
A generic framework for anytime execution-driven planning in robotics

Florent Teichteil-Königsbuch
ONERA / DCSD

31055 Toulouse, France
Florent.Teichteil@onera.fr

Charles Lesire
ONERA / DCSD

31055 Toulouse, France
Charles.Lesire@onera.fr

Guillaume Infantes
ONERA / DCSD

31055 Toulouse, France
Guillaume.Infantes@onera.fr

Abstract— Robotic missions require to implement various
functionalities in order to link reactive functions at actuators
and sensors level to deliberative functions like vision, supervi-
sion and planning at decisional level. All these functionalities
must be versatile and generic enough to interact differently
according to the missions while minimizing recoding effort.
Moreover, deliberative functions like automated planning con-
sume lots of memory and CPU time and usually complete in
time incompatible with robotic missions’ durations. Thus, we
present a new generic and anytime planning concept for mod-
ular robotic architectures, which manages multiple planning
requests at a time, solved in background, while allowing for
reactive execution of planned actions at the same time. Different
planners based on various formalisms and data structures can
be plugged to the planning component without changing its
behavior nor its code, facilitating reusability and validation
of the component. We highlight the versatility of our concept
on different use cases; then we demonstrate the efficiency
of our approach in terms of mission duration and success,
compared with traditional plan-then-execute approaches ; we
finally present a search and rescue mission by an autonomous
rotorcraft solved with our paradigm, that cannot be tackled by
traditional approaches.

I. MOTIVATIONS

Autonomous robotic applications require to implement
various algorithms from control laws to vision algorithms,
including high-level sequential decision-making known as
automated planning. While designing such algorithms to
solve realistic robotic missions is a very challenging area
of artificial intelligence, embedding and connecting them on
a software architecture for real-time execution is an other
ambitious topic. Indeed, deliberative reasonings like vision
and planning consume a lot of CPU time, which is generally
far higher than durations of missions and robots’ actions, so
that the underlying algorithms cannot be simply embedded
in the system as such.

Yet, software architectures should ideally provide a mech-
anism to integrate these deliberative algorithms without
requiring to modify them, since they are often designed for
more general purposes than execution on-board a robot. In
case of planning algorithms, we claim that a component of
such an architecture should be conceived as a generic kernel
managing interactions with other functionalities to which
many planning algorithms can be plugged without changing
its code nor its behavior. This article precisely proposes a
formal definition as well as a real implementation of such a
planning component for modular robotic architectures, which
satisfies three main requirements: reactivity, genericity, and
validation.

A. Illustrative autonomous mission

In order to illustrate the needs, we consider a search
and rescue mission: a human being is at risk in a remote
place, after a plane crash in an enemy zone. We want
to send a helicopter UAV, able to scan autonomously the
area, detect the human being, land autonomously at the
proper place and escape the danger zone with the human
being safe and secure inside. Such a mission needs online
planning capabilities: the helicopter has to scan then select,
given the first mapping of the zone, the area where to
go, search for the human being, and possibly land. It has
also to plan its trajectory between waypoints while avoiding
obstacles or forbidden areas. More precisely, this mission is
monitored by a supervisor, that controls all the components
of the architecture: the navigation component controls the
helicopter movements and provides state information (pose,
velocity); the camera component manages image acquisition;
the mapping component implements mapping algorithms
that build an obstacle map given acquired images and their
corresponding state vectors; the zoning component extracts
zones from the map where the helicopter could possibly land.

This mission raises several points: first, the planning
problem cannot be solved off-line before the mission starts,
because the UAV needs to scan the area before selecting
zones to explore precisely. This prevent a priori building of
a policy. Furthermore, the number of zones may be very
large, and precise management of resources like fuel and
memory (to store and process images) is mandatory, leading
to a potentially very large state space, while rescuing time
has to be as small as possible1. Finally, the uncertainty
level is very large for this data, making exhaustive a priori
planning intractable. So, as the planning times may not be
guaranteed, and cannot be considered instantaneous, correct
interleaving of planning and execution is a critical part of
achieving such a complex task. One approach is to have
the supervisor launching planning requests to the deliberative
planning component and uses the results when/if needed.

B. Generic use cases

In a more general perspective, we can see at least three
different ways for using the planning component considered
as a deliberative part in relation to a reactive supervisor.

1The state space is exponential in the number of zones with continuous
variables, so that optimal optimization under uncertainty with state-of-the-
art planning algorithms would last many centuries with a 1Ghz processor.



a) Pro-active planning: In real-world scenarii, the plan-
ning delay is to be taken into account: the plan is executed
starting from a future state which is different from the present
one, for instance if the fuel level, or remaining time to save
the human being are part of the system state. This problem
is often eluded by computing a policy (a conditional plan,
where the action to do is a function of the state) instead
of a plan. But computing a complete policy can be very
long if tractable at all, and many algorithms use a start
state in order not to explore the whole state space. This is
especially true in classical planning [1], but also in recent
MDP planning [2], [3], [4]. So a realistic setup may use a
state predictor (or prognostic) giving a set of possible states
for time t + δplanning, where t is the present time, and
δplanning is the delay allocated to planning. So the planning
component has to handle several requests for several starting
states at once. Depending on the state predictor and the
degree of uncertainty of the evolution of the system, the start
states may be close to each other, or very different.

b) Cooperation: Another use case can appear if the
previous scenario is augmented with other agents needing
to know how the autonomous UAV may react in some
circumstances. For instance, another UAV may be trying to
protect the first one, and needs to know where it may go if
a zone is found dangerous. This case may also be useful for
verification and validation needs.

c) Long term anticipation: A more subtle case appears
if the model and/or the algorithm is not fully trusted. For
instance, if there exists a fault that is very unlikely to occur
given the current model, then the planning algorithm may
not explore it (for instance if it uses state sampling with few
samples), thus may not be able to give a good policy for
such faulty states. In that case, the supervisor may anticipate
such cases in order to store a quick reaction by asking the
planner what to do if in such unlikely-to-occur states.

In this paper, we propose a generic and reactive scheme for
using the planning component in order to be able to deal with
complex problems for which execution and planning have
to be properly interleaved. We call this scheme “execution-
driven” because it is totally different from the classical “plan,
execute then replan” scheme. We claim that for most real-
world problems, the goals do not change much (especially if
we consider optimization of a policy where multiple condi-
tional goals are possible), but the states from which we need
to execute (or know the action that would be executed) do.
Furthermore, we propose to separate the planning component
from the planner itself, so that the planning component
is generic in the sense that it can be used with different,
specialized planning algorithms.

II. AUTOMATED PLANNING FOR ROBOTICS

Designing efficient automated planning [5] algorithms
requires to define the problem and its hypotheses precisely
for best performances. However, the planning component
proposed in this paper totally separates planning requests
from plan computations, so that a general definition is

sufficient for our needs: we consider a planning problem as
an automatic generation of action sequences or strategies that
achieve a given numeric or symbolic objective, knowing the
current state of the world and actions’ effects. Whatever the
computations involved by planning algorithms, we define a
unified framework to execute optimized actions reactively to
environment changes. The following definitions will be used
as data flows by the planning component but defined by each
possible planning algorithm plugged to the component.

A. Basic concepts

Our generic planning component described in the next
section relies on a few generic concepts common to most
planning algorithms:
- P: a planning problem;
- S: a set of states; s ∈ S: a stat ;
- A: a set of actions; a ∈ A: an action;
- App : S → 2A: function indicating all actions applicable
in a given state;
- T : S ×A → 2S : transition function indicating all possible
next states when applying a given action in a given state;
- πs0 : a solution of the planning problem P for a given initial
state s0 (more on this below);
- πdefault: a default solution of the planning problem P
defined over all possible states reachable during the mission;
- algP : an algorithm that solves the planning problem P;
- paramalg: tuning parameters for algorithm alg.

If states are only partially observable [6], actions are
optimized and executed for given belief states, which can
be probability distributions over the actual state. To cover
this case, we can assume that S is the set of belief states. In
this case, actual hidden states can not be accessed through
the planning component, and, in such a setup, estimation of
the current belief state from observations (filtering) is done
outside the planning component. This is realistic as it can
be seen as a special case of the first use case, because state
estimation is needed for robotic application, and can be seen
as a sub-problem of state prediction.

Another important concept is the solution of a planning
problem. If actions’ effects are deterministic [5], [1], a
sequence of actions named plan is sufficient to reach the
problem’s goal. However, in other cases such as probabilistic
[7], [2] or non-deterministic [8] effects, the execution of a
plan may lead to states where no actions are defined. If
an approach based on replanning is too slow for the target
application, the planner has to produce a policy function
πs0 : (Sreach(s0) ⊂ S) → A indicating the action to apply
in states reachable from an initial state s0.

Conveniently, any plan can be represented by a policy,
so that the latter concept embraces most solutions of any
planning problem. We argue that the policy concept also
is interesting for planning with deterministic effects, since
it allows the planning component’s caller to know if the
planner’s model is deviating from the model of the world,
by asking if current state is in the policy: if not, it means
that the model of actions’ effects is wrong.



The default policy, owned by the planning problem as de-
fault solution of it, is mandatory for reactivity and validation
of the planning component. It guarantees that a default action
is always available whatever the state of the world, even if
the planner could not find a solution for this state. Moreover,
on condition that it was validated before being embedded in
the planning problem, the default policy ensures a safe action
to apply that does not end up in some dangerous feared state
in the future. In most cases, this default policy can be defined
over sets of states instead of individual states, so that it is
compact enough for embedding.

The previous concepts are implemented outside the plan-
ning component, in each planner plugged to the component.
This way, we can design a generic planning component
whose requests’ management and implementation are in-
dependent from planners’ data structures and common to
all planners. All these concepts are totally abstract from
the planning component’s point of view: for instance, if
actions’ effects are probabilistic (the MDP case [7]), the set
of possible next states (and hence the concept S) will be
actually defined by the planner as a probability distribution
over states. In the same line of thinking, the algorithm alg
and its parameters param only affects the planner plugged
to the component to solve the planning problem, so that they
are defined in the planner but not in the component.

B. Requests definition

As the planning component provides services about a
given planning problem to other components, its core is all
about managing requests concerning the problem, indepen-
dently from available algorithms and data structures needed
to solve it. We identified five requests whose final processing
is delegated to the planner plugged to the component:
- loading a planning problem P: constructs all data structures
needed to solve P;
- getting the actions As ⊂ A applicable in state s: constructs
the set of actions applicable in s (this operation can be
processed only by the planning component if it requires data
structures constructed inside it);
- getting the effects Es,a ⊂ S of action a applicable in
state s: constructs the set of states that may be immediately
reachable by applying the given action in the given state;
- computing the policy πs solution of the loaded planning
problem from the initial state s during t seconds with
algorithm alg and parameters paramalg: constructs a partial
solution in bounded time from a given state and inserts it into
the policy function computed so far;
- getting the action as planned in state s: reads in the policy
function the action planned in s and returns it.

We claim that these five request classes are sufficient in
order for the planning component to satisfy at least the
requirements of the use cases presented in section I. Fur-
thermore, these requests are versatile and general enough to
deal with other situations, provided they can be non-blocking
for the calling component and achieved in parallel. This point
is all about the behavior of the planning component, detailed
in the next section.

III. A GENERIC AND ANYTIME PLANNING FRAMEWORK

The planning component detailed in this section is de-
signed to fulfill the high-level requirements of section I:
- reactivity to environment changes through other compo-
nents’ requests, achieved by: (1) parallel execution of plan
construction and requests’ management; (2) default policy
returning a solution in short bounded time if the planner
could not find a solution for a given state; (3) state machine
formalizing the interactions with the planning component.
- genericity with regards to planning algorithms and func-
tional architectures, achieved by: (1) plugin system: the
planning component is a class template whose variable type
is a planner; (2) separation between requests’ management
in the planning component class and plan construction in the
planner class; (3) definition of a fixed interface with other
components through five request member functions.
- validation of the component’s code and behavior, achieved
by: (1) validation of the planning component, assuming
safety conditions on the planning algorithm side; (2) val-
idation of the planning component’s default policy for a
given mission; (3) validation of each planner plugged to the
component (future work).

The next paragraphs look deeper inside the planning
component to understand how we designed and implemented
the above items.

A. Component’s states

The state machine in Fig. 1 defines the different possible
states of the planning component, and transitions between
states depending on requests from other components of the
architecture. All requests of section II-B are managed. The
initial state is Waiting Problem, so that the component
must be initialized by loading a planning problem.

After the problem has been loaded, the planning
component can receive planning requests from the
add_plan_request method. They can be canceled with
the remove_plan_request method, in order to save
time if for instance some initial state has been pre-
dicted earlier, but the robot is now deviating from it.
Whether the state machine is in the state Planning or
Problem Solved, it is always possible to get the ap-
plicable actions (get_actions request), the planned ac-
tion (get_action request), or the effects of an action
(get_effects request), for a given state. Finally, the
planning component can be stopped at any time with the
stop request, even if it is loading or solving the problem.

From the point of view of the calling component, no re-
quest is blocking: all requests immediately return a boolean,
indicating if the request could be performed in the cur-
rent state of the planning component. If computations are
required (for loading a problem or solving it from some
initial states), the state machine enters a state whose name
indicates that the planning component is processing them
(Loading Problem or Planning). As soon as the
computation is finished, the state machine automatically
enters a state pointing out that the computation is done
(Problem Loaded or Problem Solved).



Waiting
Problem

Loading
Problem

Problem
Loaded

Planning
Problem
Solved

ErrorStopped

load problem

add
plan

request

remove plan request

get action

add plan request

get action

stop stop
stop

stopstop

blocking
non-blocking
automatic transition
when processing done

Fig. 1. State machine of the planning component. Not all requests are
represented for readability reasons.

The planning component is always responsive to requests,
except when loading a problem (it is prohibited to load two
problems at the same time or to manage requests about a
problem whose loading has not yet terminated). In other
cases, the component is able to process requests and solve
the planning problem in parallel. This requires to protect the
policy by mutual exclusion as explained in the following.

B. Requests management as transitions

Figure 2 illustrates the management of requests arriving in
the planning component. The latter contains an instance of a
planner in charge of all computations related to the planning
problem. The planner owns data structures required to con-
struct the plan, i.e. the instantiated planning problem and the
policy function. The load_problem request triggers the
generation in the planner of data structures called planning
problem, needed to construct plans. Once generated, the
get_actions and get_effects requests can ask the
planning problem for applicable actions or effects of an
action in a given state.

Requests to improve or expand the policy by considering
new initial (computation) states are queued in a list of
planning requests each time a add_plan_request
arrives and can be removed from the list with
remove_plan_request. As long as the queue is
not empty, the first element is popped out, and it triggers a
new plan construction process in the thread of the planner
when the previous plan construction has finished. This
process is divided in small successive computation chunks
corresponding to the solve_progress function, which
computes and copies to the planning component the planned
action for the state of the planning request being processed.
The get_action request asks for the planned action to
apply in a given state by reading in the copied policy. This
request is filtered by a default policy in order to always
provide an action to apply, even if the copied policy does

not contain such an action (because of errors or not enough
time to compute it).

Remember that problem solving and policy execution
(requests management) are processed in different threads,
what involves to take some thread-safety precautions. In
other terms, no readings or writings in a same data structure
should happen at the same time. First, the planning request
queue is protected by mutual exclusion to prevent from
adding or removing planning requests in parallel. Second, the
get_actions and get_effects requests safely read in
the planner’s planning problem because, as formalized in the
state machine of Fig. 1, these requests are only allowed after
the planning problem has been loaded (only time where the
problem is written). Last but not least, the get_action
request reads in a local copy of the planner’s policy, so
that there is no runtime conflict between the thread writing
in the planner’s policy and the one reading in the copied
policy, provided the latter is protected by mutual exclusion.
So, the last point means that the code of the planner does
not need to be thread-safe, what is crucial to integrate any
available planner without changing its code nor the one of
the planning component. It contributes to make our planning
component generic while safe, along with a simple but
expressive planner interface as presented in the next section.

C. Planners’ interface

The planning component is an object-oriented template
class that contains a variable planner. The interface of the lat-
ter must define some types and methods, like load problem,
solve, converged, get action, get effects, otherwise the com-
piler complains that the planner violates the template con-
tract. The embedded types of the planner correspond to the
concepts listed in section II-A.

The member functions are called by the planning com-
ponent to process the requests it receives. Some of them
are small computation chunks of time consuming processes
(problem loading and problem solving), executed in the same
thread, but different from the thread of the requests:
- <process>_begin: initializes computation;
- <process>_progress: executes one computation step;
- <process>_end: terminates and cleans computation.
This way, if necessary, both processes can be interrupted
before they have completed. It is particularly useful when
the planning component receives a request to remove the
planning request being processed, so that the latter can be
aborted before completion.

IV. EXPERIMENTAL RESULTS

A. Implementation on the Orocos platform

Orocos [9] is a C++ library for robotics focusing on real-
time support and component-based programming. It allows
to create distributable components and to guarantee real-
time and thread-safe communications. Each component has
a standardized interface, which describes its data ports and
the services it provides. A component can react to events,
process requests, and execute scripts in real-time.



PLANNER
P

π

sik−2
→ aik−2

sik−1
→ aik−1

sik → aik
sik+1

→ aik+1
sik+2

→ aik+2

π̃
sjk−2

→ ajk−2
sjk−1

→ ajk−1
sjk → ajk

sjk+1
→ ajk+1

sjk+2
→ ajk+2

solve progress

add plan request

compute a plan from ‘s’ during ‘t’ seconds
with algorithm ‘a’ and parameters ‘p’

get action: which action in ‘s’?

apply action ‘π̃(s)’ π
d
e
f
a
u
lt

remove plan request: give up request ‘(s, t, a, p)’

load problem: construct data structures for planning problem ‘P’
get actions: which applicable actions in ‘s’?

‘App(s)’ are applicable in ‘s’

get effects: which effects when applying ‘a’ in ‘s’?

possible next states are ‘T (s, a)’

Fig. 2. Inside the planning component: management of incoming requests and outgoing replies.

For the next test beds, we implemented two Orocos com-
ponents: our planning component that optimizes strategies2,
and a simple supervisor component that queries the planning
component for the optimal action in the current state and
executes it (in parallel of planning). Once the problem has
been loaded on the planning component, the supervisor
successively: (1) asks the planning component for the action
to perform in the current state; (2) starts executing this
action (each action is performed by a specific state machine);
(3) predicts the future possible mission states (using the
get_effects request of the planning component) and
requests for plans corresponding to these states; (4) when
the action execution is done, gets the current state and
goes back to point (1) until the mission ends. This way,
actions are executed while the strategy is optimized for the
next possibles states: we name this specific use case of our
planning component plan-while-execute.

B. Stochastic planning missions

In order to assess the efficiency of our plan-while-execute
paradigm (ON for short), we tested stochastic planning mis-
sions modelled as Markov Decision Processes (MDPs, [7],
[4]) whose complexity is known to be prohibitive for large
robotic problems. We tested many problem sizes (number
of states in the MDPs) and mission durations so that a goal
state must be reached as fast as possible before the end of the
mission. For each test, we generated 100 random problems,
solved them with different MDP algorithms, and simulated
100 times the execution of the policy of each problem and
each algorithm. We then averaged the results over random
problems, algorithms and simulated executions. We com-
pared our approach with the traditional plan-then-execute
paradigm (OFF for short), where the policy is computed until
convergence before execution or possible re-planning in case
of execution failure. The RTDP algorithm [2] was also tested,
since its anytime design fits well with our plan-while-execute
paradigm; we also want to compare our paradigm with out-
of-the-box anytime approaches like RTDP.

Results are shown in Fig. 3, commented in the following
paragraphs from left to right:
Total mission time. Whereas OFF is best for small missions
(100 to 10000 states), ON achieves missions in far less time
for large problems (100000 and 250000 states) and with a

2The source code of our generic Orocos-based planning component
along with some already plugged planners is publicly available at
http://robotis.onera.fr/orocos/planning/.

smaller proportion of planning time, what spares a lot of on-
board power energy. RTDP within our planning component
is better than OFF but worse than ON, what proves that our
online planning request management framework (even with
convergent algorithms!) allows for richer and more efficient
interleaved planning than simple anytime algorithms.
Average plan length. ON reaches the goal state with larger
steps than OFF, since strategy optimizations for the next
possible states are stopped (before convergence) as soon as
the current action finishes (via remove_plan_request),
so that stategies are not optimal. RTDP is the worst because
of its very slow convergence.
Success, time-outs and default actions. For all approaches,
the percentage of success decreases with the mission du-
ration, which is however chosen so that the mission is
achievable with the optimal plan length: for OFF, planning
time is too large; for ON, plan length is too large (since
not optimal). Yet, ON always achieves far more missions
than OFF, especially for very time-constrained missions.
Logically, the number of time-outs is larger with OFF.
Because of its slow convergence, RTDP uses more default
actions than ON.

To summarize, for large problems and time-constrained
missions, our generic planning request management frame-
work achieves more missions in less global time than tradi-
tional approaches, but with a slightly reduced optimality.

C. Emergency landing mission
We also tested and embedded our planning component

on-board a real autonomous helicopter for the emergency
landing mission described in section I-A. Two planners have
been implemented: a PathPlanner component, that computes
paths to reach specific points or to explore a zone; and a
MDP-based MissionPlanner component, that optimizes high-
level actions (such as ’land’, ’goto x’, ’map zone z’) to
achieve the mission. Both planners’ data structures are totally
different, but they share a single code for managing all
planning requests.

Traditional plan-then-execute approaches cannot achieve
the mission, since the strategy converges in many centuries,
long after the human is dead. The autonomous helicopter
embedding our planning component in a realistic outdoor
environment rescued a fake human in roughly 10 minutes.

V. RELATED WORK

While no generic planning library for robotics is available
today, other robotic architectures rely on the interleaving of



 0
 10
 20
 30
 40
 50
 60
 70
 80

off
on rtdp

off
on rtdp

off
on rtdp

off
on rtdp

off
on

T
o

ta
l 

m
is

si
o

n
 t

im
e 

(u
n
ti

l 
su

cc
es

s)

Planning problem size (mission duration: 10 mn)

Average proportion of planning time against
total mission time (among missions)

planning process
other processes

250000100000100001000100

 2
 3
 4
 5
 6
 7
 8
 9

 10

off
on rtdp

off
on rtdp

off
on rtdp

off
on rtdp

off
onP

la
n
 l

en
g
th

 (
u
n

ti
l 

su
cc

es
s)

Planning problem size (mission duration: 10 mn)

Average plan length until reaching
the mission goal (among missions)

250000100000100001000100

 0

 20

 40

 60

 80

 100

off
on rtdp

off
on rtdp

off
on rtdp

P
er

ce
n
ta

g
es

Mission duration (problem size: 100000)

Percentages of success, time-outs and
default actions (among missions)

success
time-outs

default actions

30 s1 mn10 mn

Fig. 3. Solving random stochastic planning missions: comparison between using our generic planning component, either with VI [7] and LAO* [3]
algorithms (“on”) or with the RTDP [2] algorithm (“rtdp”), and traditional plan-then-execute approaches with VI and LAO* algorithms (“off”).

planning and execution. The framework proposed in [10] is
based on a central Plan Manager that interacts with a planner
component by sending planning requests. The produced
plans are stored in a database where the Plan Manager can
look for appropriate actions. The Plan Manager ensures the
overall reactivity by providing an action whatever the plans
in the database. While genericity seems a major concern of
this approach, no generic behavior of the planner component
is described and no programming framework is provided.

The architectures proposed in [11], based on continuous
planning, or [12], [13], based on temporal planning, inter-
leave decision and execution by updating the plan from the
current state. However the planner can only compute a plan
on a unique situation and cannot deal with several alternative
requests corresponding to different possible future situations.
Hence a major change in the next state may need a complete
replanning, delaying action execution.

IDEA [14] and T-REX [15] are agent-based architectures
where each agent has its own behavior based on timelines,
and possibly includes a local planner. Each planner is then
specialized, responsible of a specific problem (global mission
objectives, navigation, guidance. . . ). Each agent is then in
charge of monitoring its own actions and replanning its local
timelines. Whereas such a fully decentralized approach is
possible in the framework we have proposed (the architecture
can embed multiple planning components), a single planning
component can handle multiple situations (in a unique prob-
lem) and compute the associated policy. On the opposite,
the IDEA/T-REX framework could allow such a behavior
by instantiating one planner agent per situation, increasing
the complexity of agents’ and timelines’ interactions.

All these approaches consider reactivity issues as part of
the executive component. However, such a component cannot
be fully reactive if it has no way to request for pro-active
plans, applicable in a large sample of possible situations. The
framework we have presented allows to help the supervisor
be more reactive by providing a reactive behavior of the plan-
ner, based on multiple requests, time-bounded computations,
and the availability of a default policy.

VI. CONCLUSION

In this paper, we presented a formalized concept of an
anytime execution-driven planning component for robotic

modular architectures, focused on three requirements: reac-
tivity, genericity and validation. Reactivity means that the
component is able to process planning requests on future
possible states in advance, while immediately replying to
any action requests on a given state. Genericity intends
that the planning component is designed for being used in
various missions connected to different components, and that
its behavior and code is parted from planning algorithms,
which are delegated to variable unknown planners. Validation
results from genericity in the sense that the planning com-
ponent can be validated once and for all, assuming satisfied
properties to validate for each planner plugged to the compo-
nent. We demonstrated our planning component’s reactivity
and genericity on many challenging robotic problems. We
intend to formally validate it in the future.

REFERENCES

[1] J. Hoffmann and B. Nebel, “The FF planning system: Fast plan
generation through heuristic search,” JAIR, vol. 14, 2001.

[2] A. Barto, S. J. Bradtke, and S. P. Singh, “Learning to act using real-
time dynamic programming,” AIJ, vol. 72, pp. 81–138, 1995.

[3] E. A. Hansen and S. Zilberstein, “LAO* : A heuristic search algorithm
that finds solutions with loops,” AIJ, vol. 129, no. 1-2, pp. 35–62, 2001.

[4] F. Teichteil, U. Kuter, and G. Infantes, “Incremental plan aggregation
for generating policies in MDPs,” in Proc. AAMAS, 2010.

[5] M. Ghallab, D. Nau, and P. Traverso, Automated Planning: Theory &
Practice. San Francisco, CA, USA: Morgan Kaufmann, 2004.

[6] L. Kaelbling, M. Littman, and A. Cassandra, “Planning and acting in
partially observable stochastic domains,” Art. Int., vol. 101, 1998.

[7] M. Puterman, Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, Inc. NY, USA, 1994.

[8] P. Bertoli, A. Cimatti, M. Roveri, and P. Traverso, “Strong planning
under partial observability,” Art. Int., vol. 170, no. 4-5, 2006.

[9] P. Soetens and H. Bruyninckx, “Realtime hybrid task-based control
for robots and machine tools,” in Proc. ICRA, 2005.

[10] K. Myers, “CPEF: continuous planning and execution framework,” AI
Magazine, vol. 20, no. 4, pp. 63–69, 1999.

[11] S. Chien, R. Knight, A. Stechert, R. Sherwood, and G. Rabideau,
“Using iterative repair to improve the responsiveness of planning and
scheduling,” in Proc. AIPS, 2000.

[12] S. Lemai and F. Ingrand, “Interleaving temporal planning and execu-
tion in robotics domains,” in Proc. AAAI, 2004.

[13] P. Doherty, J. Kvarnström, and F. Heintz, “A temporal logic-based
planning and execution monitoring framework for unmanned aircraft
systems,” JAAMAS, vol. 19, no. 3, pp. 332–377, 2009.

[14] A. Finzi, F. Ingrand, and N. Muscettola, “Model-based executive
control through reactive planning for autonomous rovers,” in IROS,
2004.

[15] C. McGann, F. Py, K. Rajan, H. Thomas, R. Henthorn, and
R. McEwen, “A deliberative architecture for AUV control,” in Proc.
ICRA, 2008.


