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Abstract. The available wrench set is the set of wrenches that can be generated at the platform

of a parallel manipulator. In a given configuration, this set is known to be a convex polytope and,

recently, it has been pointed out that it is in fact a particular type of convex polytope called a

zonotope. This paper deals with the case of parallel manipulators having as many or more actuators

than degrees of freedom and discusses a characterization of the facets of the available wrench set.
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1 Introduction

The determination of the available wrench set is a useful tool for parallel manipula-

tor analysis and design. Notably, in the case of parallel cable-driven manipulators,

the following relevant use of the available wrench set is proposed in [1]. Being given

a wrench set T that the cable-driven manipulator is required to generate in order to

achieve the tasks assigned to it, determine the available wrench set A and test if

T ⊆ A, in which case T is feasible. This methodology proposed for cable-driven

manipulator can obviously be applied to other types of parallel manipulator.

The available wrench set appears in numerous previous works and is known to

be a convex polytope [2], [3]. In the case of serial manipulators, a set with a similar

geometry is, for example, studied in [4] where it is called manipulability polytope.

Recently, Bouchard et al [5] pointed out that the available wrench set is a particular

type of convex polytope called a zonotope. Based on specific properties of zono-

topes, a simple method referred to as the hyperplane shifting method is introduced

in [5]. This method provides a representation of the available wrench set as the set of

solutions to a finite system of linear inequalities. By means of such a representation,

it is usually straightforward to test whether or not a given required wrench set T is

fully included in the available wrench set A.

The contribution of this paper is to provide a proof (Section 4) which justifies

the hyperplane shifting method. This proof is mainly based on a characterization of

zonotope facets which appears in [6] but without details. This lack of details explains
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probably why this characterization of the facets of a zonotope seems to have been

overlooked in [5]. Moreover, the proof provided in the present paper leads directly to

an improved version of the hyperplane shifting method (Section 5). The contribution

of the paper is limited but it is nevertheless hoped to be useful in pointing out a clear

characterization of the available wrench set facets, thereby complementing the work

presented in [5].

2 Available Wrench Set Definition

Let us consider an n-degree-of-freedom parallel manipulator having m actuators

(m ≥ n). In a given configuration, the vector of actuator forces/torques τ is usually

mapped to the mobile platform wrenches f (combination of a force and a moment)

according to the following linear relationship [3]

Wτ = f (1)

where W is an n × m matrix called the wrench matrix in this paper. Its ith column

is denoted wi. Note that, in the remainder of the paper, the space of mobile platform

wrenches is considered to be an affine space. Hence, it may be judged necessary

to modify Eq. (1) so as to avoid physical inconsistencies, i.e., in order to avoid

adding variables with different physical units in the case of parallel manipulators

with mixed translational and rotational degrees of freedom.

The limited force/torque capabilities of the actuators imply that each component

τi of vector τ is to lie within an interval [τimin
,τimax ] where τimin

and τimax are the mini-

mum and maximum values of actuator i force/torque, respectively. Note that usually

τimin
= −τimax but a more general case is considered here in order to include parallel

cable-driven manipulators for which 0≤ τimin
< τimax (a nonnegativity constraint due

to the fact that cables can only pull and not push [1]). Let us also define the box [τ ]
(hypercube) of admissible actuator forces/torques as

[τ] = {τ | τi ∈ [τimin
,τimax ], ∀ i, 1 ≤ i ≤ m} . (2)

The present work deals with the set of wrenches A defined as

A = {f | f = Wτ, τ ∈ [τ ]} (3)

which is, for a given configuration of a parallel manipulator, the set of platform

wrenches that can be generated by the actuators with each τi in its admissible range

[τimin
,τimax ]. Following [1] and [5], A is called the available wrench set.

This set is known to be a convex polytope. In fact, as pointed out in [5], since A

is the image of the box [τ ] under the linear map given by matrix W, A is affinely

isomorphic to a particular type of polytope called a zonotope [7]. In Figure 1(a), a

two-dimensional zonotope is shown. It is the image of a three-dimensional box.
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H1

H2

P : a zonotope

(a) A two-dimensional zonotope P and two parallel

facet-defining hyperplanes H1 and H1 of P.

H1

F = P ∩ H1

= P ∩ H2: a vertex

H2

F = P ∩ H3: a facet

P

H3

(b) A convex polygon P and three supporting

hyperplanes Hi (lines). Both H1 and H2 define a

vertex of P whereas H3 is a facet-defining

hyperplane (a facet of a convex polygon being an

edge).

Fig. 1 A two-dimensional zonotope and a two-dimensional convex polytope (polygon).

3 Faces and Representation of a Convex Polytope

Let P be an n-dimensional convex polytope. An inequality cT x ≤ d, where c is an n-

dimensional column vector and d a scalar, is said to be valid for P if it is satisfied for

all x ∈ P. Equivalently, cT x ≤ d is valid for P if P is fully included in the halfspace

H− = {x | cT x ≤ d}. An hyperplane H = {x | cT x = d} is said to be a supporting

hyperplane of P if cT x ≤ d is a valid inequality for P and P∩H is not empty.

A face F of a convex polytope P is a subset of P which can be written as F =
P∩ H for some supporting hyperplane H = {x | cT x = d} of P. The dimension

dim(F) of a face F is defined as the dimension of its affine hull aff(F), the affine

hull of F being the smallest affine set containing F or, equivalently, the intersection

of all the affine sets that contain F . Faces of dimension 0, 1 and n− 1 are called

vertices, edges and facets, respectively. A facet-defining hyperplane is a supporting

hyperplane H of P such that F = P∩H is a facet of P. Figure 1(b) illustrates these

definitions by means of a two-dimensional example (a convex polygon). Let us note

that if F is a face of a polytope P, F = P∩{x | cT x = d}, then

d = max
x∈P

cT x. (4)

It is a well-known fact [7], [8] that a convex polytope can be represented either as

the convex hull of a finite set of points or as the intersection of a finite set of closed

halfspaces. In fact, the facet-defining hyperplanes provide the latter representation

since a full dimensional polytope P is the intersection of the halfspaces bounded

by its facet-defining hyperplanes [7], [8]. Precisely, if {Fi, 1 ≤ i ≤ f} is the set of

facets of P, Hi = {x | cT
i x = di} the facet-defining hyperplane supporting P along
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Fi (Fi = P∩Hi) and H−
i = {x | cT

i x ≤ di} the closed halfspace bounded by Hi that

contains P, then

P =
f⋂

i=1

H−
i . (5)

Defining the f × n matrix C by C = (c1,c2, . . . ,c f )
T and the f -dimensional

column vector d by d = (d1,d2, . . . ,d f )
T , Eq. (5) gives P as the set of solutions

to a finite system of linear inequalities since it implies that P = {x | Cx ≤ d}. The

representation given in Eq. (5) is minimal in the sense that none of the facet-defining

hyperplanes H−
i , 1 ≤ i ≤ f , can be removed.

4 The Available Wrench Set as a System of Linear Inequalities

This section sketches a proof of the characterization stated below which enables

the representation of the available wrench set A as a system of finitely many linear

inequalities.

The wrench set A has been defined in Section 2 as the image of the box of admis-

sible actuator forces/torques [τ] under W. In the remainder of this paper, the wrench

matrix W is assumed to have full rank n so that A is full dimensional, i.e., A is of

dimension n.

Characterization of the available wrench set facet-defining hyperplanes:

First assertion—A facet-defining hyperplane H = {x | cT x = d} of the available

wrench set A is such that c is orthogonal to n−1 linearly independent column vec-

tors wi of W and

d = ∑
I+

τimax cT wi +∑
I−

τimin
cT wi (6)

where I− and I+ are index sets defined as

I+ = {i, 1 ≤ i ≤ m | cT wi > 0}, I− = {i, 1 ≤ i ≤ m | cT wi < 0}. (7)

Second assertion—Conversely, to any set of n−1 linearly independent column vec-

tors wi of W, there correspond two facet-defining hyperplanes H1 = {x | cT
1 x = d1}

and H2 = {x | cT
2 x = d2} of A. These two hyperplanes are parallel (e.g. H1 and H2

in Figure 1(a)) and such that c1 6= 0 is orthogonal to the n−1 linearly independent

wi, c2 = −c1 and

d1 = ∑
I+1

τimax cT
1 wi +∑

I−1

τimin
cT

1 wi, d2 = ∑
I+2

τimax cT
2 wi +∑

I−2

τimin
cT

2 wi (8)
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where I+
1 = {i | cT

1 wi > 0}, I−1 = {i | cT
1 wi < 0}, I+

2 = {i | cT
2 wi > 0} and I−2 = {i |

cT
2 wi < 0}. Note that I+

2 = I−1 , I−2 = I+
1 and H2 = {x | cT

1 x = −d2 = ∑I−1
τimax cT

1 wi +

∑I+1
τimin

cT
1 wi}.

4.1 Proofs of the First and Second Assertions

Proof of the first assertion—Let H = {x | cT x = d} be a facet-defining hyperplane

of A and F = A∩H the corresponding facet. Consider an arbitrary point (a wrench)

xF of F . Since xF ∈ A, we have

xF =
m

∑
i=1

τiwi, τi ∈ [τimin
,τimax ] (9)

and since xF ∈ H, according to Eq. (4), we have cT xF = d = maxx∈A cT x. Hence,

the τi which define xF in Eq. (9) are such that

m

∑
i=1

τic
T wi = max

x∈A
cT x. (10)

Let us decompose the sum in Eq. (10) as follows

m

∑
i=1

τic
T wi = ∑

I+

τic
T wi +∑

I−

τic
T wi +∑

I0

τic
T wi = ∑

I+

τic
T wi +∑

I−

τic
T wi (11)

where I0 = {i, 1≤ i≤m | cT wi = 0} and I+ and I− are defined in Eq. (7). According

to Eq. (10), since the τi maximize the sum in Eq. (11), necessarily, τi = τimax for all

i ∈ I+ and τi = τimin
for all i ∈ I−. In other words, xF is given by

xF = ∑
I+

τimax wi +∑
I−

τimin
wi +∑

I0

τiwi, τi ∈ [τimin
,τimax ] for all i ∈ I0

. (12)

Consequently, by definition of the index set I0, d = cT xF can be written as

d = ∑
I+

τimax cT wi +∑
I−

τimin
cT wi (13)

so that Eq. (6) is proved.

Note that any point x of A which can be written as xF in Eq. (12) belongs to the

facet-defining hyperplane H since cT x = d. Thus, such a point x belongs to the facet

F (since F = A∩H) and we have

F = {x | x = ∑
I+

τimax wi +∑
I−

τimin
wi +∑

I0

τiwi, τi ∈ [τimin
,τimax ] for all i ∈ I0}. (14)
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Moreover, basic properties of affine sets imply that the affine hull aff(F) of F is

aff(F) = {x | x = ∑
I+

τimax wi +∑
I−

τimin
wi +∑

I0

τiwi, τi ∈ R for all i ∈ I0} (15)

and that its dimension is

dim(aff(F)) = rank({wi | i ∈ I0}) = rank({wi | cT wi = 0}). (16)

Finally, F being a facet of A, dim(aff(F)) = n−1 and hence Eq. (16) implies that

there exists n−1 linearly independent wi among those of the set {wi | cT wi = 0}. In

other words, c is orthogonal to n− 1 linearly independent wi completing the proof

of the first assertion.

Proof of the second assertion—Let us consider a set of n−1 linearly independent

column vectors wi of W which, without loss of generality, can be assumed to be w1,

w2, . . ., wn−1. Let c1 be any nonzero vector orthogonal to w1, w2, . . ., wn−1, d1 be

given by Eq. (8) and H1 be the hyperplane H1 = {x | cT
1 x = d1}.

With arguments similar to those used above in the proof of the first assertion, it

can be shown that H1 is a supporting hyperplane of A and that the corresponding

face F1 = A∩H1 is given by Eq. (14) with I0
1 = {i | cT

1 wi = 0} instead of I0 and I+
1

and I−1 instead of I+ and I−, respectively. Then, according to Eq. (16) (with F1, I0
1

and c1 in place of F , I0 and c, respectively) and since the n−1 linearly independent

w1, w2, . . ., wn−1 belong to {wi | i ∈ I0
1}, we have dim(aff(F1)) = n−1 so that F1 is

a facet of A. H1 is thus a facet-defining hyperplane of A.

Defining the vector c2 as c2 = −c1, the hyperplane H2 = {x | cT
2 x = d2} with d2

defined in Eq. (8) is parallel to H1 and the same type of arguments as those used

above show that H2 is a facet-defining hyperplane of A which completes the proof.

4.2 A Finite System of Linear Inequalities

Referring to Section 3, the available wrench set A can be written as the intersec-

tion of the halfspaces bounded by its facet-defining hyperplanes which provides a

representation of A as the set of solutions to a system of linear inequalities.

Let C be a finite set of nonzero vectors c j, C = {c j, 1 ≤ j ≤ p}, such that, on

the one hand, each c j ∈ C is orthogonal to n− 1 linearly independent columns wi

of W and, on the other hand, for any set of n−1 linearly independent columns wi,

there exists one and only one c j ∈ C orthogonal to these n− 1 columns wi. Then,

according to the characterization of the facet-defining hyperplanes of A stated at the

beginning of Section 4, we have

A =
p⋂

j=1

(H−
j1 ∩H−

j2) (17)
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where H−
j1 = {x | cT

j x ≤ d j1} and H−
j2 = {x | (−c j)

T x ≤ d j2} are two closed half-

spaces such that c j ∈C and d j1 and d j2 are defined similarly to d1 and d2 in Eq. (8).

Moreover, in order to obtain a minimal representation, i.e., a representation in

which, to each facet of A, there corresponds one and only one halfspace H−
jk, k = 1

or 2, C must be such that no two of its vectors are collinear (i.e., ∀(c j,cl) ∈ C×C,

c j 6= cl , there does not exist α such that cl = αc j). The number of facets f of A

is equal to 2p if and only if C satisfies this property. When C does not satisfy this

property, f < 2p. Finally, note that if no set of n columns wi of W is a linearly

dependent set then C necessarily satisfies the aforementioned property, i.e, f = 2p.

Note however that a minimal representation is not mandatory in order to test if a

required wrench set T is included in A.

5 Hyperplane Shifting Method

The characterization of the available wrench set A presented in the previous section

leads naturally to the following method that provides a representation of A as the

solution set of a system of linear inequalities. In [5], this method is referred to as the

hyperplane shifting method. Compared to the version introduced in [5], step 2 of the

one presented below avoids many useless computations. Moreover, it is pointed out

how to obtain a minimal representation of A.

This method consists in considering all the possible combinations of n − 1

columns of the wrench matrix W in turn. At the beginning of the method, j = 0.

For the current combination {wi | i ∈ I0}, where I0 is the current subset of n− 1

elements of {1,2, . . . ,m}, do

Step 1: Test if the n−1 column vectors wi, i ∈ I0, are linearly independent. If it is

the case, j = j+1, determine a nonzero vector c j orthogonal to these n−1 columns

wi and go to step 2.

Step 2: Let I+ and I− be the subsets of {1,2, . . . ,m} defined as I+ = {i | cT
j wi >

0} and I− = {i | cT
j wi < 0}. Compute d j1 and d j2 as follows

d j1 = ∑
I+

τimax cT
j wi +∑

I−

τimin
cT

j wi, d j2 = −∑
I−

τimax cT
j wi −∑

I+

τimin
cT

j wi. (18)

At the end of the method, j = p and the 2p halfspaces H−
j1 = {x | cT

j x ≤ d j1} and

H−
j2 = {x | (−c j)

T x ≤ d j2}, j = 1, . . . , p, provide a representation of A as stated in

Eq. (17). Gathering the vectors c j and −c j in a matrix C and the d j1 and d j2 in a

vector d in an appropriate way, Eq. (17) gives A as the solution set of the system of

linear inequalities Cx ≤ d. For this representation of A to be minimal, in Step 1, it

must be ensured that c j is not collinear to any of the previously computed ones, i.e.,

not collinear to any of the ck, k = 1, . . . , j − 1. Indeed, if such a collinearity exists,

c j can be left out from consideration since it yields a redundant inequality.
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Step 1 can be implemented as follows. Let WI0 be the n× n− 1 matrix whose

columns are the current n−1 column vectors wi, i ∈ I0. Let d be the dimension of

the nullspace of WT
I0 where d 6= 0 since WT

I0 has more columns than rows. When

d > 2, the current n−1 column vectors wi, i∈ I0, are linearly dependent. Otherwise,

d = 1 and c j can be any nonzero vector in the nullspace of WT
I0 since then wT

i c j = 0

for all i ∈ I0. Hence, with the help of a routine that determines the nullspace of a

matrix, the hyperplane shifting method is quite straightforward to implement.

6 Conclusion

This paper has dealt with the characterization of the facet-defining hyperplanes of

the available wrench set of a parallel manipulator which enables to represent this set

as the set of solutions to a system of linear inequalities. With such a representation,

being given a wrench set T that the parallel manipulator is required to generate, it is

generally straightforward to test whether or not T is fully included in the available

wrench set, i.e., whether or not T is feasible.
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