
Near-to-near decentralized algorithm for vehicle platooning

Jano Yazbeck, Alexis Scheuer and François Charpillet
Université de Lorraine, LORIA
Inria, MAIA team - FRANCE

[Jano.Yazbeck | Alexis.Scheuer | Francois.Charpillet]@loria.fr

Abstract— In the last decades, intelligent transportation sys-
tems noticed an important evolution due to the introduction of
intelligent electric vehicles. This paper deals with the platooning
problem, a technique which aims at steering a convoy along a
path without collision nor lateral deviation. This work focuses
on the lateral control in a local decentralized approach. We
present here two control algorithms for platooning which aim at
reducing the lateral deviation between the leader’s and each of
the followers’ paths. Experimental results show an improvement
in the lateral behavior of the followers.

I. INTRODUCTION

Vehicle platooning presents nowadays an attractive solu-
tion for traffic congestion and unoptimized space occupation.
Intelligent vehicles moving closely would increase the road
network capacity, improving the traffic flow and reducing
fuel consumption.

Platooning can be approached by several methods:
• centralized approaches: a central computer (usually

located at the leading vehicle) collects data from all
vehicles using communication. Then, it computes and
sends the commands for each one (e. g. [1], [2]). In
Sartre project [3], the leader’s actions on accelerating,
decelerating and steering are transmitted to the fol-
lowers by the communication system to avoid string
instabilities. However, in case the leader crashes or faces
technical problems, the consequences on the platoon
should be considered.

• global decentralized approaches: each vehicle collects
data relative to the state of the platoon and computes
its own commands (as [4], [5], [6]).

• near-to-near decentralized approaches: each vehicle per-
ceives its neighboring environment and computes the
corresponding behavior ([7], [8], [9]).

Centralized and global decentralized approaches achieve
accurate tracking since the computed commands depend on
the state of the whole convoy. A reliable communication
is then required for data exchange. A brief survey on pla-
tooning [10] presented several works based on inter-vehicle
communication. The authors pointed out that delays due to
the use of communication can be a considerable problem.
Effects on platooning should be studied. These delays can
be caused by packet loss, data transmission time and their
analysis time.

LORIA: Lab. Lorrain de Recherche en Informatique et ses Applications.
INRIA: Institut National de Recherche en Informatique et Automatique.

To achieve a communication-free platooning where robots
do not rely on exchanged data or received commands, we
choose to develop a decentralized local approach. In these
kind of approaches, the vehicles are fully autonomous as
they can join or leave a convoy without warning a supervisor.
Although, their main drawback due to the local perception is
the lack of precision since an accumulated lateral error prop-
agates along the platoon generating important oscillations.

A previous paper [11] presented a lateral controller where
this lateral deviation was drastically reduced by aiming
previous positions of the predecessor instead of its current
position. However, oscillations around the leader’s path ap-
pear in case the target position was too close to the follower.
This method is called the Memo−LAT algorithm (for path
Memorization and Look-Ahead Target selection).

The Memo − LAT algorithm was improved into a new
method called the NOC algorithm presented in another
paper [12] where the curvature of the predecessor’s path was
considered in the lateral control computation. By applying
the NOC method, the robots follow their leader’s path
without oscillations.

This paper presents a summary on the two previous algo-
rithms. It describes how they work and shows experimental
results.

In order to present more precisely our contribution, we
first formalize the considered problem in Section II. Then,
we explain the Memo − LAT and NOC algorithms in
Sections III and IV. In Section V, we discuss experimental
results. Finally, we conclude and present our future works in
Section VI.

II. ASSUMPTIONS

Urban vehicles in the city centers must move at low speed
for safety reasons. Thus, dynamic effects can be neglected
and only a kinematic model is considered to represent their
movement. Given that the proposed algorithm is a high
level controller, it can be applicable on any kind of robots.
Although, experiments were run on an unicycle kinematic
model which verifies the equations of movement 1. In
Sections III and IV, we present the algorithms for a two-
robots convoy. Then, we show in Section V experimental
results on four-robots convoy. In this paper, we consider a
convoy moving at a constant velocity v0 where the angular

velocity is bounded.
ẋ = v0 cos θ

ẏ = v0 sin θ

θ̇ = ω

(1)

III. Memo− LAT ALGORITHM

A vehicle under the Memo − LAT algorithm acquires
and stores its predecessor’s path as a set of points. Instead
of aiming the current predecessor’s position, the controller
chooses, among the stored positions, a closest one to aim for
(see Fig. 1). The lateral error to the exact predecessor’s path
is thus reduced. The chosen target is located at a look-ahead

dl

Fig. 1. The chosen target according to the Memo− LAT algorithm.

distance dl smaller than the inter-distance between the two
successive robots. Then, the controller computes an angular
velocity in order to reduce the lateral deviation between the
follower and its target. If this deviation is important, the
follower turns with an important angular velocity generating
oscillations around its predecessor’s path.

The value of the look-ahead distance dl influences on the
platooning accuracy: in high curvature paths, an important
value of dl leads to an important lateral deviation between the
follower and its leader’s path. On the contrary, a small value
of dl reduces the lateral deviation but creates oscillations
around a path with a relatively small curvature. We run
several simulations while varying the path curvature and
the initial robots configurations (position, orientation and
velocity). But we were not able to establish an analytic
relation allowing us to set dynamically the value of dl
according to the state of the system. So, we propose in
Section IV the NOC algorithm.

IV. NOC ALGORITHM

NOC algorithm improves the Memo−LAT method by
reducing oscillations and lateral deviations. As in Memo−
LAT method, each follower stores its predecessor’s path as
a set of points. In order to achieve a precise tracking, the
follower aims at reducing the surface between its path and
its predecessor’s path by computing a sequence of angular
velocities {ω∗1 , ω∗2 , ..., ω∗i } as shown in Fig. 2. As we noticed
in Memo − LAT algorithm, the steering velocity needs to
be computed according to the shape of the predecessor’s
path. So, we propose in the NOC algorithm to consider the

w i

w j

w k

w l

w1*
w2*

wi*

....
(S)

leader's path

follower's path

Fig. 2. The lateral deviation represented by the surface between the paths
of two successive robots.

curvature of the target path in order to optimize the follower’s
movement.

A. Algorithm overview

NOC algorithm is resumed to the following steps:
• acquire and store the new position of the leader ;
• choose among the stored positions the best target to aim

for ;
• approximate the path around the target by a line or a

circle and deduce the corresponding curvature ;
• consider the approximated curvature to compute the

angular velocity which reduces the lateral and angular
errors while avoiding oscillations.

Instead of choosing a position located at dl as in Memo−
LAT algorithm, the controller under NOC method looks for
the closest position of the predecessor’s path which allows
the follower to converge without crossing its approximated
path around this position.

B. Optimization criteria

In order to optimize its lateral movement, the follower
needs to reduce an error function. Once the follower ap-
proximates its predecessor’s path by a circle or a line, it
computes the lateral and angular errors to the approximated
path. Then, it tries to compute an angular velocity which
reduces the error function based on these lateral and angular
errors. This error function is defined as follows:

E = kyεy + kθεθ (2)

where εy and εθ are respectively the lateral and angular
errors, and ky and kθ are the corresponding weights.

C. On-line path generation

Once the target position is chosen, the follower approx-
imates the path around the target by a line or a circle
and deduces the curvature. So instead of tracking the target
position, the follower will compute angular velocity to follow
the approximated path. We consider two cases:
• if the follower aims for the initial position of its

predecessor, the target path is the line joining the initial
positions of the two robots (leader-follower).

• if the target position is not the first position of the prede-
cessor, the follower picks the two neighboring positions
from the predecessor’s path (the one before and the one
after the target point). If these three points are aligned,

the target path is a line and the approximated curvature
is equal to zero. Otherwise, the circle generated by these
three points is the target path and the curvature around
the target position is the inverse of the circle radius.

F

L
(d1)

(d2)

(d3)
(C)

blue zone
red zone

Fig. 3. Approximation of the predecessor’s path (in black): by a succession
of lines and circles (in blue) under NOC algorithm, by a succession of lines
under Memo− LAT algorithm (in red).

In Fig. 3, we compare the behavior of a following robot
under Memo − LAT and NOC algorithms. As we can
see in Memo − LAT algorithm, once the inter-distance
between the follower and its target is smaller than the look-
ahead distance dl, the follower aims for the next target. The
higher the look-ahead distance is, the more important the
lateral deviation (represented by the red surface) between
the leader and follower paths is. On the contrary, NOC
algorithm approximates the leader’s path by a succession
of lines and circles and computes a sequence of angular
velocities to follow this approximated path. By anticipating
its orientation, the follower aims at reducing the red surface
into the blue one.

D. Angular velocity computation

x

y

�i

�max

qmax

�min

qmin

q0
�max

�min
qi

���

Fig. 4. Condition Γ+
i : prediction of a possible intersection between the

follower turning with ωmax and the leader’s linear path in the future time.

After choosing its new target, the robot approximates the
path around it by a line [D] or a circle (C). Then, the robot
retains, from the discretized domain {ωmin, ..., ωmax}, the
angular velocities which, by generating the corresponding
arc of a circle (Ci) or segment line [Di], verify the following
conditions:

• Condition Γi: during ∆t, no intersection between the
arc of a circle (Ci) (or the segment line [Di]) and (C)
(or (∆)).

• Condition Γ+
i : if ωi is applied, the robot will have the

new configuration qi. Then, starting at qi, the robot
generates a circle by turning with the maximum angular
velocity (ωmax or ωmin). this entire generated circle
must not cross the approximated path (C) (or (∆)).

From these retained angular velocities, the best command is
the one which minimizes the predefined error function E .

E. Refinement of the angular velocity

The chosen angular velocity may not be the best command
due to the discretization. We note ωc the angular velocity
which verifies the conditions Γi and Γ+

i while minimizing
the error function E . We also note ω∩ the angular velocity
which minimizes E while satisfying only Γi. The robot
crosses its predecessor’s path while turning with ωmax at the
next time step. By discretizing the new domain [ω∩, ωc], a
better command can be found: ω∗ satisfies both Γi and Γ+

i

and reduces the error function more than ωc.

V. EXPERIMENTAL RESULTS

We consider a four-robots convoy moving at a constant
velocity v0 = 8 m/s. Their maximum angular velocity
is ωmax = 1 rad/s, so the minimum turning radius is
8m. The weights to reduce the lateral and angular errors
are respectively ky = 0.9 and kθ = 0.1. The angular
velocity domain [−ωmax, ωmax] is discretized into 50 values.
Also, the new angular velocity domain for the refinement is
discretized into 100 values.

A. A four-robots convoy platooning along a rounded square

We consider a platooning along a rounded square. As
Figure 5 shows, the robots are initially at L, F1, F2, F3

and they move according to the direction of the arrow.

Fig. 5. Platooning of a four-robots convoy along a rounded square.

B. Comparison with the Memo− LAT algorithm

We presented previously the Memo − LAT algo-
rithm [11]. In Memo−LAT algorithm, the tracked positions
are located at a look-ahead distance dl = 0.5 m from
the current position of the follower. While the Memo −
LAT algorithm generates oscillations around the leader’s

Fig. 6. Comparison between Memo−LAT (on the left) and NOC (on
the right) algorithms: zooming around a part of the leader’s path during
a platooning of a four-robots convoy along a rounded square under the
Memo− LAT algorithm. The look-ahead distance is dl = 0.5m.

path (Fig.6), NOC algorithm reduces them and allows the
follower to have a smoother movement.

C. Re-convergence of a suddenly disturbed follower towards
its target path

We consider a two-robots convoy moving along a spiral
path. At an instant ti, the follower is suddenly disturbed by
injecting a spatial perturbation (∆x = 1m, ∆y = 1m). It
is transposed from its position before disturbance Fb to its
new position after disturbance Fa (Fig. 7).

As we can notice, this lateral deviation is quickly reduced
as the follower converges towards its leader’s path and
follows it precisely. We inject the same perturbation on the

Fig. 7. NOC algorithm: Re-convergence of a suddenly disturbed follower
during a platooning along a spiral path.

follower and we observe its behavior in Fig. 8 under the
Memo− LAT algorithm. The follower tries to re-converge
quickly but important oscillations are induced around the
spiral path of the leader.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we presented a summary on two control
algorithms for a platooning where the leader’s analytic path
is unknown to the followers. Instead of aiming at the current
position of its predecessor, the robot under Memo − LAT
algorithm aims at a previous stored position of the prede-
cessor. This method drastically reduces the lateral deviation
but creates occasionally important oscillations around the

Fig. 8. memo−LAT algorithm: Re-convergence of a suddenly disturbed
follower during a platooning along a spiral path.

leader’s path. NOC algorithm considers the curvature of the
predecessor’s path in the computation of the angular velocity:
the oscillations are thus reduced. In the future works, we
will try to improve the NOC algorithm by finding a more
intelligent method to discretize the angular velocity domain.
Also, we will combine the longitudinal and lateral controllers
and study the effects of the longitudinal velocity on the
lateral behavior of the convoy during platooning.

ACKNOWLEDGEMENT

This work was partially supported by INTRADE european
project.

REFERENCES

[1] G. Antonelli and S. Chiaverini, “Kinematic control of platoons of
autonomous vehicles,” IEEE Trans. Robotics, vol. 22, no. 6, pp. 1285–
1292, Dec. 2006.

[2] C. Smaili, M. El Badaoui El Najjar, and F. Charpillet, “Multi-
sensor fusion method using bayesian network for precise multi-vehicle
localization,” in 11th International IEEE Conference on Intelligent
Transportation Systems, Beijing (CN), Oct. 2008, pp. 906—-911.

[3] E. Coelingh and S. Solyom, “All aboard the robotic road train,” IEEE
Spectrum, pp. 26–31, 2012.

[4] J. Bom, B. Thuilot, F. Marmoiton, and P. Martinet, “Nonlinear control
for urban vehicles platooning, relying upon a unique kinematic gps,”
in International Conference on Robotics and Automation, Barcelona,
Spain, 2005, pp. 41–46.

[5] P. Avanzini, B. Thuilot, T. Dallej, P. Martinet, and J. Derutin, “On-line
reference trajectory generation for manually convoying a platoon of
automatic urban vehicles,” in IROS, 2009, pp. 1867–1872.

[6] P. Avanzini, B. Thuilot, and P. Martinet, “Obstacle avoidance and
trajectory replanification for a group of communicating vehicles,” in
ITST, 2009, pp. 267 – 272.

[7] J.-M. Contet, F. Gechter, P. Gruer, and A. Koukam, “Multiagent system
model for vehicle platooning with merge and split capabilities,” in 3rd
International Conference on Autonomous Robots and Agents (ICARA),
Palmerston North (NZ), Dec. 2006.

[8] S.-Y. Yi and K.-T. Chong, “Impedance control for a vehicle platoon
system,” Mechatronics, vol. 15, no. 5, pp. 627–638, June 2005.

[9] P. Daviet and M. Parent, “Longitudinal and lateral servoing of vehicles
in a platoon,” in Proc. of the IEEE Int. Symp. on Intelligent Vehicles,
Tokyo (JP), Sept. 1996, pp. 41–46.

[10] P. Kavathekar and Y. Chen, “Draft: Vehicle platooning: a brief survey
and categorization,” in Proceedings of The ASME 2011 International
Design Engineering Technical Conferences and Computers and Infor-
mation in Engineering Conference, 2011.

[11] J. Yazbeck, A. Scheuer, O. Simonin, and F. Charpillet, “Improving
near-to-near lateral control of platoons without communication,” in
IROS, 2011, pp. 4103–4108.

[12] J. Yazbeck, A. Scheuer, and F. Charpillet, “Optimized lateral control
for a decentralized near-to-near platooning,” INRIA, Tech. Rep., 2013.

