Fish tracking in underwater videos
PLAN

▷ Professional career
▷ Introduction: Problem and objective
▷ State of the art
▷ Required tasks
Professional career
PROFESSIONAL CAREER

▷ Computer and multimedia license, ISAMM, Tunisia
 Final project: Interactive virtual tour, maya3d, Unity3d
▷ International master of Biometrics, UPEC, Paris
 First project: handwritten language recognition, matlab
 Second project: static sign language recognition, c++ OpenCV
Introduction
TRACKING

- **Tracking** is the process of locating a moving object over time.
- We need to use object recognition techniques for tracking.
What is prediction?

▷ How can we predict or estimate something we can not see or touch?

You can predict this rocket trajectory by solving some equations but..
What is prediction?
▷ How can we predict or estimate something we can not see or touch?

You can predict this rocket trajectory
By solving some equations but...

Problem 1
Simulation of long period
Of time might cause accumulation of error
What is prediction?
▷ How can we predict or estimate something we can not see or touch?

You can predict this rocket trajectory by solving some equations but...

Problem 1
Simulation of long period of time might cause accumulation of error

Problem 2
Smallest error of initial value might cause a drastic change of estimated trajectory
We might think that good measurement could solve the problem.

But single measurement might not be enough to estimate the location of rocket accurately.

Solution

Combine prediction and measurement.
INTRODUCTION

▷ Underwater videos are quite blurry
▷ The background is moving
▷ Fish behavior: high number of fishes with large movement and variation of the shape

How to recognize fishes and track them?
State of the art
idTracker

- Multi-tracking algorithm that extracts a characteristic fingerprint from each animal in a video (Tracking by identification)

<table>
<thead>
<tr>
<th>Intensity 1 – Intensity 2</th>
<th>Distance</th>
<th>Diff. of intensities</th>
<th>Number of pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>400</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>600</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>800</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
We identify every non-overlapping fish in every frame

Best match
idTracker

Advantages:
▷ The rate of error propagation is very low
▷ The system achieves more than 99% frames correctly assigned
▷ The program extracts automatically the reference images from the video

“videos”
idTracker

Threshholding: method used for image segmentation, in order to discriminate foreground from background.

Limitations:
▷ Difficult to set threshold
▷ Sensitive to noise
Conditions for the system:
▷ idTracker doesn’t work on short, blurry videos
▷ Animals should have enough contrast against the background
▷ The system requires homogeneous illumination
▷ We have to initialize the total number of fishes that will appear in the video.
PARTICLE FILTER

Particle: $X_t = \{x, y, w, h\}$, weight: W_t
PARTICLE FILTER

Principle:
▷ Distribution of particles
▷ Weight calculation: Bhattacharyya distance

\[
D_B(p, q) = -\ln(BC(p, q))
\]

where

\[
BC(p, q) = \sum_{x \in X} \sqrt{p(x)q(x)}
\]

▷ Resampling
PARTICLE FILTER

Principle:
▷ Descriptor updating
 Transformation of the shape
 Occlusion
▷ Template thumbnails
CONVOLUTION NEURAL NETWORK

▷ Invariant feature extractor
▷ Fish could be detected automatically
▷ No need to template thumbnails
▷ The CNN feature representation often outperforms hand-crafted features.

<table>
<thead>
<tr>
<th>Species</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mice</td>
<td>0.01</td>
</tr>
<tr>
<td>Fruit flies</td>
<td>0.04</td>
</tr>
<tr>
<td>Zebrafish</td>
<td>0.94</td>
</tr>
<tr>
<td>Medaka fish</td>
<td>0.02</td>
</tr>
</tbody>
</table>
REQUIRED TASKS

▷ Embed python in c/c++
▷ Evaluate the robustness of feature vectors
▷ Evaluate the particle filter
▷ Evaluate the battacharyya distance
▷ Measure the time where the system did not record any error
THANK YOU!