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Why Big Data Today? 

•  Overwhelming amounts of data 
•  Generated by all kinds of devices, networks and programs 

•  E.g. sensors, mobile devices, internet, social networks, 
computer simulations, satellites, radiotelescopes, etc. 

•  And we can now store these data! 
•  Storage capacity has doubled every 3 years since 1980 with 

prices steadily going down 
•  1 Gigabyte for: 1M$ in 1982, 1K$ in 1995, 0.12$ in 2011 

•  But what do we do with these data? 
•  Produce high-value information and knowledge 
•  Critical for data analysis, decision support, forecasting, 

business intelligence, research, (data-intensive) science, etc. 
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Some estimates* 

•  1,8 zetabytes (1021 bytes, or 1,000 exabytes) 
•  An estimation for the data stored by humankind in 

2011 

•  40 zetabytes in 2020 
•  But 

•  Less than 1% of big data is analyzed 
•  Less than 20% of big data is protected 
 
✱ Source: Digital Universe study of International Data 

Corporation (IDC), december 2012 
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Big Data Dimensions: the three V’s 

•  Volume 
•  Refers to massive amounts of data 
•  Makes it hard to store, manage, and analyze (big analytics) 

•  Velocity 
•  Continuous data streams are being produced 
•  Makes it hard to perform online processing 

•  Variety 
•  Different data formats, different semantics, uncertain data, 

multiscale data, etc. 
•  Makes it hard to integrate and analyze 

•  Other V's 
•  Validity: is the data correct and accurate? 
•  Veracity: are the results meaningful? 
•  Volatility: how long do you need to store this data? 
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Parallel database systems 
 
Data stream management systems 
 
Data integration systems 
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Big Data Challenge 

•  The needs are in technology 
•  New architectures, algorithms, techniques 

•  AND technical skills 
•  Experts in using the new technology and dealing with 

big data, e.g. big data scientists 
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Big Data Landscape 
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Big Data Landscape 

Easy to get lost 
Many diverse solutions 

Rapidly evolving 



9 

Many Different Types of Big Data 

•  Key-value 
•  The simplest structure 

•  Relational table 
•  Nested table, Bigtable 

•  Array 
•  Nested array, multidimensional 

•  Document  
•  Unstructured text data (Web) 
•  Semi-structured data (XML, JSON, etc.)  

•  Graph 
•  Social network, Semantic Web (RDF), …  

•  Data stream 
•  Data (from sensors, etc.) that continuously flow in 

•  Time series 
•  Sequence of data points, at uniform time intervals 

 

Outline of the Talk 

•  Big data example 
•  Data indexing 
•  Parallel data processing 
•  Big data indexing using bitmaps 
•  Conclusion 



Big Data: example*  

 
✱ A. Romosan, A. Shoshani, K. Wu, V. Markowitz,                  

K. Mavrommatis. Accelerating Gene Context Analysis 
Using Bitmaps. SSDBM 2013. 
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Gene Functional Annotation 

•  Sequence similarity 
•  Gene context provides information for the function of genes 
•  Functionally related genes are frequently found in the same 

chromosomal neighborhood 
•  Gene cassette 

•  A modular DNA sequence encoding one or more genes for a single 
biochemical function 

•  Parallel or Divergent orientation 
•  Distance < 300nt 

350nt 50nt 

50nt 250nt 

50nt 
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Conserved Gene Regions 

E 

D 

C 

B 

A 

IX VII VI V IV III II I 

•  Groups of at least two common genes between two or more 
gene cassettes 

•  Genes are replaced by protein families (COGs, pfams, etc.) 
•  One gene => multiple families 

•  Refered to as “properties”, such as “cog0087 cog0088 
pfam00181 pfam00189 pfam00203” 

•  Example of two-or-more conserved regions across multiple 
genomes 
•  In gray: 2 genes across 2 genomes 
•  In pink, 2 genes across 4 genomes 
•  In blue, 4 genes across 2 genomes 

Genes 

Genomes 
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Gene Cassette Search Tool at IMG* 

*Integrated Microbial Genomes (IMG), Lawrence Berkeley Labs 
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Why is this problem hard? 

•  Very big data 
•  Predictions: 100 million cassettes, with properties from about 25,000 

possible genomes 
•  Total number of elements: 2.5 x 1012 

•  Query types 
•  Given a cassette, find all cassettes that have the same properties in 

common 
•  That is a massive multi-value search 

•  Given a cassette find all cassettes that have 2-or-more properties in 
common 

•  Explosive search of all possible combinations of 2-or-more 
•  Experiments @ IMG 

•  With an RDBMS 
•  3.3 million gene cassettes across 8,000 genomes 
•  Correlation table of more than 2 billion rows along with a dozen 

auxiliary tables 
•  16.5 hours to build and a typical query requires 5 to 10 minutes to 

answer 

Data Indexing 
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Data Storage: row versus column 

•  Column-store better for 
•  Data-intensive apps (OLAP, not OLTP) 
•  Big data 

• With lots of columns (or dimensions) 

+ Efficient access to useful data 
– Add/delete row inefficient 
 

+ Add/delete row efficient 
– Reads of useless data 
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Purpose of Data Indexing 

•  Accelerate the access to data (records, objects, documents, 
etc.) in 
•  Data containers: files, databases (row-store or column-store) 

•  Each with its API 
•  By reducing the number of disk and/or memory accesses 

•  Basic functions (direct access using primary key) 
•  Put (key, data), Update (key, data) 
•  Get (key): data 
•  Delete (key) 

•  Search or query types  
•  Exact match (point query), partial match 
•  Range 
•  Multikey 

•  Top-k, skyline 
•  Similarity (content-based) 
•  Keyword 
•  Etc. 
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Index Data Structure 

•  Given that data are stored in fixed units of access 
•  Disk pages, memory areas 

•  Associates keys with corresponding data 
•  Requires each data to be uniquely identified 

• On disk: RID, TID, … (e.g. disk page address) 
•  In main memory: by a pointer to the data 

•  Organizes keys in a way that speeds up key lookup 
•  Basic structures 

•  Hash table 
•  Tree-based index 
•  Multidimensional index 
•  Bitmap index 
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Hash Table 

•  h(key), e.g. key mod n yields a page 
number 

•  Good for exact match search 
•  Access in O(1) 

•  Static hashing 
•  Lists of overflow buckets degrade 

performance => periodic reorg. 

•  Dynamic hashing 
•  Extendible hashing [Fagin 79], linear 

hashing [Litwin 80] 
•  Allows the file to grow and shrink without 

overflowing 
•  Needs a (compact) index, e.g. bit table 

Primary pages 

Overflow pages 

Static hashing 
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Tree-based Index 

•  Preserves key order 
•  B-tree  

•  Exact match query 
•  Range query 
•  Access in O(log n) 
•  Dynamic updates 

•  Many variations 
•  Disk-based: B+-tree [Bayer 72] 
•  Memory-based: T-tree [Lehman 86] 

•  Issues 
•  Index size 
•  Building cost 

Leaf pages (data) 

B+-tree 

Index pages 
(key ranges) 
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Multidimensional data 

•  Data represented by points in a 
multidimensional space 
•  A dimension is like a column in a 

relational table 
•  Straighforward indexing 

•  One primary (also called placement) 
index on one key 

•  For instance, with a B+-tree index, 
we get clustered access to data in 
the same interval 

•  Secondary indexes on other keys 
• With random access to the data 

•  But only for point and range queries 
•  Sequential scan better for other 

queries 

A 3D point and its data 
(Paris, 2014, Mastodons) 
= [2 k, 80 p] 

City 

Year Event 
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Multidimensional Index 

•  Needed to store and access spatial data 
•  E.g. geographical coordinates or geometric objects 

(lines, polygons, circles, etc.) 

•  With more powerful search capabilities 
•  Point and range queries 
•  Proximity (window query), spatial join 
•  Similarity: Nearest Neighbour Search 

• Similarity measure: application dependent 

•  Index structures for a few dimensions (<10) 
•  R-tree [Guttman 84], KD-tree [Bentley 75], Predicate 

trees [Valduriez 84] 
•  Variants of R-trees: R*, R+, X-tree 
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R-tree Example 

•  Each multidimensional data (e.g. a geometry) is 
approximated by a single rectangle (called the minimum 
bounding rectangle) that minimally encloses it 

•  Works well with up to four dimensions 
•  E.g. spatio-temporal: altitude, longitude, latitude, time 

•  Access in O(log n), but worst case insert in O(n) 
•  The issue is to minimize coverage and overlap of 

rectangles 
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High Dimensional Data 

•  Applications 
•  Multimedia: image, video 

•  Dimensions: object features 
•  Document retrieval, e.g. keyword search 

•  Dimensions: document terms 
•  Biology, e.g. gene functional annotation 

•  Dimensions: genes 
•  Problem: curse of dimensionality 

•  Exponential growth of the hypervolume as a function of dimension 
•  Typical solutions 

•  Partition and reduce the high dimensional space 
•  While preserving partition balancing and locality 
•  Using multiple hash tables or tree structures (randomized KD-

tree, hierarchical k-means, etc.) 
•  Compress the data 

•  Using hashing techniques (e.g. hamming embedding) 
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Bitmap Index 

•  Easy to build: faster than B-trees 
•  Efficient for querying: only 

bitwise logical operations 
•  X < 2 => b0 OR b1 
•  X > 2 => b3 OR b4 

•  Efficient for multi-dimensional 
queries 
•  Use bitwise operations to combine 

the partial results 
•  Size: one bit per distinct value 

per object 
•  Cardinality == number of distinct 

values 
•  Need to control size for high 

cardinality attributes 
•  Solution 

•  Efficient  compression method 
•  Operations directly on compressed 

data 

X < 2 X > 2 
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Other Major Structures 

•  Inverted files 
•  Special tables with rows of the form: <value, list of keys> 

pairs 
•  Ex. <value, (doc-id:id1, doc-id:id2, doc-id:id10)> 

•  Given an attribute value, returns all corresponding keys 
•  Like secondary indexes, these keys can in turn be used to 

access the corresponding data using a primary index 

•  Join indices [Valduriez 87] 
•  Capture the join of two tables in a compact way 

•  Also useful for complex structures, e.g. graphs 
•  Speeds up complex query processing 

•  Many variations, e.g. Oracle bitmap join indices 
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Big Data Indexing Requirements* 

•  Speed of search 
•  Search over billions – trillions data values in seconds 

•  Multi-variable queries 
•  Be efficient for combining results from individual variable search 

results 
•  Size of index 

•  Index size should be a fraction of original data 
•  Parallelism 

•  Should be easily partitioned into pieces for parallel processing 
•  Speed of index generation 

•  For in situ processing, index should be built at the rate of data 
generation 

 
✱  A. Shoshani. On the Role of Indexing in Scientific Domains. Bigdata 

and Extreme Computing, 2013. 



Parallel Data Processing 
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The solution to big data processing! 

• Exploit a massively parallel computer 
• A computer that interconnects lots of CPUs, RAM and 

disk units 

•  To obtain 
•  High performance through data-based parallelism 

• High throughput for OLTP  loads 

•  Low response time for OLAP queries 

•  High availability and reliability through data replication 

•  Scalability of the architecture 
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Scalability : ideal goals 

•  Linear increase in performance 
for a constant database size 
and load, and proportional 
increase of the system 
components (CPU, memory, 
disk) 

• Sustained performance for a 
linear increase of database 
size and load,  and 
proportional increase of 
components 

perf. 
ideal 

Components 

ideal 

components 
+ (db & load) 

perf. 
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Data-based Parallelism 

•  Inter-query 
•  Different queries on the same 

data 
•  For concurrent queries 

•  Lots of queries  
•  Inter-operation 

•  Different operations of the same 
query on different data 

•  For complex queries 
•  Lots of ops/query 

•  Intra-operation 
•  The same operation on different 

data 
•  For large queries 

•  Lots of data/op. 

Op3 

Op1 Op2 

Op 

D1 

Op 

Dn 

… 

D1 D2 

Q1 Qn 

D 

…
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Shared-nothing (SN) Cluster 

M 

P … P 

M 

P … P 

Perfect match for big data (read intensive) 

No sharing of either memory or 
disk across nodes 

•  Needs careful data partitioning 
•  Examples 

•  Parallel RDMS: DB2 DPF, SQL 
Server Parallel DW, Teradata, 
MySQLcluster 

•  Search engines: Google search 
•  NoSQL key-value stores (Bigtable, 

…) 

+ highest extensibility, cost 
-  updates, distributed trans. 
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•  Big datasets 
•  Data partitioning and indexing 

• Problem with skewed data distributions 
•  Disk is very slow (100K times slower than RAM) 

• Exploit RAM data structures and compression 
techniques 

• Exploit SSD (read 10 times faster than disk) 

•  Query parallelization and optimization 
•  Automatic if the query language is declarative (e.g. 

SQL) 
• Parallel algorithms for algebraic operators 

•  Complex if multiple datasets (join, etc.) 

•  Programmer-assisted otherwise (e.g. MapReduce) 

Parallel Techniques: design considerations 
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Data Partitioning 

Keys Values 

•  Vertical partitioning 
•  Base Basis for column stores 

(e.g. MonetDB, Vertica): 
efficient for OLAP queries 

•  Easy to compress, e.g. using 
Bloom filters 

A table 

•  Horizontal partitioning 
(sharding) 
•  Shards can be stored 

(and replicated) at 
different nodes 
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Sharding Schemes 

Round-Robin 
•  ith row to node (i mod n) 
•  perfect balancing 
•  but full scan only 

•••	

 •••	



•••	



•••	


Hashing 

•  (k,v) to node h(k) 
•  exact-match queries 
•  but problem with skew 

•••	



Range 
•  (k,v) to node that holds k’s interval 
•  exact-match and range queries 
•  deals with skew 
 

••• 

••• a-g h-m u-z 
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Parallel Indexing 

•  2 level indexing 
•  Global level: key -> node 

•  Like a table, should be partitioned and replicated 
•  Problems 

•  Index partitioning 
•  Update propagation for replicas 

•  Local level (within a node): like a normal index 
•  Easier with 

•  Hash tables, bitmaps, inverted files 
•  More complex with trees or graphs 

•  Index partitioning 
•  Replicate top levels, partition low levels 

Big Data Indexing using 
Bitmaps 
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Gene Cassette Search* 

•  Recall: with an RDBMS 
•  16.5 hours to build the correlation table 

and a typical query requires 5 to 10 
minutes to answer 

•  Fastbit (sdm.lbl.gov/fastbit) 
•  Efficient compressed bitmap technology 

•  Logical ops directly on compressed 
data 

•  Results with Fastbit 
•  Reading the input data takes about 1.5 

hours and constructing the bitmaps takes 
only 8 minutes 

•  "Killer queries" in seconds 
•  An extremely complex query involving 160 

genomes (needing a 160- way cross-
product) takes less 10 seconds 
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✱  A. Romosan, A. Shoshani, K. Wu, V. Markowitz, K. Mavrommatis. Accelerating Gene Context 

Analysis Using Bitmaps. SSDBM 2013. 

Vertical bitmap 
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Scalability 

•  Problem: the number of genomes sequenced is 
growing faster than Moore's law 
•  One of the reasons is the sequencing of combination of 

genomes, called meta-genomes 
• E.g., a soil sample has in it a large number of 

bacteria, each with its own genome 

•  Fastbit solution 
•  Horizontal partitioning of bitmaps 

•  For example, if we have 1 billion rows, it is possible 
to partition them into 100 chunks of bitmaps for 
every 10 million rows, with each chunk to be 
provided to one of 100 cores for parallel processing 

•  Issue: chunk load balancing 



Conclusion 

42 

Summary 

•  Major problems in big data indexing 
•  Scalability 
•  Index building time 
•  High dimensional indexing 

•  Solutions must combine indexing and parallel 
processing 
•  Example Hadoop++ [Dittrich 12] 

•  Adds B-tree indexes to Hadoop MapReduce 

•  Many different solutions 
•  Different trade-offs 

•  Access time vs. update time, row-store vs. column-store, 
etc. 

•  Different objectives and apps 
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Research Directions 

•  Much room for research and innovation 
•  Database cracking [Idreos 13] 

• Building the index dynamically during query 
processing 

•  Easier with column-store 

•  Algorithms that exploit new hardware capabilities 
• Memory hierarchies 

•  Large RAM memory 
•  Towards 1 Terabyte RAM chips 

•  Flash memory and SSD 

• Parallel processing hierarchies 
•  Multicore and GPUs 

•  Bottleneck is in experimentation 
•  We need big data platforms to experiment with 

44 

My Favorite Old Book on Indexing 

First Edition: 1973 


