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Abstract

This work proposes a control algorithm to sta-
bilize a circular formation of vehicles tracking
a time-varying center. We also consider the
problem of uniform distribution of all the agents
along the circle from two approaches: all-to-
all and limited communication. We tackle with
this communication constraint using a coopera-
tive control strategy which includes the Lapla-
cian matrix of the communication graph (fixed
or distance-dependent). The system was im-
plemented in computer simulation, accessible
though Web1.

1 Introduction

This paper treats the problem of formation
translation in multi-agent control under limited
communication range. In particular, we propose
an extension of the control proposed in [1, 2] to
the case where the center of the cycle formation
is time-varying. This is studied under different
set-ups: all-to-all, fixed, and range-dependent
communication graphs.

This problem is pertinent to some applications
where the agents should perform collaborative
tasks requiring the formation to displace towards
an a priori unknown direction [3]. For instance,
in source seeking applications, the formation is
displaced in the source gradient direction (which
is computed on-line, and instrumented as an ad-

1Animated simulations are accessibles in the CON-
NECT project web at:
http://www.lag.ensieg.inpg.fr/connect/

ditional outer loop) [1]. Translations of the for-
mation can be seen here as a first step toward
more general formation transformations includ-
ing rotation and scaling.

Formation control has been extensively stud-
ied in [1, 2, 4, 5, 6, 7, 8, 9] among many others.
These studies concern circular and parallel for-
mations [1, 2, 7, 8], but also motions of forma-
tion induced by flocking [10, 11]. One strategy
to produce formation motions (i.e. flight forma-
tions) is the virtual-leader approach [4], where
an agent is designed as being the leader, and
then a suitable inter-distance (and orientation)
is set between agents. The motion of the for-
mation results from the motions of the leader.
Although it is possible to create circular forma-
tions via a particular pursuit graph as suggested
in the work [5], it seams less appropriate to ap-
ply these methods to the problem of a moving
circular formation if the formation is desired to
be keep ”rigid” while moving.

Moreover, in the context of the source seeking
problem of underwater vehicles advocated here,
it is necessary to keep the AUVs (autonomous
underwater vehicles) in an uniformly distributed
formation during the source search to avoid un-
necessary energy waist, and to produce efficient
search motions. To the knowledge of the authors,
the design of a control law to keep a rigid cir-
cular formation around a time-varying (almost
arbitrarily) center, has not bee addressed so far.

Another difficulty in the underwater fleet for-
mation problem is due to the transmission of
information in a marine media. Communica-
tion between agents is confronted with several



difficulties such as signal distorsion and inter-
ference, doppler effect, etc. Communication in
shallow water amplifies these limitations in par-
ticular. In this work, we assume that the com-
munication between each agent is ”good enough”
within a particular range specific to the applica-
tion. Therefore, the previously described mov-
ing circular formation control will be studied un-
der such a limited-range communication assump-
tions, where the communication graph depends
the agent location [10, 12, 13].

In the present work we first show that track-
ing a moving circle is not possible with constant
linear velocities. We thus relax this assump-
tion by using one additional control input, and
we show that after a suitable change of coordi-
nates, this problem can be solved by a new feed-
back law yielding global asymptotic stability. We
show that the stability conditions not only hold
for all-to-all communication but also for fixed
limited communication graph yielding uniformly
distributed formation. We also devise a control
law for the case of range-dependent graph, and
provide some simulation showing the asymptotic
convergence.

Notation. A complex number z is written
in boldface and is expressed as z = xz + iyz
where i2 = −1 and where xz = Re{z} and yz =
Im{z} correspond to the real and the imaginary
part of z. For compactness in the notation, we
use the following operator 〈z1, z2〉 = Re{zT1 z2}
where z

T
1 represents the conjugate transpose of

z1. Note that the real part (respectively the
imaginary part) of a complex number z can be
written as 〈z, 1〉 (and respectively 〈z, i〉). Thus,
for any complex numbers z1 and z2, the equal-
ity 〈z1, i〉〈z2, 1〉 − 〈z1, 1〉〈z2, i〉 = 〈z1, iz2〉 holds.
Also, the notation |z| = 〈z, z〉1/2 and ∠z denotes
the magnitude and the argument of the complex
number z. The derivative of this operator can
be expressed as d

dt〈z1, z2〉 = 〈ż1, z2〉〈z1, ż2〉.

2 Problem formulation and

Previous works

2.1 Problem formulation

Consider a set of N agents (vehicles), in which
each agent k = 1, ..., N has the following con-
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Figure 1: Illustration of the problem formula-
tion.

strained dynamics:

ṙk =vke
iθk (1a)

θ̇k =uk (1b)

where rk is the position vector, θk the head-
ing angle and vk, uk are the control inputs, as
illustrated in Figure 1. This is the standard
agent model commonly used the literature to
model AUVs (autonomous underwater vehicles)
restricted kinematics, among many others vehi-
cles as Dubin’s cars or UAVs (unmanned air ve-
hicles), see [1, 2, 3, 5, 7, 8, 14, 15] and [16]. It
corresponds to a kinematic unicycle fitting with
model properties subject to a simple nonholo-
nomic constraint, adequate for the underwater
vehicles.

The problem is to design a control law such
that the group of AUVs forms a circle that
tracks the time-varying center motion cd(t) as
described in Figure 1. cd(t) is considered here as
an external reference. The circle radius R and
the rotation velocity ω0 are given parameters.
Moreover, an additional objective is to achieve a
uniform distribution of all the agents along the
circle (i.e. the difference between headings of
adjacent vehicles is 2π/N), under two different
cases:

1. Fixed communication graph

2. Limited range time-varying communication
graph
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2.2 Previous works

Some previous works on the field of coordinated
control and specifically on planar collective mo-
tions, use the kinematic model in which each ve-
hicle moves in the plane subject to planar steer-
ing control, which is our model (1) with con-
stant velocity vk = v0 = 1. In [1], the authors
suggest a control law for stabilization to a cir-
cular formation center at a particular and con-
stant c

0
d. It corresponds to the center of mass

and is obtained by solving a consensus algo-
rithm. The control law uses the relative posi-
tion vector from the center to vehicle k defined
as r̃k = rk − c

0
d = 1

N

∑N
j=1(rk − rj). For such

a formation, the authors propose the following
theorem:

Theorem 1 (Leonard et al. [1]) Consider the
vehicle model (1) with vk = v0 = 1,∀k. Then
the control law:

uk = ω0(1 + κ〈r̃k, ṙk〉) (2)

where κ > 0 is a scalar gain, ensures that all the
agents converge to a circular formation centered
at c

0
d and of radius ρ0 = v0/|ω0|

Proof 1 The proof is based the Lyapunov func-
tion:

S(r, θ) =
1

2

N
∑

k=1

|v0e
iθk − iω0r̃k|

2

The details can be found in [7].

Remark 1 Note that when S(r, θ) = 0, the
dynamics of the agents satisfy the differential
equation ṙk − iω0r̃k = 0. As the center c

0
d is

fixed, ṙk = ˙̃rk, the previous equation means that
˙̃rk − iω0r̃k = 0. It corresponds to a circular mo-
tion around c

0
d with an angular velocity ω0.

2.3 Fundamental limitations

This previous result is only applicable to the case
of a fixed formation center, cd. In this situa-
tion, it is sufficient to design a control law such
that the velocity of all the agents is constant (i.e.
vk = 1,∀k). However, when it comes to the case
of a time-varying center cd(t), the mechanical
equation for the combined motion of a rotation

rk

ṙk

˙̃
rk

ck

ċk

r̃k

x

y θk

ψk

Figure 2: Model of the vehicles

and a translation of the rigid body leads to a
contradiction with the choice of constant veloc-
ity of the agents (see for instance the example of
the wheel motion).

Hence a new strategy which tackles the objec-
tives needs to be developed. The velocity vk be-
comes a new and necessary control input to over-
come this mechanical constraint. Then, in the
sequel, the variables (vk, uk) and (rk, θk), respec-
tively, are the inputs and the state of the agents.
In the latter, the notations r and θ denote the
vectors containing the position and headings of
all the agents.

3 Translation Control for a

Moving Circle

3.1 Translation Control Design

Inspired the Theorem 1, to keep the circular for-
mation, all the agents must satisfy the equation
˙̃rk − iω0r̃k = 0, where r̃k = rk − cd. We assume
that the first and second time-derivative of cd are
known and bounded. However since the center is
moving, the velocities rk and r̃k are not the same
anymore. The previous Lyapunov function will
thus not be useful for reaching the time-varying
formation.

For the sake of simplicity, we introduce the
change of variables, shown in Figure 2, to express
the relative velocity in a moving frame centered
in cd. This allows designing a control law along
the ideas of Theorem 1. The new variable ψk
and the constant v0 > 0 are defined such that:

˙̃rk = ṙk − ċd = v0e
iψk , (3)
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and ψ is given as:

ψk = arctan
〈ṙk − ċd, i〉

〈ṙk − ċd, 1〉
+ ǫπ

where ǫ = 0 if 〈ṙk − ċd, 1〉 > 0 and 1 otherwise.
The control input ψ̇k allows stabilizing the rel-
ative position to the circular motion. This new
system of coordinates allows us to consider a cir-
cular formation centered at 0. We are now in the
situation of a fixed center which corresponds to
the previous problem solved in Theorem 1. A
new control law is proposed in the following the-
orem that is the main paper contribution:

Theorem 2 Consider a twice differentiable
function cd : R → C, with bounded first and
second time-derivatives and the radius of desired
formation R > 0. Let the control parameters be
such that |ω0| = v0/R, κ > 0 and the following
condition is satisfied:

v0 > sup
t≥0

{|ċd(t)|} (4)

Then the control law:

vk =|v0e
iψk + ċd| (5a)

uk =

(

1 −
〈ṙk, ċd〉

〈ṙk, ṙk〉

)

ψ̇k −
〈ṙk, ic̈d〉

〈ṙk, ṙk〉
(5b)

ψ̇k =ω0(1 + κ〈rk − cd, v0e
iψk〉) (5c)

with the initial conditions ψk(0) as:

ψk(0) = arctan
〈ṙk(0) − ċd(0), i〉

〈ṙk(0) − ċd(0), 1〉
+ ǫkπ (6)

where ǫk = 0 if 〈ṙk(0) − ċd(0), 1〉 > 0 and 1
otherwise, makes all the agents defined by (1)
converge to a circular motion of radius R, and
of center the time-varying reference cd. The di-
rection of rotation is determined by the sign of
ω0.

Proof 2 The convergence to the formation is
analyzed with the Lyapunov function:

S(r̃, ψ) =
1

2

N
∑

k=1

| ˙̃rk − iω0r̃k|
2

Evaluating the derivative of S(r̃, ψ) along the
solutions of the resulting closed-loop system (3)

Figure 3: Simulation of an agent with the control
law (2). The trajectories of cd and of the agent
are respectively the continuous and the dashed
lines.

with (2) leads to:

Ṡ(r̃, ψ) =

N
∑

k=1

〈 ˙̃rk − iω0r̃k, i ˙̃rkψ̇k − iω0
˙̃rk〉

=

N
∑

k=1

〈ω0r̃k, v0e
iψk〉(ω0 − ψ̇k)

= −κ
N

∑

k=1

〈ω0r̃k, v0e
iψk〉2 ≤ 0

Note that when S(r̃, ψ) = 0 the dynamics of
agents satisfy:

ṙk = ċd + iω0r̃k

which is the kinematic relation for the combined
motion of a translation and a rotation of the
rigid body. Therefore S(r̃, ψ) is an suitable Lya-
punov candidate for this system and the agents
asymptotically reach the circular formation cen-
tered at cd and of radius R = v0/|ω0|.

The next step of the proof concerns the design
of the control inputs of the original system. Con-
sidering (1a), it is easy to see that vk and θk are
given by:

vk = |ṙk| and tan θk =
〈ṙk, i〉

〈ṙk, 1〉

The control input vk is thus straightforwardly
given by (5a). A more particular attention is
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addressed to the input uk. To fit with the model
(1), we derive the expression tan(θk)

θ̇k =
1

1 + 〈ṙk,i〉2

〈ṙk,1〉2

d

dt

(

〈ṙk, i〉

〈ṙk, 1〉

)

Using the properties of the operator 〈·, ·〉, de-
scribed in the notation, the following relation is
obtained:

θ̇k =
〈r̈k, iṙk〉

〈ṙk, ṙk〉

To express this equation in terms of the previ-
ous control variable ψ̇k (change of coordinates),
note that:

r̈k = ¨̃rk + c̈d = i ˙̃rψ̇k + c̈d = i(ṙk − ċd)ψ̇k + c̈d

the control law (5b) is obtained. We have de-
signed a control law for the agents to follow a
time-varying circular formation. Note that this
control law has singular points when vk = |ṙk|
is zero. To understand this singularity, consider
the example of the cycloid whose first derivative
is not defined at some instants. This constraint
fits with the choice of underwater vehicles. This
singular point occurs if there exists a time tc such
that:

∠ċd(tc) = ψk(tc) + π and |ċd(tc)| = v0

However condition (4) of Theorem 2 ensures
that this situation is avoided since |ċd(tc)| 6=
v0 ∀tc > 0.

Remark 2 Consider the vehicle model (1) with
the fixed center, the the angles ψk and θk are
equal, and the control law (2) is the same control
as in Theorem 1:

vk =v0

uk =ψ̇k = ω0(1 + κ〈r̃k, v0e
iψk〉)

4 Cooperative Control Design

under Communication

Constrains

This section is dedicated to the problem of ho-
mogenizing the distribution of the agents along

the circle. The desired control law is decentral-
ized, i.e. the use of a global controller who or-
ganizes the distribution of the agents around the
circle is not permitted. As a first step of re-
search, this section tackle the problem of limited
communication range. Considering limited com-
munication means that each agent may receive
information from only some of the other agents
[12]. It is known that designing collaborative
controllers leads to more difficulties than in the
case of all-to-all communications.

4.1 Preliminaries on Graph Theory

This paragraph presents some basic tools of
graph theory. When an agent k communicates
with an agent j both agents are called neigh-
bors. The set of neighbors of agent k is denoted
by Nk. The communication topology for the
groups of agents can be represented by means of
a graph G(V,E) where V = {1, 2, ..., N} is the
set of vertices (agents) and E = {(k, j) : j ∈ Nk}
the set of edges (communication links) such that
(k, j) ∈ E if agent k communicates with agent
j. The adjacency matrix A = [akj ] is the N ×N
matrix given by akj = 1 if (k, j) ∈ E and akj = 0
otherwise. The degree dk of vertex k is defined
as the number of its neighboring vertices. Let
∆ be the N × N diagonal matrix of dk’s. The
Laplacian of G is the matrix L = ∆ − A. For
an undirected graph, (j is a neighbor of k if and
only if k is a neighbor of j), the Laplacian matrix
is symmetric positive semidefinite [7].

4.2 Fixed communication graph

This paragraph is an application of the result of
[1] to the case of a time-varying formation cen-
ter. A potential function is added to the for-
mation control law to achieve the uniform dis-
tribution. In the case of a fixed communication
structure, G is assumed undirected because the
case of bidirectional communication between two
AUVs is considered. Then a constant Laplacian
matrix L describes the communication links be-
tween agents. In this way, the previous circular
law is combined with a potential function as:

Theorem 3 Consider a twice differentiable
function cd : R → C, with bounded first and
second time-derivatives and the radius of desired

5



formation R > 0. Let the control parameters be
such that |ω0| = v0/R and κ > 0 and the follow-
ing condition is satisfied:

v0 > sup
t≥0

{|ċd(t)|}

Let G be circulant, see [2], and L be the corre-
sponding Laplacian matrix. Then the control law
(2) now with:

{

ψ̇k = ω0(1 + κ〈rk − cd, v0e
iψk〉) − ∂U

∂ψk

U(ψ) = −K
N

∑[N/2]
m=1

1
2m2 〈e

imψ,Leimψ〉
(8)

and initial conditions ψk(0) as:

ψk(0) = arctan
〈ṙk(0) − ċd(0), i〉

〈ṙk(0) − ċd(0), 1〉
+ ǫπ (9)

where ǫ = 0 if 〈ṙk(0) − ċd(0), 1〉 > 0 and 1
otherwise, makes all the agents defined by (1)
converge to a circular motion of radius R =
v0/|ω0| and of center the time-varying reference
cd. Moreover the curve-phase arrangement is a
critical point of U(ψ). For K > 0, the set of
curve-phase arrangements that are synchronized
modulo 2π/N is locally exponentially stable.

Proof 3 The proof uses the La Salle Invariance
principle2 applied to the function

〈eimψ ,Leimψ〉/2m2

which is zero for ψ synchronized modulo 2π/m
and positive otherwise. In this way, is combined
the previous circular law with a gradient control
term which leads to (8). The stability is analyzed
by the following composed Lyapunov function:

V (r̃, ψ) = κS(r̃, ψ) + U(ψ)

The details of the proof can be found in [1].

Remark 3 Theorem 3 does not exclude conver-
gence to formations which corresponds to other
critical points of U(ψ) [15].

Remark 4 If the graph G is complete, then the
set of curve-phase arrangements that are bal-
anced modulo 2π/N is a global maximum of U(ψ)

2Due to change of coordinates (3) the dynamic closed-
loop equation is time-invariant, hence LaSalle principle
can be applied.

in the reduced space of relative curve-phases; this
is asymptotically stable for K > 0 [15]. More-
over if K < 0 the control law of Theorem 3 forces
convergence to the synchronized circular forma-
tion [7].

4.3 Range-dependent communication

graph

In the previous subsection, a control law en-
sures that the agents reach a circular forma-
tion centered at the time varying position cd.
It also distributes the agents in a particular way.
However as shown in [15], there is no guarantee
that the formation is uniform along the circle in
the case of fixed communication graphs. More-
over, in practice, considering fixed communica-
tion graphs is not realistic since the two linked
agents could be very far away from one another.
As in the case of underwater communication, the
quality of the links is strongly affected by the
distance between two agents [4, 17, 18, 19], it
might be more interesting to consider distance-
dependent communication graph.

Hence, a communication area is introduced.
Assume this area is the same for all agents and
is defined by a parameter. This parameter cor-
responds to ρ which is the critical communica-
tion distance given by the characteristics of the
communication devices and of the environment
of the AUVs. The condition to get a communi-
cation between k and j is expressed as:

k ∈ Nj and j ∈ Nk ⇐⇒
|rk − rj |

2
≤ ρ

Based on the definitions presented in section
4.1, a time-varying Laplacian matrix L(t) is de-
fined as:

Lk,j =







dk, if k = j
−1, if |rk − rj | ≤ 2ρ
0 otherwise

(10)

where dk is the degree of vertex k. In such a
situation, the following theorem holds.

Theorem 4 Consider a twice differentiable
function cd : R → C, with bounded first and
second time-derivatives and the radius of desired
formation R > 0. Let the control parameters be

6



such that|ω0| = v0/R and κ > 0 and the follow-
ing condition is satisfied:

v0 > sup
t≥0

{|ċd(t)|}

The following assumption is also considered:

v0/|ω0| < ρ (11)

Then the control law (2) with (8) and (9) en-
sures that all agents reach the circular formation
centered at cd(t) of radius R. Moreover the uni-
form distribution of the agents along the circle is
achieved.

Proof 4 Consider that all the agents asymptot-
ically reach the circle centered at cd and of ra-
dius v0/|ω0| and a positive scalar ǫ > 0 such that
v0/|ω0| + ǫ < ρ. Thanks to theorem 2, there
exits a time tL such that the distance between
all agents is less than v0/|ω0| + ǫ and conse-
quently less than ρ. The communication graph is
thus complete. By vertue of the potential func-
tion U(ψ), the formation is uniformly distributed
along the circle.

Remark 5 Note that condition (11) is restric-
tive since the uniform distribution can also ob-
tained for smaller radius v0/|ω0|. However this
Theorem constitutes a first result on the case
of uniform circular formation around a time-
varying center with range dependent communi-
cation graph. Besides these limitations described
above, Theorem 4 allows obtaining a unform dis-
tribution whatever the critical distance ρ by man-
aging with the ratio of the relative velocity of each
agent v0 and angular velocity of the formation
ω0.

Remark 6 From the geometric constraints, the
minimal distance between two agents k and j ly-
ing in the circle is given by d = 2R sin

ψk−ψj

2 .
In the case of uniform distribution, the minimal
value of ψk −ψj is given by 2π/N and so a nec-
essary condition for the agents to communicate
in such situation is ρ > R sin π

N . If not, the for-
mation is not uniform all over the circle but only
on a section of the circle as it will be shown in
the simulations.

 

 

Figure 4: Simulation of six agents with the con-
troller of Theorem 3 in the case of two fixed com-
munication graph : (a) all-to-all (b) ring com-
munication. Each figure shows two snapshots.
The blue one represents the initial position of
the agents and the red one shows the obtained
formation.

5 Simulation results

This section presents the simulation of the AUVs
whose dynamics are defined in (1). The time-
varying center of the formation describes a cir-
cle around the origin. The vector cd is taken
as c

0
de
ω1t where c

0
d = 3 and ω1 = 27.7e−3 and

|ċd| = 83.3e−3 satisfying the assumption of The-
orems 2, 3 and 4. In the simulation, the con-
troller parameters are κ = 1, v0 = 1 and ω0 = 1.
The control parameter to achieve the uniform
distribution is K = 0.1.

Figure 3 shows the trajectory of only one agent
governed by the control law defined in Theorem
2. The tracking of the moving circle is achieved
for all random initial conditions (position and
heading of agents).

Figure 4 shows the trajectories of all agents
tracking the time-varying formation centered at
cd in the cases of a complete communication
graph (a) and of a ring communication graph
(b). One can see that in (a) the formation

7



 

(a) ρ = 0.55 < v0

|ω0|
sin (π/N)

 

(b) ρ = 0.65 > v0

|ω0|
sin (π/N)

 

(c) ρ = 1.1 > v0/|ω0|

Figure 5: Simulations of five agents with the controller designed in Theorem 4 and range-dependent
communication. Each figure shows three snapshots. The blue one represents the initial condition
and the reds one represent a intermediate state and the stable final state.

is uniformly distributed along the circle of ra-
dius R = v0/|ω0|. This is not the case in (b).
The agents converge to a formation which corre-
sponds to a local minimum of the potential func-
tion but not to the global one.

Figure 5 shows the trajectories of agents un-
der range-dependent communication. The three
simulations start from the same random initial
conditions of positions and headings of all the
agents. They are represented in blue (cd(0)). Af-
ter 30s all simulations show that all the agents
converge to the circular formation. At this time,
in (a), the geometric constraint R sin (π/N) < ρ
is not satisfied then the agents do not achieve the
uniform distribution all over the circle. For the
second one, the previous geometric constraint
is satisfied then the agents achieve the uniform
distribution along the circle. In the last one,
there exists all-to-all communication since condi-
tion (11) is satisfied. Thanks to the time-varying
communication graph is complete, from a certain
instant, the uniform distribution is also achieved
(cd(125s)).

6 Conclusions

This article proposes a translation control law
that stabilizes a circular formation tracking a
time-varying center. The center of the circle
is a given reference which is known for all the
agents. A cooperative control algorithm is also
considered to achieve the uniform distribution

of the agents along the moving circular forma-
tion. This algorithm integrates with the trans-
lation control a potential function which reaches
its minimum in the desired uniform configura-
tion. This potential function is designed to take
into account the communication constraints be-
tween agents. The result of this combination is
a cooperative control of a planar particle model
under limited communication to track a time-
varying reference.

At this time, it is assumed that all agents have
perfect knowledge of the position of the center cd

and its first and second derivatives. One can con-
sider this assumption as a very restrictive one.
However this constitues a first step of our re-
search. Further developments would consider a
cooperative algorithm which will avoid this as-
sumption. To include collaborative algorithms
in the control design would be a step towards
source tracking.
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