Image Watermarking Based on Feature Point Synchronization with the Use of ECC

LIRMM, October 25, 2012

Boris Assanovich
bas@grsu.by
YK State University of Grodno
EMERGE Project
Outline

- Part I: Introduction to Watermarking
 - Watermarking types and generations
 - Synchronization Techniques for Image Watermarking
 - Image Features and Feature Points
 - Types of Feature Point Detectors
 - Corner Harris Detector and its properties
 - Problems of FP matching
- Part II: Error correcting coding and application for Watermarking
 - Historical Pedigree of ECC
 - Concatenated codes
 - Davey & MacKay code
 - Proposed Coding-Decoding scheme
 - Synchronizing Codes (VT& Levinstein)
 - Prototype of our scheme for data embedding
 - Examples of its use
- Conclusions and future research
Part I:

Introduction to Watermarking
Introduction

- Watermarking is the area of Information Hiding Technology, containing also another area – Steganography.
- Steganography keeps the existence of the information in secret
- Watermarking makes the information imperceptible
- A digital watermark is a kind of marker covertly embedded in a noise-tolerant signal. It is typically used to identify the ownership of it.
- The term "digital watermark" was first coined in 1992 by Andrew Tirkel and Charles Osborne

The Necessity for Data Hiding

- Ownership of digital images, protect copyright
- Data integrity authentication, fraud detection
- Traitor-tracing (fingerprinting video)
- Adding captions to images, additional information, such as subtitles
- Intelligent browsers, automatic copyright information
- Covert communication using images (secret message is hidden in a carrier image)
Watermarking Requirements

Invisibility

Robustness

Capacity
Watermarking Types

- **Visible and invisible**: how we see the embedded information
- **Fragile and Semi-fragile**: test the distorted or broken under slight changes images when they exceed a user-specified threshold
- **Domain chosen watermarking**: spatial domain, frequency domain, spread domain
- **Detection used watermarking**: blind, non-blind (data assisted), semi-blind; oblivious, non-oblivious (watermarking original image is needed or not)
Generations of Watermarking

- First generation watermarking schemes use pixels or samples or transform coefficients to embed the information. Drawback - watermark is not embedded in the perceptually significant portions of data.

- Second generation watermarking schemes involve the notion of perceptually significant features which may be abstract or semantically meaningful (Kutter).

- Third generation schemes will give the opportunity to insert robust, high density watermarks in 2D and 3D data in intelligent way.

Watermarks: Secret Code for Protection

1. Depending on the chosen technique, noise is added to every data element or just to a pseudo-random subset.

2. Hidden information (watermark) is embedded in the noise signal of the original.

3. Watermark is invisible and can be retrieved only by extraction software.
Synchronization Techniques for Image Watermarking

Any distortion of image can dramatically reduce the ability to detect the watermark leading to lose the synchronization. What is done to prevent it?

- Use periodical sequences
- Use templates insertions
- Use invariant transforms
- Use original image
- Use image content
Brief Comparison of known Synchronizing Methods

<table>
<thead>
<tr>
<th></th>
<th>Local Transformation Robustness</th>
<th>Global Transformation Robustness</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periodic insertion</td>
<td>No</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>Template insertion</td>
<td>No</td>
<td>Yes</td>
<td>Can be removed</td>
</tr>
<tr>
<td>Invariant transform</td>
<td>No</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>Non-blind</td>
<td>Yes</td>
<td>Yes</td>
<td>Computational cost</td>
</tr>
</tbody>
</table>

Is it possible to use the natural image content for synchronization?
Content-based (feature-based) watermarking

- new class of the watermarking techniques which link the watermark with image semantics and not the coordinates
- problem of synchronization could be solved according to invariant reference to image feature characteristics
How the Image Feature Points are Used?

- Feature points could be used for:
 - Motion tracking
 - Image alignment
 - 3D reconstruction
 - Object recognition
 - Indexing and database retrieval
 - Robot navigation
Characteristics of Good Features

- **Repeatability**
 - The same feature can be found in several images despite geometric and photometric transformations
- **Saliency**
 - Each feature has a distinctive description
- **Compactness and efficiency**
 - Many fewer features than image pixels
- **Locality**
 - A feature occupies a relatively small area of the image
Feature Detectors

<table>
<thead>
<tr>
<th>Feature detectors</th>
<th>Edge</th>
<th>Corner</th>
<th>Blob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canny</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sobel</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harris</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SUSAN</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Level curvature</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>FAST</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Laplacian of Gaussian</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Difference of Gaussians</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Determinant of Hessians</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

http://en.wikipedia.org/wiki/Feature_detection_(computer_vision)
Corner Detection

- We should easily recognize the point by looking through a small window.
- Shifting a window in *any direction* should give *a large change in the intensity*.

“flat” region:
no change in all directions

“edge”:
no change along the edge direction

“corner”:
significant change in all directions

Math for Corner Detector

Change in appearance for the shift \([u,v]\):

\[E(u,v) = \sum_{x,y} w(x,y)[I(x+u, y+v) - I(x, y)]^2 \]

Window function

Shifted intensity

Intensity

Window function \(w(x,y)\) =

1 in window, 0 outside

or

Gaussian
Second-order Taylor expansion of $E(u,v)$ about (0,0) and quadratic approximation simplifies to:

$$E(u,v) \approx [u \ v] \ M \begin{bmatrix} u \\ v \end{bmatrix}$$

where M is a second moment matrix computed from image derivatives:

$$M = \sum_{x,y} w(x, y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$
Harris detector: Steps

1. Compute Gaussian derivatives at each pixel
2. Compute second moment matrix M in a Gaussian window around each pixel
3. Compute corner response function R
4. Threshold R
5. Find local maximum of response function
Corner Response Function

Corner response function—“Cornerness” function

\[
R = \det(M) - \alpha \text{trace}(M)^2 = \lambda_1 \lambda_2 - \alpha (\lambda_1 + \lambda_2)^2
\]

“Edge”
\[R < 0 \]
\[\lambda_2 \gg \lambda_1 \]

“Corner”
\[R > 0 \]
\[\lambda_1 \text{ and } \lambda_2 \text{ are large,} \]
\[\lambda_1 \sim \lambda_2; \]
\[E \text{ increases in all directions} \]

“Flat” region
\[|R| \text{ small} \]

\[\lambda_1 \text{ and } \lambda_2 \text{ are small;} \]
\[E \text{ is almost constant in all directions} \]

“Edge”
\[R < 0 \]
\[\lambda_1 \gg \lambda_2 \]
Harris Detector: Invariance Properties (Rotation)

Ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner response \(R \) is invariant to image rotation
Harris Detector: Invariance Properties (Intensity)

- Only derivatives are used => invariance to intensity shift $I \rightarrow I + b$
- Intensity scale: $I \rightarrow aI$
- Partially invariant to affine intensity change, dependent on type of threshold
Harris Features (in red)

The tops of the horns are detected in both images

http://lear.inrialpes.fr/
Any Problems of Matching FP

213 / 190 detected feature points, some of them deleted or inserted. What to do .. Synchronization? ECC?
Types of Synchronization Errors

- Additive errors are special case of deletion and insertion in same position of bits of opposite value
- Repetition/duplication error: copies bit
- Bit/peak shift: 01 becomes 10
- Decision 1: Synchronizable codes, Synchronisation with timing, Marker codes
- Decision 2: Convolutional codes, binary and non-binary block EEC
Part II:

Error Correcting Coding and its Applications for Watermarking
Hamming defines basic binary codes

BCH codes Proposed

1950

1960

Gallager's Thesis On LDPCs

Viterbi’s Paper On Decoding Convolutional Codes

Forney suggests concatenated codes

1970

Early practical implementations of RS codes for tape and disk drives

Berlekamp and Massey rediscover Euclid’s polynomial technique and enable practical algebraic decoding

Http://www.intel.com/labs
EEC Historical Pedigree II

1980
- Ungerboeck’s TCM Paper - 1982
- RS codes appear in CD players
- First integrated Viterbi decoders (late 1980s)
- TCM Heavily Adopted into Standards

1990
- Berrou’s Turbo Code Paper - 1993
- Turbo Codes Adopted into Standards (DVB-RCS, 3GPP, etc.)

2000
- LDPC outrun Turbo Codes For DVB-S2 Standard - 2003
- Renewed interest in LDPCs due to TC Research

http://www.intel.com/labs
Concatenated Coding-Decoding Scheme
Previous Works in Coding Schemes Design

- To make Concatenated coding scheme with 2 types of codes:
 - Q-ary outer code that maps symbol to a fixed length binary string
 - Binary inner code that provides the synchronization
- Davey & MacKay used a pseudo-random sequence together with a sparse code for binary insertion-deletion channel

Davey & MacKay DM code presents q-ary symboled in sparse way and combine it with pseudo-random sequence (watermark) taking mod 2;

- Pseudo-random sequence could destroy synchronization code properties;
- Decoding is very expensive and decoder cannot distinguish between:
 - Channel errors
 - Sparse symbol uncertainty
Improvement of DM-scheme

JA Briffa, HG Schaathun (2008):

- Analyzed the inner DM codes, proposed to consider its distance properties;
- Proposed to use turbo-codes instead of LDPC;
- Simulated and showed that 3/7 inner code is optimal and 3/6 is close.

Error Control Watermarking - Deletion-Insertion Correcting Codes and Robust Watermarking». University College Dublin, February 2008.
Nonbinary Turbo codes have been weakly studied during the last decade.

LDPC have shown large complexity of a decoder in DM construction.

Simulation made show the efficiency of turbo codes with the use of PSK-modulation and Gray coding.

Results of Turbo Code Use

- Briffa et al. used turbo codes over $GF(16)$.
- To compare with DM construction focused on low-rate systems.
- DM watermark code had rate $k/n = 4/15$.
- Briffa et al. used $R = 1/5$ and some inner code $k/n = 4/15$ obtaining the overall rate $R = 4/75$.

J.A. Briffa, Hans.G. Schaathun, S. Wesemeyer
Proposed Coding-Decoding Scheme

- Outer ECC - Non-binary Turbo Code
- Inner code the binary Levinstein code with a special marker
Turbo Codes

- History of turbo codes
 - Turbo codes were proposed by Berrou and Glavieux in the 1993 International Conference in Communications
 - Performance within 0.5 dB of the channel capacity limit for BPSK was demonstrated

- Features of turbo codes
 - Parallel concatenated coding
 - Recursive convolutional encoders
 - Pseudo-random interleaving
 - Iterative decoding
Turbo Coding Scheme

- Instead of concatenating in serial, codes can also be concatenated in parallel.
- The original turbo code is a parallel concatenation of two recursive systematic convolutional (RSC) codes.
- Turbo codes possess random-like properties.
An RSC encoder can be constructed from a standard convolutional encoder by feeding back one of the outputs.

An arbitrary input will cause a high weight output with high probability.

An RSC code will produce low weight outputs with low probability.

The parallel concatenation of both encoders will produce a “good” code.

Since the interleaving pattern is known, decoding is possible.
RSC Encoder over GF(2^3)

Generator matrix: $g = \begin{bmatrix} 1 & 6 & 6; 1 & 7 & 6 \end{bmatrix}$;

Polynomials: $h_0 = 1, h_1 = 6, h_2 = 6; g_0 = 1, g_1 = 7, g_2 = 6$.
8-ary Codes: over the Field $GF(2^3)$ with elements $\{0, 1, a, a^2, a^3, a^4, a^5, a^6 \}$, where a is a root of the primitive polynomial X^3+X+1 give the dictionary A:

- $0 \rightarrow 000 \rightarrow 0$;
- $1 \rightarrow 001 \rightarrow 1$;
- $a \rightarrow 010 \rightarrow 2$;
- $a^2 \rightarrow 100 \rightarrow 4$;
- $a^3 = a + 1 \rightarrow 011 \rightarrow 3$;
- $a^4 = a^2 + a \rightarrow 110 \rightarrow 6$;
- $a^5 = a^2 + a + 1 \rightarrow 111 \rightarrow 7$;
- $a^6 = a^2 + 1 \rightarrow 101 \rightarrow 5$
Decoder Scheme

- Decoder includes 2 decoders and interleavers to estimate the *a posteriori* probability (APP) of not correlated data element (bit or symbol).
- The APP’s are used as *a priori* information by the other decoder.
- Performance generally improved from iteration to iteration with more precise probability evaluation.
Decoding of Turbo Code

- Normal decoding algorithms (Viterbi algorithm) find the most likely sequence of bits that was transmitted.
- In a turbo decoder, want to find the likelihood of each bit (symbol). This serves as the a posteriori probability or the reliability of each bit (symbol), to use as input to the next decoder.
- Optimal MAP (Maximum A-Posteriori) - BCJR (Bahl, Cocke, Jelinek, Raviv)
- Simpler - SOVA (Soft Output Viterbi Algorithm) - lose roughly .7 dB coding gain.
MAP Decoding and Information Exchange

LLRs for $L(u)$ for binary and non-binary case and APP $P(/)$ are defined with the help of BCJR algorithm:

\[
L(u) = \ln \frac{P(u = +1)}{P(u = -1)}
\]

\[
L(u) = \ln \frac{P(u = A_i)}{P(u = A_j)}
\]

\[
P(u = A_i | r) = \frac{p(u = D', r)}{P(r)} = \sum_{(s', s) \in S} p(s_i = s', s_{i+1} = s, r) \sum p(r_j)
\]

- http://www.xenotran.com/turbo_tech_error_turbo.html
Our Scheme Decoding Example (Outer Code)

$x = [2, 0, 1, 6]$

$r = [2, 0, 1, 6, 2, 5, 7, 6, 6, 6, 7]$

The outer code correct the errors and erasures.

The inner code must take care of synchronization.

LLR-values and Apost probabilities (1st and 2nd iterations)
Synchronizing Codes

- 60-s Levenshtein and V&T - small codes, correcting one error
- 1999 Schulman & Zuckerman asymptotically good codes
- 2001 Davey & MacKay - Watermark Codes
- Their construction are not ideally suited for application in watermarking
- Channel model is one-dimensional
- 2011 Paluncic nonbinary insertion/deletion codes
Varshamov Tenengoltz
Levenshtein codes

• 1965: Varshamov Tenengoltz construction
• 1965: Levenshtein proposed algorithm to correct insertion-deletion error

\[\sum_{i=1}^{n} ix_i \equiv a \mod m \]
\[a = 0, 1, ..., m - 1 \]

VT-code for n=4, a=0

<table>
<thead>
<tr>
<th>i</th>
<th>4 3 2 1</th>
<th>Σix_i</th>
<th>$\Sigma ix_i \equiv a \mod(n+1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x = 00 0 0$</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>$x = 00 0 1$</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$x = 00 1 0$</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>$x = 00 1 1$</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>$x = 01 0 0$</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>$x = 01 0 1$</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>$x = 01 1 0$</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>$x = 01 1 1$</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$x = 10 0 0$</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>$x = 10 0 1$</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Cardinality of a code set?
Hamming Distance Properties of Levenshtein Codes

- **Proposition 1**: A Levenshtein code has only one code word of either weight $w = 0$ or weight $w = 1$.

- **Proposition 2**: In a Levenshtein code there is a minimum Hamming distance, $d_{\text{min}} \geq 2$ between any two code words.

- **Proposition 3**: Code words in a Levenshtein code have a $d_{\text{min}} \geq 4$ if they have the same weight.

- The proof of propositions is straightforward when considering the resulting subwords after s deletions.

Our Inner Code: VT₆ code

- VT-codes with codewords of length k=6 according to eqn. sum(i*xi) mod 7=0 give dictionary B from VT₆ codes:

 - 000 \rightarrow [0 0 1 0 1 1];
 - 001 \rightarrow [0 0 1 1 0 0];
 - 010 \rightarrow[0 1 0 0 1 0];
 - 011 \rightarrow[0 1 1 1 1 0];
 - 100 \rightarrow[1 0 1 1 0 1];
 - 101 \rightarrow[1 1 0 0 1 1];
 - 110 \rightarrow[1 1 0 1 0 0];
 - 111 \rightarrow[1 1 1 1 1 1];
 - s \rightarrow [1 0 0 0 0 1] – can be used for block synchronization

- Special pattern s \rightarrow “000” used as suffix for the codeword to perform codeword synchronization
Example of Inner Code Decoding

• Marker helps to detect the codeword boundaries
• Iterative detection of the codewords performed with the use of so-called weighted Hamming cumulative distance
• For obtained codewords or their parts the LLR values of symbols is calculated and transferred to the outer turbo-decoder

\[C_h = \sum_{c_i \in B, b_i \in r} \alpha_i d(b_i, c_i) \]
Step-by-step Data Processing for Watermark Embedding

- Get watermark data and convert it into one-dimensional binary sequence.
- Divide sequence into segments and transform them into the elements of GF(2^3).
- Use outer turbo block code of rate 1/3 over GF(2^3) to encode the input elements.
- Convert turbo encoded elements into 3-bit words to perform Grei-coded 8PSK and encode them by VT_6 code with rate 1/2.
- Add to 6-bit codewords a 3-bit marker code and obtain the data to be embedded containing the watermark.
- Choose the image feature points invariant to known transformations and modulate image features in the predefined domain around FP.
Prototype of Scheme for Data Embedding

- Watermarked block B
- ECC Coded Data
- Secret key K
- Block B

$W(K, B) + B = \text{Watermarked block } B$

64 pixels

Synthesizing Gaussian sequence
Selective Watermark embedding

Watermark W: Random sequence S: (1,-1,-1,1,......)

Selected area - block 8x8 around feature point

Original image

Watermarked image

Red is feature point
FTT against DCT

The embedding data achieves the highest payload density with the lowest induced MSE when data is embedded in suitable transform. The experiments show that FFT outperforms DCT.

Arnold Transform

The security issues considered by the use of data permutation exploiting Arnold's mapping

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} = \begin{bmatrix}
 1 & 1 \\
 1 & 2
\end{bmatrix} \begin{bmatrix}
 x \\
 y
\end{bmatrix} \mod N, x, y \in \{0,1,2,\ldots,N-1\}
\]

Arnold's cat map named after Vladimir Arnold, who demonstrated its effects in the 1960s using an image of a cat

http://en.wikipedia.org/wiki/Arnold's_cat_map
Feature Points on Lena image

\[f(m,n) = \bigcup_{k=1}^{K} f_k(m',n'), \]
\[1 \leq m', n' \leq 8 \]
\[F_k(u', v') = DFT \{ f_k(m', n') \} \]
\[1 \leq u', v' \leq 8 \]
\[abs _ B(i, j) = abs _ B(i, j) \times \]
\[\times (1 + t \times pn _ seq(l)) \]
\[f_k'(m', n') = IDFT \{ f_k(m', n') \} \]
Conclusions

- Harris FP detector has low complexity and invariant characteristics to several image transforms and could be used in our WM scheme.
- Nonbinary TC over GF(8) have good performance and are to be exploited in concatenated coding-decoding scheme as the outer codes for erasures correction.
- Inner VT code contain redundancy to eliminate additional errors and must be carefully designed to control synchronization of the codewords.
- Concatenated coding-decoding scheme has soft-in soft-out iterative decoding properties and give a flexible implementation.
- The use of DFT domain for FP-based watermarking provide selective data embedding and user defined image degradation preserving required secrecy.
Future Research

• Make simulations of proposed scheme to study the robustness to noise and geometric attacks (scaling, rotation, etc)

• Test the quality of watermark detector based on DFT and check the false alarm probability

• Make the analysis of the other appropriate modulation techniques for watermark embedding

• Study the scale-invariant FP detectors, including Harris-Laplace, SIFT and the others

• Test the BER and SER of proposed error correcting technique and study the joint iterative soft decoding of inner and outer codes, including nonbinary codes

• Study the other methods of content-based synchronization for image watermarking
Thank you !!!

Questions?