

Fully-Efficient ADC Test Technique for ATE with Low Resolution Arbitrary Waveform Generator

V. Kerzérho^{1 2}, P. Cauvet², <u>S. Bernard¹</u>, F. Azaïs¹, M. Comte¹ and M. Renovell¹

¹LIRMM, University of Montpellier / CNRS, France

²NXP Semiconductors, France

- Introduction
- Test Method
- Learning Phase
- Mass Production Test
- Results
- Conclusion

Converter Parameters

- ★ "Improving the dynamic measurements of ADCs using the 2-ADC method", Philippe Cauvet, Journal of Computer standard and interfaces, 2001, vol.22 issue 4, pp281-286
- **

"Comparison Between Spectral-Based Methods for INL Estimation and Feasibility of Their Implantation", V. Kerzerho, S. Bernard, J.M. Janik, P. Cauvet, Proc. IEEE International Mixed-Signal Testing Workshop, pp. 270-275, 2005.

Two equations but Four unknowns $\forall k \ge 2$

- Introduction
- Test Method
- Learning Phase
- Mass Production Test
- Results
- Conclusion

* ETS'06: V. Kerzérho, P. Cauvet, S. Bernard, F. Azaïs, M. Comte and M. Renovell "Analogue Network of Converters": a DFT Technique to Test a Complete Set of ADCs and DACs Embedded in a Complex SiP or SOC

Concerning the method

✓ Nonlinear phase shift

- Concerning the hardware requirements
 - ✓ We need two AWG Channels

- Learning Phase
 - Estimate Harmonics created by the AWG
- Mass Production Testing
 - Test ADC in removing AWG error by post-processing

IMSTW'07

- Introduction
- Test Method
- Learning Phase
- Mass Production Test
- Results
- Conclusion

Three sets of parameters to be evaluated: **H**

 $Hdac1_{k}^{FS}, Hdac2_{k}^{FS}, Hadc1_{k}^{FS}$

Configuration C(1,1): the First two equations

New Configuration & phase and amplitude

 $\underline{\mathsf{Hmeas5}_{k}} = \underline{\mathsf{Hdac1}_{k}^{\mathsf{FS}}} + \underline{\mathsf{Hdac2}_{k}^{\mathsf{FS}/2}} \cdot e^{-jk\phi_{1}} + \underline{\mathsf{Hadc1}_{k}^{\mathsf{FS}}} \cdot e^{-jk\phi_{2}}$

Two more linear equations

Relative phase shift variation

5 Tests

Different amplitudes of the test signal (FS, FS/2)

Linear System Estimation of AWG harmonics

- Introduction
- Test Method
- Learning Phase
- Mass Production Test
- Results
- Conclusion

ADC Testing

IMSTW'07

Parallel Testing

Post-Processing calibration > 1 Test procedure per 2ADC

IMSTW'07

<u>Summary</u>

Learning Phase

- ✓ Two channels of LOW PERFORMANCE AWG
- One ADC under test (no gold device)
- ✓ 5 measurements for the estimation of AWG features
- Production test
 - ✓ One test per ADC under test
 - \checkmark Parallel testing is available with the two AWG channels

- Introduction
- Test Method
- Learning Phase
- Mass Production Test
- Results
- Conclusion

- Realistic Models of Converters
 - INL from measurement on real converter
 - Jitter
 - ✓ White noise

- ENOB variation

Simulation Results for a 10bit ADC

Harmonic Estimation of 10bit ADC with 6bit (ENOB) AWG

IMSTW'07

Simulation Results for a 12bit ADC

Harmonic Estimation of 12bit ADC with 8bit (ENOB) AWG

IMSTW'07

Póvoa de Varzim – June 2007

LIRMM

Experimental Results (real circuits)

10-bit ADC: TDA8763

ADC	Expected THD (dB)	Estimated THD (dB)	Estimat. Error (dB)	Expected SFDR (dB)	Estimated SFDR (dB)	Estima. Error (dB)
#1	- 66.6	- 67.3	0.7	68.7	67.9	0.8
#2	- 68.1	- 66.7	-1.4	70.1	70.0	0.1
#3	- 62.6	- 62.4	0.2	67.0	66.7	0.3
#4	- 60.5	- 60.6	0.1	63.3	62.1	1.2

Experimental Results (real circuits)

12-bit ADC: TDA9910

ADC	Expected THD (dB)	Estimated THD (dB)	Estimat. Error (dB)	Expected SFDR (dB)	Estimated SFDR (dB)	Estima. Error (dB)
#1	- 66.4	- 66.0	- 0.4	66.9	66.9	0.0
#2	- 64.8	- 65.9	1.1	67.2	65.6	1.6
#3	- 63.2	- 63.6	0.4	67.8	65.3	2.5
#4	- 70.4	- 69.4	- 1.0	70.7	72.1	-1.4

ADC Test with LOW PERFORMANCE AWG

- Learning Phase
 - ✓ We need two AWG channels
 - \checkmark 5 test procedures for the estimation of the AWG harmonics
- Production test
 - ✓ 1 test procedure per ADC under test
 - \checkmark Parallel testing is available with the two AWG channels

Validation

- Simulation: AWG with 4bits less than the ADC under test
- Hardware experiments: validation on 10 and 12bit ADCs

28

ADC Test with LOW PERFORMANCE AWG

- Learning Phase
- Production test
- Validation
 - Simulation: AWG with 4bits less than the ADC under test
 - ✓ <u>Hardware experiments</u>: validation on 10 and 12bit ADCs

Future Works

- Extended validations
- INL extraction from the harmonic estimation
- Noise measurement

LIRMM

29

Thank You for your Attention

30

IMSTW'07 de Varzim – Jupe 200