
A Component-Based
Navigation-Guidance-Control Architecture for

Mobile Robots

Nicolas Gobillot Charles Lesire David Doose

Onera - The French Aerospace Lab, Toulouse, France

firstname.lastname at onera.fr

Abstract

In this paper we will analyze a well known architecture in aerial
robotics and generalize it to other mobile robots. We will then pro-
pose a normalized validation procedure for this generalized architec-
ture pointing out some good practices when developing components.

1 Introduction

Robots are more and more autonomous, as they are involved in more
and more complex environments, achieving more and more complex tasks.
Anyway, however their autonomy skills are (from ”simple” route following
capabilities, to embedding complex AI planning algorithms), their auton-
omy always rely on a navigation architecture. This navigation architecture
provides both localization information and locomotion capabilities.

In avionics, and therefore for aerial robots, this navigation architecture
is used to be decomposed into navigation, guidance and control [1, 2]. For
mobile (ground or marine) robots, this decomposition is not so common, but
we can identify similar components on almost all existing architectures [3, 4].

In this paper, we propose to formalize robotics engineering traditions into
a general pattern to design navigation, guidance, control (NGC) software ar-
chitectures for mobile robots. This design pattern, along with some comple-
mentary best practices, is made to emphasize robustness and real-timeness
of the architecture.

The NGC design pattern is a component-based generic software architec-
ture. It then fits in Component-Based Software Engineering (CBSE), which
is an essential design paradigm for robotic software development [5].

1



2 The NGC architecture

The main NGC pattern is based on three components:

• Navigation: this component uses the robot resources in order to locate
itself in the world and to compute a coarse path to achieve the mission’s
objective.

• Guidance: the role of this component is to compute trajectories to
reach the next waypoint provided by the navigation component; it in-
cludes reactive obstacle avoidance and local path planning.

• Control: its goal is to generate the commands applied to the robot’s
actuators in order to follow the guidance trajectories.

These three components are composed together to instantiate the NGC
architecture (Fig. 1).

Figure 1: The NGC design pattern architecture

The navigation component has two inputs : the mission objective and
some information on the robot localization. The former is represented as a
waypoint to reach. The latter gives information about the robot localization
in its environment. For instance, it may be a map from a SLAM algorithm
along with an estimation of the robot position. The navigation component
then outputs a local waypoint that represents a goal point to reach by the
guidance component. The guidance component also takes into account local
telemetry information in order to provide reactive obstacle avoidance while
computing smooth trajectories. It then outputs the speed to apply to each
DOF of the robot. Finally, the control component translates these speed
commands into commands for the robot’s actuators.

3 Component models

3.1 Mauve component models

In order to validate the component’s general behaviour, we use the Mauve
modelling framework [6] which brings a powerful scheduling analysis and an
interface/codel separation within the analysis.

2



We split the component concept in two distinct parts : the interface with
other components and the codels.

The former provides several means of interaction :

• properties: components can be configured by changing parameters in
their properties;

• services: a component can let its peers to directly use one of its meth-
ods;

• ports: when a component needs to exchange data, it will use one of
its input or output ports

The latter gives the component the methods and functions it needs.

The Mauve framework hardly relies on a formal definition of the modelled
components. This definition is implemented using a domain specific language
which is partially shown in the following components (listings 1, 2 and 3).

The Mauve model is made of several parts to fully describe a component:

• the codel declaration: it is done using the fun keyword followed by the
codel name ant its typed parameters. The codel return type is also
required;

• the component definition: this part is signaled by the word component

followed by the component’s name and contain several optional fields:
such as ports or attributes. The former represents the component’s
ability to communicate with others. Every port has a specified type
and is oriented as an input or an output. The attributes keyword
will be used to declare internal variables to the component. On the
other hand, the component model has a mandatory field which can be
update or statemachine. The update keyword indicates where the
component will loop at every cycle whereas the statemachine word
will tell Mauve that the default state machine of the component will
be redefined.

3.2 Codels

The word codel stands for Elementary Code. This code provides the func-
tionalities and the algorithms to the host component. These codels are meant
to be target-independent and should be written in any analyzable language.
It also allows its functionalities to be shareable and easily maintainable. In

3



the general case it is a good practice to write reentrant and thread-safe code
without any unbounded loop.

3.3 NGC components

We will now put more details on what is really in the Navigation, Guid-
ance and Control Mauve models. First, the navigation component is made
of the default state machine (listing 1).

Listing 1: Mauve model of the Navigation component

1 fun update_plan(position: Pose , mission: Pose): Plan

2 fun compute_next_waypoint(position: Pose , plan: Plan)): Pose

3

4 component Navigation {

5 ports {

6 input currentPosePort: Pose

7 input missionPort: Pose

8 output nextPort: Pose

9 }

10 attributes {

11 mission: Pose

12 plan: PoseList

13 position: Pose

14 nextPos: Pose

15 }

16 update {

17 i f (missionPort.hasNewData) then {

18 mission = read missionPort;

19 plan = update_plan(position , mission);

20 }

21 i f (currentPosePort.hasNewData) then {

22 position = read currentPosePort;

23 nextPos = compute_next_waypoint(position , plan);

24 write nextPos in nextPos_port

25 }

26 }

27 }

The Navigation component reacts to the currentPosePort and missionPort

input ports which respectively gets the local position of the robot and a mis-
sion objective (in this example, the mission is a position on a map). If a new
mission has been given, it will call the update plan codel to build a new
plan. On the other hand, when the localization of the robot has changed,
it will check if the output waypoint has been reached and if it needs to be
changed using the compute next waypoint codel. Lastly it will output a
waypoint by the nextPort output port.

The second component in the architecture, the Guidance component, has
a user-defined statemachine (listing 2) to bring the necessary behaviour.

Listing 2: Mauve model of the Guidance component

4



1 fun stop_robot (): Speed

2 fun nextPoint(currentPose: Pose , targetPose: Pose , localMap: Scan): Pose

3 fun guidance(nextPose: Pose , currentPose: Pose): Speed

4

5 component Guidance {

6 ports {

7 input targetPosePort: Pose

8 input localMapPort: Scan

9 output speedPort: Speed

10 }

11 attributes {

12 speedPtr: Speed

13 currentPose: Pose

14 targetPose: Pose

15 localMap: Scan

16 nextPose: Pose

17 }

18 statemachine {

19 i n i t i a l state Arrived {

20 run {

21 i f (isArrived(currentPose , targetPose)) then {

22 speedPtr = stop_robot ()

23 }

24 }

25 handle {

26 write speedPtr in speedPort

27 }

28 transition toMoving -> Moving

29 }

30 state Moving {

31 run {

32 i f (targetPosePort.hasNewData) then {

33 targetPose = read targetPosePort

34 }

35 i f (localMapPort.hasNewData) then {

36 localMap = read localMapPort;

37 nextPose = nextPoint(currentPose , targetPose , localMap);

38 speedPtr = guidance(nextPose , currentPose);

39 }

40 }

41 }

42 handle {

43 write speedPtr in speedPort

44 }

45 transition toArrived [isArrived(currentPose , targetPose)] ->

Arrived

46 }

47 }

48 }

Every state of the state machines have five parts:

• entry: this part is executed when the state machine arrives in a new
state;

• run: this part is executed after the entry part has finished its execu-
tion;

5



• transition: after the execution of the run part, if a transition is
validated, this step will call the exit part and the next state entry is
executed;

• handle: this step will be executed after run if no transition has oc-
curred;

• exit: this part is executed after a transition.

The Guidance custom statemachine has two states:

• the Arrived state which is a state when the robot is just stopped by
the stop robot codel. The initial keyword indicates that when the
component will be started for the first time, the state machine will
begin in this state;

• the Moving state: it will check if a new local map has arrived on the
localMapPort input port and call the nextPoint codel in order to
compute a local path avoiding potential obstacles. It will also check if
a new waypoint has been given by the Navigation component.

In both cases, the Guidance outputs the target’s DOF speeds to the next
component.

And the last component of the base architecture is the Control (listing 3).
Like the Navigation model it uses the default statemachine.

Listing 3: Mauve model of the Control component

1 fun TTRKcontrol(speedVector: Speed , actuatorCommand: Actuator): int

2

3 component Control {

4 ports {

5 input speedPort: Speed

6 output actuatorCommandPort: Actuator

7 }

8 attributes {

9 speedVector: Speed

10 actuatorCommand: Actuator

11 }

12 update {

13 i f (speedPort.hasNewData) then {

14 speedVector = read speedPort;

15 TTRKcontrol(speedVector , actuatorCommand);

16 write actuatorCommand in actuatorCommandPort

17 }

18 }

19 }

6



This component reacts to its speedPort input port to compute the orders
given to the target actuators using the TTRKcontrol function.

This design pattern has several good points:

• it is made of numerous small components that are easy to maintain
upon time;

• is it generic, and can then adapt to several robot platforms (aerial
robots, ground vehicles, boats or submarines) by only adapting data
types and codels (i.e. algorithms) to the targeted platform;

• each component is meant to have a real-time behaviour and keep a
relative reactiveness depending on their hierarchical level.

To build a coherent and robust NGC architecture, we are proposing some
complementary best practices:

• as soon as it is possible, create unified and normalized small data struc-
tures;

• use a limited number of functions on each component, as it improves
modularity and maintainability of the architecture;

• regarding execution, create independent thread for each component,
and use periodic activities instead of causal links: it provides more ro-
bustness to the architecture as a component can continue to work even
if another component has failed; it is then easier to include recovery or
safety strategies in the architecture.

3.4 Examples

The whole NGC architecture has been implemented on two targets: the
first one is a TTRK robot with an ARM powered Gumstix Water1 running
a real-time Linux kernel. The second is a simulated Pioneer-3DX on a x86
computer running the MORSE simulator [7]. The only things that changed
between the two implementations were the Control’s Codel and the adapters
to and from target-specific data types. In both cases, all the components
were deployed using the Orocos middleware [8] and logged by the LTTng
trace toolkit2.

1https://www.gumstix.com/store/product_info.php?products_id=228
2https://lttng.org

7



The software architecture is based on the main NGC pattern which was
completed by adapters to convert some of the non-generic data types, a
joystick and a switch to keep manual control on the system if desired. A
planner is also plugged onto the Navigation component to provide potential
parallel planning with different algorithms (Fig. 2).

AdapterLocalPos

dataPose_local

data
Pose_localdata

state
GPS_LEA_xT

state

AdapterToCICAS data
CICAS_UGV_TC

data
Actuator

Control
Actuator

data
SpeedStruct_cont

Switch
SpeedStruct_cont

Guidance
dataSpeedStruct_guid

data

Pose_next

Navigation

Pose_next

data

Pose_ask

Pose_local

data generic_scan

adapterScan generic_scan

Joystick

data

SpeedStruct_tele
data

OnOff

Pose_local

data

Pose_plan

Planner

Pose_plan
data

Pose_obj

NewObj

Pose_obj

Pose_ask

SpeedStruct_guid

SpeedStruct_tele

OnOff

Telemeter data
hokuyo_scan hokuyo_scan

cicasUGV
CICAS_UGV_TC

Deployer

Figure 2: Architecture embedded on the TTRK and Pioneer robots

4 Real-Time analysis

The previously described component models are meant to be run on Real-
Time operating systems, even if it will still work fine on non Real-Time
systems.

In order to ensure a good and safe behaviour of the component-based
robotic system, we need to validate the real-time constraints of the embedded
components. Therefore we have defined an analysis protocol for that purpose.

4.1 Methodology

The very first step of the analysis is the formal validation of the com-
ponent models by verifying for example the non-locking aspect of the task.
Once the model has been checked, an instance of the component can be gen-
erated using the code generation feature of the Mauve framework in order to
ensure the validity of the running code.

All the Codels must be developed keeping in mind that WCETs have
to be computed. In this paper we will be using the C language in order
to use tools such as Frama-C3 and OTAWA [9] for respectively validate the
properties of the algorithms and compute their Worst-Case Execution Time
(WCET).

The last step in this procedure is to deploy the whole set of components
on the target in order to log its execution and compare the theoretical results
with the real ones.

3http://frama-c.com

8



4.2 Tracing example

The LTTng tracing toolchain gives us the real execution times of each
component. We will for example focus on the Control component (Fig. 3).
This plot represents the probability to get execution times for the Control
component running on the TTRK’s Gumstix. It shows three main peaks
which can be set in two groups:

• the first one on the left represents the state when the component does
not receive any new data; it therefore has nothing new to compute and
returns rapidly;

• the second group is made of the middle and right peaks on the plot
and corresponds to the case when the codel is called; these two peaks
are two branching possibilities within the codel.

This kind of information is interesting because it will tell us if the worst case
execution time will be reached frequently or not and potentially optimize
parts of the component or codels.

Figure 3: Distribution of the execution time of the Control component

The deployment procedure is set on three parts:

• the first part is the importation of the component models previously
described using the import command;

9



• the second step is the instantiation of the needed components by using
the keyword instance followed by an instance name and the name of
the component. When instantiating the components, we also setup the
connections between the input and output ports;

• the last step contains the properties of the components and is signalled
by the deployment command. Within this part we specify the codels
best and worst case execution times and the instantiated components
activities. The component activities are set using the activity key-
word and contains the components priority, its period and its deadline.

An extract of the deployment pattern is shown on the listing 4.

Listing 4: Deployment of the NGC components in Morse

1 import "Navigation.xma"

2 import "Guidance.xma"

3 import "Control.xma"

4

5 // Architecture

6 instance Navigation: Navigation {}

7 instance Guidance: Guidance {

8 port targetPosePort data Navigation.nextPort

9 }

10 instance Control: Control {

11 port speedPort data Guidance.speedPort

12 }

13 ...

14

15 // Deployment

16 deployment {

17 // Navigation

18 Navigation_codel = 261..488

19 activity Navigation {

20 priority = 7

21 period = 50000

22 deadline = 50000

23 }

24 // Guidance

25 Guidance_codel = 129..1148

26 activity Guidance {

27 priority = 4

28 period = 10000

29 deadline = 10000

30 }

31 // Control

32 Control_codel = 109..1818

33 activity Control {

34 priority = 2

35 period = 5000

36 deadline = 5000

37 }

38 ...

39 }

The deployment in Mauve needs times expressed in integers, in the above
example the times are written in microseconds. We have to provide the best

10



and worst case execution times for every codel of every component deployed.
The periods and deadlines of the components are required as well as their
priority: the lower the value, the higher the priority.

We can then simulate the deployment in order to compute timelines of the
scheduled tasks (Fig. 4). On the diagram, the tasks are ordered in decreasing
priority and we can clearly see that there is not much time left for the high
level tasks such as the Planner. In this particular example, the planner has
nothing to compute and therefore the task set is schedulable.

AdapterToCICAS
t

Control t

Switch t

Guidance t

Joystick
t

AdapterLocalPos
t

Navigation
t

P lanner t

Figure 4: Task scheduled by a Rate-Monotonic algorithm

5 Conclusion

In this paper, we have presented the Navigation-Guidance-Control design
pattern.

It formalizes a well known architecture in aerial robotics to mobile robots
in general.

This design pattern brings to light best practices for embedded software
engineering in robotics.

In the future work, we plan to implement this architecture on different
robots, not only the tracked TTRK or the Pioneer-3DX but also on an aerial
robot such as a quadrotor. It will allow us to check the multi-target feature
the NGC design pattern brings.

Another work in progress is the validation of behavioural properties such
as the fault tolerance when a component or a sensor fails.

11



References

[1] F. Kendoul, “Survey of Advances in Guidance, Navigation, and Control
of Unmanned Rotorcraft Systems,” Journal of Field Robotics, vol. 29,
no. 2, 2012.

[2] J.-H. Kim, S. Sukkarieh, and S. Wishart, “Real-Time Navigation, Guid-
ance, and Control of a UAV Using Low-Cost Sensors,” in Field and Ser-
vice Robotics (FSR 2003), (Lake Yamanaka, Japan), 2003.

[3] S. Lacroix, A. Mallet, D. Bonnafous, G. Bauzil, S. Fleury, M. Herrb,
and R. Chatila, “Autonomous Rover Navigation on Unknown Terrains,”
International Journal on Robotic Research, vol. 21, no. 10-11, 2002.

[4] C. McGann, F. Py, K. Rajan, H. Thomas, R. Henthorn, and R. McEwen,
“A deliberative architecture for AUV control,” in International Confer-
ence on Robotics and Automation (ICRA 2008), (Pasadena, CA, USA),
2008.

[5] D. Brugali and A. Shakhimardanov, “Component-Based Robotic Engi-
neering (Part II),” IEEE Robotics and Automation Magazine, vol. 17,
no. 1, 2010.

[6] C. Lesire, D. Doose, and H. Cassé, “MAUVE: a Component-based Model-
ing Framework for Real-time Analysis of Robotic Applications,” in Work-
shop on Software Development and Integration in Robotics (SDIR 2012),
(Saint-Paul, MN, USA), 2012.

[7] G. Echeverria, S. Lemaignan, A. Degroote, S. Lacroix, M. Karg, P. Koch,
C. Lesire, and S. Stinckwich, “Simulating complex robotic scenarios with
morse,” in International Conference on Simulation, Modeling, and Pro-
gramming for Autonomous Robots (SIMPAR), (Tsukuba, Japan), 2012.

[8] P. Soetens and H. Bruyninckx, “Realtime hybrid task-based control for
robots and machine tools,” in International Conference on Robotics and
Automation (ICRA), (Barcelona, Spain), 2005.

[9] C. Rochange and P. Sainrat, “OTAWA: An Open Toolbox for Adaptive
WCET Analysis,” IFIP Workshop on Software Technologies for Future
Embedded and Ubiquitous Systems (SEUS), pp. 35–46, 2010.

12


