

Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier

"Analogue Network of Converters": a DFT Technique to Test a Complete Set of ADCs and DACs Embedded in a Complex SiP or SoC

V. Kerzérho^{1 2}, P. Cauvet², S. Bernard¹, F. Azaïs¹, M. Comte¹ and M. Renovell¹

¹LIRMM, University of Montpellier / CNRS, France

²Philips France Semiconducteurs, France

ETS'06 - Southampton - May 2006

Complex SoC or SiP

One Chip Set-top Box: 2 ADC, 6 DAC...
Video decoder: 12 ADC, 2 DAC, ...

Testing Complex SoC or SiP

Context:

- Expensive ATE
 - With mixed-signal option
 - Up-to-date performances
- Time consuming
 - Test mixed-signal circuits (converters)
 - Limited number of mixed-signal resources => no concurrent test

• Objective:

- Test of converters
- ✓ Use Low–cost ATE
- Reduce the Testing Time
- Guarantee Test Quality

- ANC Principle Test Method Didactic Example Generalization Results
- Conclusion

Fully Digital Test of Converters

Analog Network of Converter Principle

Multi-configuration

Test of every converter

ANC Principle

- Test Method
- Didactic Example
- Generalization
- Results
- Conclusion

Converter Parameters

Harmonics => Converter Parameters

"Comparison Between Spectral-Based Methods for INL Estimation and Feasibility of Their Implantation",
 V. Kerzerho, S. Bernard, J.M. Janik, P. Cauvet, Proc. IEEE International Mixed-Signal Testing Workshop, pp. 270-275, 2005.

 $Hmeas_{k} = Hdac_{k}^{FS} + Hadc_{k}^{FS} \quad \forall k \ge 2$ One equation but two unknowns

- ANC Principle
- Test Method
- Didactic Example

- Generalization
- Results
- Conclusion

Three sets of parameters to be evaluated: $Hdac1_{k}^{FS}$, $Hdac2_{k}^{FS}$, $Hadc1_{k}^{FS}$

Configuration C(1,1): First equation

Configuration C(1,1): Second equation

$$\begin{cases} Hmeasl_{k} = Hdacl_{k}^{FS} + Hadcl_{k}^{FS} \\ Hmeas2_{k} = Hdac2_{k}^{FS} + Hadcl_{k}^{FS} \end{cases}$$

Configuration C(1,1): Third equation

15

New equation but two new unknowns

$$\begin{cases} Hmeas1_{k} = Hdac1_{k}^{FS} + Hadc1_{k}^{FS} \\ Hmeas2_{k} = Hdac2_{k}^{FS} + Hadc1_{k}^{FS} \\ Hmeas3_{k} = Hdac2_{k}^{FS/2} + Hadc1_{k}^{FS/2} \\ Hmeas4_{k} = Hdac1_{k}^{FS} + Hdac2_{k}^{FS/2} \cos(k.\pi) + Hadc1_{k}^{FS/2} \end{cases}$$

 $\begin{cases} \mathsf{Hmeas1}_{\mathsf{k}} = \mathsf{Hdac1}_{\mathsf{k}}^{\mathsf{FS}} + \mathsf{Hadc1}_{\mathsf{k}}^{\mathsf{FS}} \\ \mathsf{Hmeas2}_{\mathsf{k}} = \mathsf{Hdac2}_{\mathsf{k}}^{\mathsf{FS}} + \mathsf{Hadc1}_{\mathsf{k}}^{\mathsf{FS}} \\ \mathsf{Hmeas3}_{\mathsf{k}} = \mathsf{Hdac2}_{\mathsf{k}}^{\mathsf{FS}/2} + \mathsf{Hadc1}_{\mathsf{k}}^{\mathsf{FS}/2} \\ \mathsf{Hmeas4}_{\mathsf{k}} = \mathsf{Hdac1}_{\mathsf{k}}^{\mathsf{FS}} + \mathsf{Hdac2}_{\mathsf{k}}^{\mathsf{FS}/2} \cos(\mathsf{k}.\pi) + \mathsf{Hadc1}_{\mathsf{k}}^{\mathsf{FS}/2} \\ \mathsf{Hmeas5}_{\mathsf{k}} = \mathsf{Hdac1}_{\mathsf{k}}^{\mathsf{FS}} + \mathsf{Hdac2}_{\mathsf{k}}^{\mathsf{FS}/2} \cos(\mathsf{k}.\phi_1) + \mathsf{Hadc1}_{\mathsf{k}}^{\mathsf{FS}} \cos(\mathsf{k}.\phi_2) \end{cases}$

- ANC Principle
- Test Method
- Didactic Example

- Generalization
- Results
- Conclusion

Test Procedure

Step	# Tested convert.	Equi. test time
#1	3	5

Test Procedure

Test Procedure

Summary

22

Significant Parameters of Each Converter

- ✓ SFDR, THD, INL...
- Low-cost ATE
 - Fully Digital Testing
- Testing Time

Ø Dynamic Process + Digital resources Concurrent testing

- ANC Principle
- Test Method
- Didactic Example

- Generalization
- Results
- Conclusion

- Realistic Models of 12-bit Converters
 - INL from measurement on real converter

- 🗸 Jitter
- 🗸 White noise

Simulation Results: Harmonic Estimation

25

On 15 different converters

 \checkmark for H_k>noise floor => max. estimation error =3.5dB

Simulation Results: Parameter Estimation

Converter Number	Wanted THD	THD estimation	THD error	Wanted SFDR	SFDR Estimation	SFDR error
<u> </u>	(aB)	(<i>aB</i>)	(aB)	(aB)	(aB)	(aB)
#1	-59.1	-59.0	-0.1	68.8	69.3	-0.5
#2	-58.0	-57.9	-0.1	69.3	69.9	-0.6
#3	-58.2	-58.2	0	67.9	67.5	0.4
#4	-64.3	-63.9	-0.4	69.4	68.9	0.5
#5	-66.7	-66.9	0.2	70.9	71.1	-0.2
#6	-61.7	-58.8	-2.9	63.4	64.2	-0.8
#7	-48.1	-48.1	0	67.1	66.3	0.8
#8	-62.7	-62.2	-0.5	65.4	64.7	0.7
#9	-60.7	-60.9	0.2	64.9	65.5	-0.6
#10	-59.7	-59.7	0	62.2	62.2	0
#11	-61.5	-61.8	0.3	64.0	65.1	-1.1
#12	-61.6	-61.4	-0.2	62.8	62.8	0
#13	-70.4	-69.6	-0.8	71.1	67.4	3.7
#14	-55.5	-55.6	0.1	65.0	65.0	0
#15	-64.0	-63.6	-0.4	68.6	68.4	0.2

Simulation Results: Parameter Estimation

Converter	Wanted	THD	THD	Wanted	SFDR	SFDR
Number	THD	estimation	error	SFDR	Estimation	error
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)
#1	-59.1	-59.0	-0.1	68.8	69.3	-0.5
#2	-58.0	-57.9	-0.1	69.3	69.9	-0.6
#3	-58.2	-58.2	0	67.9	67.5	0.4
#4	-64.3	-63.9	-0.4	69.4	68.9	0.5
#5	-66.7	-66.9	0.2	70.9	71.1	-0.2
#6	-61.7	-58.8	-2.9	63.4	64.2	-0.8
#7	-48.1	-48.1	0	67.1	66.3	0.8
#8	-62.7	-62.2	-0.5	65.4	64.7	0.7
#9	-60.7	-60.9	0.2	64.9	65.5	-0.6
#10	-59.7	-59.7	0	62.2	62.2	0
#11	-61.5	-61.8	0.3	64.0	65.1	-1.1
#12	-61.6	-61.4	-0.2	62.8	62.8	0
#13	-70.4	-69.6	-0.8	71.1	67.4	3.7
#14	-55.5	-55.6	0.1	65.0	65.0	0
#15	-64.0	-63.6	-0.4	68.6	68.4	0.2

Experimental Results (real circuits)

12-bit ADC: TDA9910

ADC	Expected THD (dB)	Estimated THD (dB)	Estimat. Error (dB)	Expected SFDR (dB)	Estimated SFDR (dB)	Estima. Error (dB)
#1	66.4	66.0	0.4	-66.9	-66.9	0.0
#2	64.8	65.9	-1.1	-67.2	-65.6	-1.6
#3	70.4	69.4	1.0	-70.7	-72.1	1.4
#4	63.2	63.6	-0.4	-67.8	-65.3	-2.5

Analog Network of Converters (ANC)

Test the Complete Set of Embedded Converters

29

- Low-cost ATE
 - Digital testing
 - BIST possibilities
- Reduce the Testing Time
 - Concurrent test
- Preserve Test Quality
 - Embedded resources

Future Projects

- DFT Implementation
- Extend the application field
- Linear Phase Requirement

Thank You for your Attention

Generalization with n DAC & m ADC

Experimental Results

Harmonic number	Reference values (dB)	Method results (dB)	Measurement difference (dB)
2	-69.2	-68.1	-1.1
3	-67.9	-67.8	0.1
4	-72.5	-70.8	-1.7
5	-70.8	-71.8	1.0
6	-95.7	-86.2	-9.5
7	-78.2	-79.4	1.2
8	-102.9	-97.6	-5.2
9	-78.7	-78.9	0.2
10	-92.0	-86.7	-5.3

Loop-back technique

AWG: DACs emulation

Splitter/Combiner (resistive splitter)

