(t) = ūi(t) ∀i = 1, .., n; (1)

with multi-robot consensus achieved using the following
algorithm

ūi(t) = −
∑
j∈Ni

(xi(t)− xj(t)) (2)

where ūi is the control input and Ni is the set of vehicles
transmitting their information to the ith−robot. We remark
that the control law (2) ensures the consensus agreement in
the sense of

lim
t→∞

|xi(t)− xj(t)| = 0

Assuming a leader-follower approach, we consider the forced
consensus algorithm

ūi(t) = −qij
∑
j∈Ni

(xi(t)− xj(t)) + biui(t) (3)

where bi is defined as follows

bi = 0 the ith-agent is follower
bi = 1 the ith-agent is leader

Then, the multi-robot system (1) with forced consensus
algorithm (3) can be written as

ẋ(t) = −L(q)x(t) +Bu(t) (4)

y(t) = CTx(t)



where L(q) is the laplacian matrix of the information
graph. We assume that the information graph includes a
spanning tree with root at the leader. For the ith row of
L(q), the entries lij = −qij for i ̸= j correspond to the
confidence indexes (gain) multiplying the signals from other
robots coming to the ith−robot. For the ith column of L(q),
the entries lji = −qji for i ̸= j correspond to the confidence
indexes (gains) multiplying the signals going out of the
ith−robot towards the other robots.

A leader-follower approach for multi-robot systems (4)
will be adopted, then a similarity transformation can be
applied such that the multi-robot system can be represented
as follows

η̇(t) =


0 1 . . . 0
0 0 . . . 0
...

...
. . . 1

−q0 −q1 . . . −qn−1

 η(t) +


0
0
0
b

u(t)

(5)
y = CT η(t)

where η ∈ Rn, b ∈ R and u ∈ R are the state variables and
control inputs respectively. It should be noticed that under a
similarity transformation the system’s characteristic equation,
transfer function, eigenvalues, eigenvectors are all preserved.

Remark 1: It is worth to mention that the controllability
and observability properties of the leader-based multi-robot
system must hold in order to apply the similarity transforma-
tion. If the multi-robot system is controllable and observable
from the input and output of the leader, then we can apply a
similarity transformation to the original system to develop
a robust controller for the transformed system. Once the
controller has been obtained, an inverse transformation can
be used to obtain the controller that robustly stabilizes the
forced consensus.

The following results resume the controllability and ob-
servability conditions for leader-based multi-agent systems.

Proposition 1: Consider the multiple agent system whose
evolution is described by (4). This system is not observable
if there exist a right eigenvector ωi of L such that CTωi = 0.

Proposition 2: Consider the multiple agent system whose
evolution is described by (4). This system is uncontrollable
if there exist an eigenvector vi of LT such that vT

i B = 0.
Remark 2: Recall that for i = 1 we have v1 = ω1

and therefore CTω1 ̸= 0 and vT
1 B ̸= 0. Thus the mode

corresponding to (λ1,v1) is controllable and the mode
corresponding to (λ1, ω1) is observable. If for i = 2, .., n
there exists a CTωi = 0 or vT

i B = 0, such mode is
not observable or not controllable respectively. Nevertheless,
such modes are asymptotically stables and converges to zero.

For more details on controllability and observability prop-
erties of leader-based multi-agent system, see [25].

A. Forced Consensus Control Design

Let us assume that the multi-robot system is controllable
and observable from the input and output of the leader. Then,
we will show that there is an optimal feedback that robustly
stabilizes the forced coordination of multiple agent systems

to a given reference. A combination of the Lyapunov method
and the LQR approach are used to find the robust control
law which guarantee the stability property and the system
robustness. To do this, we consider the system (5) where
qi ∈ Q are the parametric uncertain values. Q is a set that
represents the parametric uncertainty defined as

Q =
{
q =

[
q0 · · · qn−1

]
: q−i ≤ qi ≤ q+i

}
(6)

Let us consider the following representation of the multi-
agent system (5) as in [26], [27]

Σnom ,
{
η̇(t) = A(q−)η(t) +Bu(t)

y(t) = Cη(t)
(7)

Σun ,
{
η̇(t) = A(q−)η(t) +Bu(t) +BΓ(r)η(t)

y = Cη(t)
(8)

where:

Γ (r) =
[
r0 · · · rn−1

]

0 ≤ ri ≤ r+i =
q+i − q−i

b

Σnom represents the nominal system and Σun represents
the uncertain system. Consider the system (8), and the
following control law

u(t) = −BTSη(t) (9)

where:

SA(q−) +A(q−)TS+F+ I− SBBTS = 0,S > 0 (10)

The F matrix is defined in such a way that the following
condition is satisfied:

Γ(r)TΓ(r) ≤ F ∀ri ∈ [0, r+i ]

To find the solution of the LQR optimal control problem
for the Σnom system, the following cost functional is con-
sidered:

V (η) = min
u∈R

∫ ∞

0

(ηT (t)Fη(t) + ηT(t)η(t) + uT (t)u(t))dt

It is possible to verify that the proposed control law (9)
corresponds to the solution of the LQR optimal control
problem for the Σnom system (7), considering the cost
functional V (η), and the relative weights matrices Q = F+I
and R = 1. Obviously, the above control law stabilizes the
nominal system Σnom. A proof that the same control law
also stabilizes the uncertain system Σun can be found in
[27].

It is worth to mention that the robust forced consensus for
the original multi-robot system can be obtained by applying
a simple inverse transformation.



B. Observer design

It is worth to mention that a multi-agent system is a decen-
tralized system where every agent obtains information from
its neighbors. We remark that the global controller (forced
consensus) is computed only at the leader and therefore, full
state is needed in order to compute the coordination control
(9). In order to obtain the full state from the input and output
of the leader, we propose a Luenberger observer of the form:

ẋ = Ax−Bu(x̂)
˙̂x = L̄y + (A− L̄C)x̂−Bu(x̂)

y = Cx

where x is the state vector, x̂ is the observed state vector, L̄
is the Luenberger gain vector.

III. ROBUST STABILITY ANALYSIS

Note that the robust controller has been developed without
taking into account the saturation function in the input. Then,
the robust absolute stability analysis is presented next.

A. Robust Absolute Stability

Let us consider the multi-agent system, shown in Figure
3, with the following state space representation

ẋ(t) = −L(q)x(t) +B(q)u(t)
y(t) = CT (q)x(t)
u = −ψ(t, y)

(11)

with uncertainty in the communication links represented
by q, and ψ(t, y) is a memoryless nonlinear function con-
tained in a region called sector [0, k]. Remark that the
system (11) can also be represented by a transfer function
G(s,q) = C(q)(sI− (−L(q)))−1B(q) defined as

G(s,q) =
n(s, q)

d(s, q)
=

∑m
i=0 ai(q)s

i∑n
i=0 bi(q)s

i
∀ q ∈ Q (12)

where ai(q) and bi(q) are polynomic functions of q.
In order to verify the robust absolute stability of the

system (11) with state feedback control (9) we introduce
the following Lemma [23]:

Lemma 1: Consider the system (11), where ψ(t, y) sat-
isfies the sector [0, k] condition. Then, the system (11) is
robustly absolutely stable if z(s,q) = 1 + kG(s,q) is SPR
for all q ∈ Q.

It is important to note that this condition implies verifying
the robust SPR condition of the fictitious transfer function
z(s,q). Hence, the robust absolute stability problem is trans-
formed to determine if z(s,q) is robustly SPR. Additionally,
when the relative degree of the polynomic plant G(s,q) is
known to be equal to 1, we assume that the z(s,q) is also
a polynomic plant with relative degree equal to zero.

It is clear that the polynomic plant defined in (12) repre-
sents an infinite number of transfer functions; therefore, the
problem of robust strict positive realness is transformed into a
problem where the positivity of two multivariable polynomic
functions is verified by using the following result [23], [28]

Theorem 1: A polynomic plant is robustly SPR if and
only if G(s,q) is stable for some q ∈ Q and:

1) h(ω,q) is positive for all q ∈ Q and ω ∈ (0,∞).
2) g(ω,q) is positive for all q ∈ Q and ω ∈ (0,∞).

where

h(ω,q) = |d(jω,q)|2 (13)
g(ω,q) = n(jω,q)d(−jω,q) + n(−jω,q)d(jω,q) (14)

To verify the positivity of these functions, a sign decom-
position method will be used. This method analyzes the
positivity of a multivariable real polynomic function f(·)
by its decomposition into its positive fp(·) and negative
fn(·) parts, see [22]. Then, to verify if a function with
sign decomposition is positive, it is needed to verify that
f̄ = fp(υmin) − fn(υmax) is greater than zero, i.e. the
function f(·) is positive if the difference between its positive
part evaluated at its minimum euclidian value υmin and its
negative part evaluated at its maximum euclidian value υmax

is be greater than zero.
We remark that full knowledge of the low and high

boundaries of the uncertainty is needed, and as it was seen
in Theorem 1, ω is an unbounded parameter. Therefore, the
limits for the bound of ω can be found by using the next
function:

hmin(ω) = hp(ω,q
−)− hn(ω,q

+) (15)
gmin(ω) = gp(ω,q

−)− gn(ω,q
+) (16)

where hp(·), hn(·), gp(·) and gn(·) are the negative and
positive parts of h(ω,q) and g(ω,q) respectively. q− =
[ q−0 · · · q−n−1 ]T and q+ = [ q+0 · · · q+n−1 ]T .

From (15)-(16), it is clear that the the following condition
is satisfied

hmin(ω) ≤ h(ω,q); ∀ω ∈ (0,∞);q ∈ Q
gmin(ω) ≤ g(ω,q); ∀ω ∈ (0,∞);q ∈ Q

Due to the shape of hmin(ω) and gmin(ω) it is possible
to find the minimum ω− and maximum ω+ values so that
the functions may take negative values and thus, the function
have the possibility to be negative only when they are inside
these intervals. Usually, the limits for the ω parameter in both
functions correspond to some roots of hmin(ω) and gmin(ω)
respectively, and can be gotten graphically, for more details
see [23]. Now, it is possible to define the following sets

Vh = [ω−
h , ω

+
h ]×Q; Vg = [ω−

g , ω
+
g ]×Q (17)

which can be divided into j-subsets

Vh =
∪

j
Λj
h; Vg =

∪
j
Λj
g (18)

Then, in order to verify the Lemma 1, we introduce the
following result

Proposition 3: The fictitious transfer function z(s, q) =
1 + kG(s, q) is robustly SPR if

1) For all Λj
h ∈ Vh, h̄j = hp(v

j
min)−hn(vjmax) is greater

than zero for each h̄j .



2) For all Λj
g ∈ Vg, ḡj = gp(v

j
min)− gn(v

j
max) is greater

than zero for each ḡj .
Now, the result on robust absolute stability for leader-

based multi-agent systems will be presented next
Corollary 1: Consider the multi-agent system shown in

Figure 3, where ψ(t, y) satisfies the sector [0, k] condition.
Then, the multi-agent system is robustly absolutely stable if
z(s,q) = 1 + kG(s,q) is robustly SPR for all q ∈ Q.

IV. EXAMPLES

To illustrate the application of the previous results, three
cases of a leader-based multi-agent system with a topology
of information exchange that is controllable and observable
from the input and output of the leader are presented, see
Figure 5.

Fig. 5. Topologies of Information Exchange: a) cyclic, b) balanced.

A. Cyclic Topology

This multi-agent system is one of the most frequently used
in coordination and consensus on multi-agent systems. Also,
this scheme is one of the most easily implementable multi-
robot system.

A 3-agents system with cyclic topology of information
exchange is given by

ẋ(t) =

 −1 1 0
0 −1 1
1 0 −1

x(t) +
 0

0
1

u(t) (19)

The multi-agent system in terms of a canonical form is
given by

η̇(t) =

 0 1 0
0 0 1
0 −3 −3

 η(t) +
 0

0
1

u(t)
where

η(t) =

 1 0 0
1 1 0
1 2 1

x(t) (20)

Now, we will consider a [10%, 10%, 10%] uncertainty in the
last row coefficients of the state matrix. As a result of this
assumption, the following matrix is obtained

A(q) =

 0 1 0
0 0 1

−q0 −q1 −q2

 (21)

where q0 ∈ [0, 0], q1 ∈ [−3.3,−2.7] and q2 ∈ [−3.3,−2.7].
Despite the fact that the structure of the uncertainty in (21)

may be multilineal, polynomial, etc., it is always possible to

lump the uncertainty such that uncertainty structure in (21)
becomes independent interval uncertainty. Then,

A(q−) =

 0 1 0
0 0 1
0 −3.3 −3.3


ΓT (r) =

[
r1 r2 r3

]
where r1 ∈ [0, 0]; r2 ∈ [0, 0.6]; r3 ∈ [0, 0.6].

The F matrix is given by:

F =

 0.00 0.00 0.00
0.00 0.36 0.36
0.00 0.36 0.36


Then, the optimal control law is given by

K =
[
1.0000 1.1519 0.5168

]
(22)

After a simple inverse transformation of the optimal con-
trol law (22), the resulting optimal control law is applied to
the multi-agent system (19).

Now, let us consider that the input is saturated and the
saturation function satisfies the sector condition. We will
consider the case of robust absolute stability of the multi-
agent system as follows. First, let us consider the transfer
function of the above system

G(s, q) =
s2 + s+ 1

s3 + q1s2 + q2s+ 1
(23)

where q1 ∈ [3.2168, 3.8168] and q2 ∈ [3.8591, 4.4591]
The fictitious transfer function has the following form:

z(s, q) =
s3 + (q1 + 1)s2 + (q2 + 1)s+ 2

s3 + q1s2 + q2s+ 1
(24)

where the positive and negative parts of h(ω, q) and
g(ω, q) functions are the following

hp(ω, q) = ω3 + q21ω
2 + q22ω + 1

hn(ω, q) = 2q22ω
2 + 2q21ω

gp(ω, q) = 2ω3 + (2q21 + 2q1)ω
2 + (2q22 + 2q2)ω + 4

gn(ω, q) = (4q2 + 2)ω2 + (6q1 + 2)ω

Using the equations defined in (15)-(16) we get:

hmin(ω) = ω3 − 29.4176ω2 − 14.2433ω + 1 (25)
gmin(ω) = 2ω3 + 7.2932ω2 + 12.5873ω + 1 (26)

On one hand, it is clear that the gmin(ω) function is
positive, because all of its coefficients are positive and the
frequency ω belongs to the interval (0,∞). In the other
hand from hmin(ω) function it is possible to get the interval
[0.062, 29.8929]. Then, the set V is defined as

V = [0.062, 29.8929]× [3.2168, 3.8168]× [3.8591, 4.4591]

Using the sign decomposition method we get

h(ω, q) > 102.2151 (27)



From (26) and (27) and applying the Proposition 3 and
Corollary 1, we can conclude that the 3-agent system with
cyclic topology of information exchange is robustly abso-
lutely stable.

B. Balanced Graph Topology

A 4-agents system with balanced topology of information
exchange is given by

ẋ(t) =


−2 1 0 1
1 −3 1 1
0 1 −1 0
1 1 0 −2

x(t) +


0
0
0
1

u(t) (28)

The multi-agent system in terms of the canonical form is
given by

η̇(t) =


0 1 0 0
0 0 1 0
0 0 0 1
0 −12 −19 −8

 η(t) +


0
0
0
1

u(t)
with the following transformation

η(t) =


3 5 1 0
3 4 1 0
3 1 0 0
3 9 6 1

x(t) (29)

Considering a [10%, 10%, 10%, 10%] uncertainty in the last
row coefficients of the state matrix. As a result of this
assumption, the following matrix is obtained

A(q) =


0 1 0 0
0 0 1 0
0 0 0 1

−q0 −q1 −q2 −q3

 (30)

where q0 ∈ [0, 0], q1 ∈ [10.8, 13.2], q2 ∈ [17.1, 20.9] and
q3 ∈ [7.2, 8.8].

Thus, the optimal control law is given by

K =
[
−0.1445 0.1843 −0.0963− 0.0489

]
(31)

After a simple inverse transformation of the optimal con-
trol law (31), the resulting optimal control law is applied to
the multi-agent system (28).

Now, let us consider that the input is saturated and the
saturation function satisfies the sector condition. We will
consider the case of robust absolute stability of the multi-
agent system as follows. The transfer function of the above
system is as follows

G(s, q) =
s3 + s2 + s+ 1

s4 + q1s3 + q2s2 + q3s+ 0.3162
(32)

where q1 = [7.2489, 8.8489], q2 = [17.3538, 21.1538] and
q3 = [11.3221, 13.7221]

The fictitious transfer function has the following form:

z(s, q) =
s4 + (q1 + 1)s3 + (q2 + 1)s2 + (q3 + 1)s+ 0.3162

s4 + q1s3 + q2s2 + q3s+ 0.3162
(33)

where the positive and negative parts of h(ω, q) and
g(ω, q) functions are the following

hp(ω, q) =ω
4 + (2q1q3 + q22 + 0.62)ω2 + 0.0961

hn(ω, q) =(2q2 + q21)ω
3 + (q23 + 0.62q2)ω

gp(ω, q) =2ω4 + 2(q21 + q1)ω
3 + 2(q22 + q2)ω

2

+ 2(q23 + q3)ω + 0.8122

gn(ω, q) =2(q2 + 1)ω3 + 2(q1 + q3 + 2q1q3)ω
2

+ 2(1.62q2 + 0.31)ω

Using the equations defined in (15)-(16) we get:

hmin(ω) =ω
4 + 465.9199ω2 − 120.6106ω2 (34)
− 201.4114ω + 0.091 (35)

gmin(ω) =2ω4 + 32.9757ω3 + 109.4124ω2 (36)
+ 209.8658ω + 0.8122 (37)

In the one hand, it is clear that the gmin(ω) function
is positive, because all of its coefficients are positive and
the frequency ω belongs to the interval (0,∞). In the other
hand from hmin(ω) function it is possible to get the interval
[0.0005, 0.7985]. Then, the set V is defined as

V =[0.0005, 0.7985]× [7.2489, 8.8489] (38)
× [17.3538, 21.1538]× [11.3221, 13.7221]

Using the sign decomposition method we get

h(ω, q) > 53019536.0 (39)

From (37) and (39) and applying the Proposition 3 and
Corollary 1, we can conclude that the 4-agent system with
balanced topology of information exchange is robustly abso-
lutely stable.

V. CONCLUSIONS

We presented a method to verify the robust absolute stabil-
ity property for multi-agent systems. This method consisted
in transforming the original system into a Lur’e system.
Then, transforming the original problem of robust stability
into one where the positivity of a multivariable polynomial
using the sign decomposition technique is verified. The
theoretic results were illustrated with different topologies of
information exchange for multi-agent systems. It is worth
to mention that, although in this paper, the examples were
considering independent uncertainty, the method is also valid
for systems with polynomic uncertainty structure.
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