
Outline Introduction HIV-1 data - Results Demographic simulations HSV data - Results S. aureus - Results Conclusions

Improving the accuracy of demographic and clock
model comparison while accommodating

phylogenetic uncertainty

Guy Baele

Evolutionary and Computational Virology Section,
KU Leuven, Belgium

June 19th, 2012

Improving the accuracy of demographic and clock model comparison while accommodating phylogenetic uncertainty 1 / 22



Outline Introduction HIV-1 data - Results Demographic simulations HSV data - Results S. aureus - Results Conclusions

1 Introduction

2 HIV-1 data - Results

3 Demographic simulations

4 HSV data - Results

5 S. aureus - Results

6 Conclusions

Improving the accuracy of demographic and clock model comparison while accommodating phylogenetic uncertainty 2 / 22



Outline Introduction HIV-1 data - Results Demographic simulations HSV data - Results S. aureus - Results Conclusions

Goal of model selection: accurately calculate Bayes factors

given prior belief that the models are equally likely: expresses
how much more (less) likely one model is compared to the
other

ratio of marginal likelihoods

takes into account differences in dimensions, so higher
dimensional models are not automatically preferred

the aim of model selection is not necessarily to find the true
model that generated the data but to select a model that best
balances simplicity with flexibility and biological realism in
capturing the key features of the data (Steel 2005)
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Calculating reliable (log) Bayes factors:

depends on reliable calculation of the marginal likelihoods

the harmonic mean estimator (HME) remains widely used
because of its computational efficiency (and ease of
implementation)

but the HME is often severely biased, overestimating the true
marginal likelihood (Lartillot & Philippe 2006, Xie et al.
2011) and tends to prefer models with higher dimensions

in some (simple) cases even the arithmetic mean estimator
(AME) outperforms the HME
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Compare marginal likelihood estimation using different methods:

the harmonic mean estimator (HME; Raftery & Lewis, 1994)

the stabilized harmonic mean estimator (sHME; Suchard &
Redelings, 2005)

a posterior simulation-based analogue of Akaikes information
criterion (AIC) through Markov chain Monte Carlo (MCMC)
(AICM; Raftery & Newton, 2007)

path sampling (PS; Lartillot & Philippe, 2006)

stepping-stone sampling (SSS; Xie et al., 2011)

Applied to demographic and relaxed molecular clock comparison
(using BEAST)

Improving the accuracy of demographic and clock model comparison while accommodating phylogenetic uncertainty 5 / 22



Outline Introduction HIV-1 data - Results Demographic simulations HSV data - Results S. aureus - Results Conclusions

The AICM is defined as:

AICM = 2s2l − 2̄l

where l̄ and s2l are the sample mean and variance of the posterior
log likelihoods (Raftery et al., 2007)

HME, sHME and AICM properties:

only require samples from the posterior

reasonably fast

quick convergence towards the marginal likelihood
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PS and SS/SSS properties:

require samples from a series of power posteriors, along a path
between prior and posterior:

qβ(θ) = p(Y | θ,M)βp(θ | M),

PS and SS differ in the way the collected samples are used to
estimate the log marginal likelihood

reduces to the posterior when β = 1

reduces to the prior when β = 0

slow / computationally demanding

slower convergence than HME/AICM

Placing more computational effort near β = 0 leads to a
substantial increase in the efficiency of the estimator
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Stepping-stone sampling convergence compared to path sampling
and harmonic mean for a green plant 10-taxa dataset

8 SYSTEMATIC BIOLOGY VOL. 60

FIGURE 5. Log marginal likelihood for three estimation methods
as a function of the number of β intervals, K, for the green plant
Ribulose Bisphosphate Carboxylase/Oxygenase large subunit (rbcL)
example. β values are evenly spaced quantiles from a Beta(0.3,1.0) dis-
tribution. Error bars represent±1 standard error based on 30 indepen-
dent MCMC analyses.

SS associated with expressing the marginal likelihood
on the log scale is also obvious, and clearly a function
of the MCMC variance. TI requires a larger number
of β intervals than SS in order to overcome its addi-
tional discretization bias. Given sufficiently large K,
both TI and SS estimate the log marginal likelihood to
be −6617, whereas HM estimates it to be 65 log units
higher (−6552).

Simulation Study Comparing Models Selected by
HM versus SS

One might argue that if HM always chose the same
model as TI or SS, then it is irrelevant that HM overes-
timates marginal likelihoods. That is, even if HM is off
the mark, as long as it covaries with the true marginal
likelihood, it may nevertheless be an effective way to
choose among models. We conducted simulations com-
paring model selection using HM versus SS to see if 1)
they always choose the same model and 2) if they do
not choose the same model, which (HM or SS) tends
to choose the simpler model. Data sets were simulated
by first drawing a number of taxa and a number of
sites at random. A discrete uniform distribution was
used for each of these choices, with the number of taxa
ranging from 4 to 20 (inclusive) and the number of
sites from 50 to 5000 (inclusive). For each simulated
data set, a tree topology was chosen at random from
all possible unrooted, labeled, binary tree topologies
(i.e., the proportional-to-distinguishable model), and
internal branch lengths, external branch lengths, base
frequencies, and GTR relative rates were drawn from

Gamma(10, 0.001), Gamma(1.0, 0.1), Dirichlet(100, 100,
100, 100) and Dirichlet(100, 100, 100, 100, 100, 100)
distributions, respectively. The discrete gamma distri-
bution (10 categories) was used to impart among-site
rate heterogeneity, with the gamma shape parameter
drawn from a Gamma(2,3) distribution. The 100 data
sets used for this example were thus iid (independently
and identically distributed). Although this generating
model technically produced all data sets from a GTR+G
distribution, the distributions were chosen such that
the parameter vectors used for many simulation repli-
cates were arbitrarily close to various submodels of the
GTR+G model. For example, the Gamma(2,3) distribu-
tion used to choose the shape parameter for among-site
rate heterogeneity produces values greater than 5 (i.e.,
very low rate heterogeneity) about 50% of the time.
Thus, about 50% of data sets could be fit nearly as well
by the GTR model as by the (true) GTR+G model.

Each of the 100 data sets was subjected to 12 MCMC
analyses (6 models for both HM and SS) for a total
of 1200 MCMC analyses. The 6 models tested were:
Jukes–Cantor (JC) model, JC+G, HKY, HKY+G, GTR,
and GTR+G. Priors used were as follows: Exponen-
tial(10) for all branch lengths; Dirichlet(1.0,1.0,1.0,1.0)
for base frequencies in HKY and GTR models; Dirich-
let(1.0,1.0,1.0,1.0,1.0,1.0) for relative rates in GTR mod-
els; BetaPrime(1.0,1.0) for the transition/transversion
rate ratio parameter (κ) in the HKY model; and Uni-
form(0,200) for the discrete gamma shape parameter
in the “+G” models. The BetaPrime distribution (also
known as the “Beta distribution of the second kind”)
makes it possible to place a prior on κ in the HKY
model that is equivalent to the Dirichlet prior placed
on relative rates in the GTR model. That is, the Be-
taPrime distribution assumed for κ is equivalent to
letting κ = p/(1 − p), where p is a Beta(1.0,1.0) ran-
dom variable. The priors assumed thus correspond
exactly to the default priors used in MrBayes v. 3.1.2
(Ronquist and Huelsenbeck 2003). For the SS analyses,
5000 MCMC cycles were devoted to each of the K = 50
β intervals, with a preanalysis burn-in of 5000 cycles. To
be fair, HM analyses were allowed a 5000 cycle burn-in
followed by 50× 5000= 250, 000 cycles of sampling. For
both HM and SS, samples were taken every 20 cycles
during the post-burn-in part of the MCMC analysis.
Both simulations and MCMC analyses were performed
using Phycas (www.phycas.org).

HM chose the same model as SS in 30 of the 100 simu-
lation replicates (Table 3). In 67 of the remaining 70 sim-
ulation replicates (95.7%), SS choose a model that was
less complex (in terms of the number of free parameters)
than HM. In the 3 cases where HM chose the simpler
model, HM chose a rate homogeneity model over a rate
heterogeneity model. In contrast, SS often chose mod-
els that were much simpler than that chosen by HM:
HKY over GTR (25 cases), JC over GTR (21 cases) or JC
over HKY (7 cases). HM chose the most complex model
possible (GTR+G) in 64% of the simulations. Although
the GTR+G is technically the correct model for all sim-
ulations, many simulation replicates come very close to
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HIV-1 data: 162 taxa, 997 bp

”The inability to strongly reject the model with a constant
population size prior is counterintuitive because it is clear that
the HIV-1 population size has increased notably. We speculate
that this finding might be due to the simplest model providing
a good fit to a relatively short, information-poor alignment, in
comparison with more parameterized models.’ (Worobey et
al., 2008)’

information-poor alignment, in comparison with more parameter-
ized models.

Acid-containing fixatives such as Bouin’s solution can cause base
modifications of nucleic acids, leading to the generation of erroneous
bases in sequences derived from such samples3. However, the replica-
tion of all sequences from independent PCR amplifications and the
uncorrected pairwise distance between the consensus sequences from
the two laboratories (1.4%) suggest that few of the mutations on the
DRC60 lineage are damaged-induced. Moreover, our relaxed clock
methods are likely to be fairly robust to the presence of suchmutations
in one lineage9. Nevertheless, additional old sequence data would be
helpful for resolving what impact, if any, this possible source of error
had on the slightly earlier dates we calculated compared with previous
estimates that did not include early calibration points2,8,14,15.
Interestingly, the best-fit model for the data set that excluded ZR59
and DRC60 (Table 1) gave a TMRCA estimate of 1933 (1919–1945),
which is very similar to that of ref. 2. This suggests that the inclusion of
the old sequences, rather than the vagaries associated with a much
shorter alignment than that analysed by ref. 2, might explain the
discrepancy. Also, one earlier study, using sequences from the DRC
only16, produced dating and demography estimates very similar to
ours. Overall, there is broad agreement between all of these studies
in spite of differences in data and methods.

Our estimation of divergence times, with an evolutionary time-
scale spanning several decades, together with the extensive genetic
distance between DRC60 and ZR59 indicate that these viruses
evolved from a common ancestor circulating in the African popu-
lation near the beginning of the twentieth century; TMRCA dates
later than the 1930s are strongly rejected by our statistical analyses.
The topology of the HIV-1 group M phylogeny provides further
support for this conclusion. Unlike ZR59, which is basal to subtype
D1, DRC60 branches off from the ancestral node of subtype A/A1
(Fig. 2 and Supplementary Figs 1 and 2). Thus, it is clear that phy-
logenetically distinct subtypes (and/or their progenitors) were
already present in the DRC by this early time point (Fig. 2).
Notably, DRC60 and ZR59 cluster with other strains from the same
geographical region and basal to other members of their respective
subtypes, a pattern consistent with the hypothesis that the subtypes
spread through lineage founder effects worldwide, whereas a more
diverse array of forms remained at the site of origin in Africa17,18.

The reservoir of the ancestral virus still exists among wild chim-
panzee communities in the same area on the African continent19.
Humans acquired a common ancestor of the HIV-1 M group by
cross-species transmission under natural circumstances20, probably
predation21. The Bayesian skyline plot (Supplementary Fig. 2), which
tracks effective population size through time, suggests that HIV-1
groupM experienced an extensive period of relatively slow growth in
the first half of the twentieth century. A similar pattern has been
inferred using sequences sampled only in the DRC16. This pattern,
and the short duration between the first presence of urban agglo-
merations in this area and the timing of the most recent common
ancestor of HIV-1 group M (Fig. 3), suggests that the rise of cities
may have facilitated the initial establishment and the early spread of
HIV-1. Hence, the founding and growth of colonial administrative
and trading centres such as Kinshasa22may have enabled the region to
become the epicentre of the HIV/AIDS pandemic23.

The archival banks of Bouin’s-fixed paraffin-embedded tissue spe-
cimens accumulated bymany hospitals inwest-central Africa provide
a vast source of clinical material for viral genetic analysis. As with the
1918 Spanish influenza pandemic virus24,25, a deep perspective on the
evolutionary history of HIV-1 using sequences resurrected from the
earliest cases in Africa could yield important insights into the patho-
genesis, virulence and evolution of pandemic AIDS viruses.

METHODS SUMMARY
A total of 813 Bouin’s-fixed paraffin-embedded histopathological blocks were
recovered from the 1958–1962 archives of the Department of Anatomy and
Pathology at the University of Kinshasa. The boxes were stored until transfer to
the University of Arizona, where 8 lymph node, 9 liver and 10 placenta samples
from 1958–1960 were selected for RNA preservation analysis and HIV-1 RNA
screening. We used a human b-2-microglobulin (B2M) quantitative RT–PCR
assay to assess RNA quality as described3. Digestion and extraction of these sam-
ples, and of three modern positive-control samples, were performed using
QIAampDNAmicro kits (Qiagen) using the protocol described in ref. 3.We used
14 primer sets designed to anneal to highly conserved regions of the gag, pol and
env genes of HIV-1 group M and to amplify very short fragments likely to be
present even in ancient and/or degraded specimens (Supplementary Table 1).
Reverse transcription was performed using the SuperScript III System for RT–
PCR (Invitrogen). The cDNA was amplified by PCR using Platinum Taq HiFi
enzyme (Invitrogen) and cloned using the TOPO TA Cloning Kit (Invitrogen).
We constructed an alignment including 156 published reference sequences plus

Table 1 | HIV-1 M group TMRCA estimates from BEAST analyses under different coalescent tree priors

Coalescent tree prior DRC60 and ZR59 excluded* DRC60 and ZR59 included

Constant 1933 (1919–1945){, 0.0 1921 (1908–1933){, 0.0
Exponential 1907 (1874–1932), 23.56 0.8 1914 (1891–1930), 22.16 1.5
Expansion 1882 (1834–1917), 22.76 0.8 1902 (1873–1922){, 21.66 1.5
Logistic 1913 (1880–1937), 22.36 0.8 1913 (1891–1930), 23.26 1.5

Bayesian skyline plot 1882 (1831–1916), 22.76 0.8 1908 (1884–1924){, 20.46 1.5

Shown for each coalescent tree prior is the median, with the 95% highest probability distribution of TMRCA in parentheses. Also shown is the log10 Bayes factor difference in estimated marginal
likelihood (6 estimated standard error) compared with the coalescent model with strongest support.
*Concatenated gag-pol-env fragments available for either or both of ZR59 and DRC60 (994 nucleotides total, 507 from DRC60).
{TMRCAs for the best-fit model and models not significantly worse than it are written in bold.
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Figure 3 | The origin and growth of the major settlements near the
epicentre of the HIV-1 groupM epidemic. In the countries surrounding the
putative zone of cross-species transmission19 (current-day Cameroon,
Central African Republic, DRC, Republic of Congo, Gabon and Equatorial
Guinea) there was not a single site with a population exceeding 10,000 until
after 1910. The founding date of each major city in the region is listed beside
its name. Most were founded only shortly before the estimated TMRCA of
group M. The demographic data are from ref. 23.

NATURE |Vol 455 |2 October 2008 LETTERS

663
 ©2008 Macmillan Publishers Limited. All rights reserved
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Analysis of the HIV-1 data set using HME, AICM, PS and SS
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Figure: Differences in log marginal likelihood estimates and AICM for two
independent fittings (first fitting shown in white, second in gray) of the
HIV dataset using the HME, AICM, PS and SS. For each estimator, the
constant population size model (Con) was used as the reference model.
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Simulation settings:

consider the sampling dates of 60 sequences that represent
the diversity in the original HIV-1 dataset

simulate dated-tip genealogies under two simple demographic
models: a constant population size and an exponentially
growing population size through time

increasing growth rates under the exponential growth model:
0.01, 0.025, 0.05, and 0.10 per year

rescale to fit a reasonable TMRCA ∼ N(1910, 10)

simulate 1000 nucleotides per sequence

calculate marginal likelihood for constant and exponential
population sizes using HME, AICM, PS and SSS
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Coalescent prior Growth rate HME AICM PS SS log BF HME ∆AICM log BF PS log BF SS

Constant - 48 59 72 72 0.61 0.57 1.76 1.76
Exponential 0.010 50 45 57 57 0.28 0.20 -0.81 -0.80
Exponential 0.025 59 73 92 92 -1.33 -1.36 -6.81 -6.81
Exponential 0.050 80 99 100 100 -4.43 -4.34 -12.54 -12.54
Exponential 0.100 78 100 100 100 -7.75 -7.66 -18.24 -18.24

Conclusions:

an exponential demographic prior with a growth rate of 0.01 is
a difficult case for each estimator

HME is unable to reach an accuracy higher than 80%

AICM outperforms HME in all but one case

PS/SS outperform HME and AICM in all cases
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These simulation results

were obtained using log BF of 0 as cut-off for binary
classification of models

to assess the discriminatory power of the HME, AICM, and
PS/SS across a range of cutoffs, we plot the true positive rate
as a function of the false positive rate

determine the ROC (receiver operating characteristic) curves

evaluate BF distributions that compare the fit of both
coalescent models on data simulated under constant
population size and a particular growth rate
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ROC curves for the different demographic simulation scenarios
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HSV-1 data: 84 taxa, 1.135 bp, sampling range: 1981-2008
(Firth et al., 2010)

compare strict clock (SC) and uncorrelated relaxed clock
models with an underlying exponential distribution (UCED)
and lognormal distribution (UCLD)

with and without sampling dates

of the different clock models available, the HME often prefers
the UCED
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Figure: Differences in log marginal likelihood estimates for two
independent fittings (first fitting shown in white, second in gray) for the
HSV dataset using HME, AICM, PS and SS using a strict clock (SC), an
uncorrelated relaxed clock with an exponential distribution (UCED) and
an uncorrelated relaxed clock with a lognormal distribution (UCLD). The
data was analyzed excluding the sampling dates (No) and including the
sampling dates (Yes). We used the strict clock model excluding the
sampling dates as the reference model.
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Staphylococcus aureus data (Gray et al., 2011)

full data set: 63 taxa, 4.310 bp

intergenic data set: 63 taxa, 962 bp

synonymous data set: 63 taxa, 1.055 bp

molecular clock models: SC and UCLD

demographic models: constant population size and Bayesian
skyline plot

original analysis: three independent fittings were combined to
obtain sufficient independent samples from the posterior
(because of mixing issues and improper priors)
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Table: Marginal likelihood estimates for two independent fittings for the
HA-MRSA ST239 dataset using the HME, AICM, PS and SS (with the
overall ranking of the models shown in parentheses for each estimator)
after specifying proper priors. Consistent results across all three data
partitions could only be obtained when using proper priors and PS/SS.

Fitting 1 Fitting 2
Data Clock Coalescent HME AICM PS SS HME AICM PS SS

Full SC Constant -28420.5 (4) 56865.6 (4) -28738.2 (4) -28735.9 (4) -28418.2 (3) 56865.2 (4) -28735.5 (4) -28734.2 (4)
Full SC BSP -28419.4 (3) 56860.7 (3) -28724.9 (3) -28723.2 (3) -28420.8 (4) 56860.2 (3) -28723.8 (3) -28722.3 (3)
Full UCLD Constant -28304.2 (2) 56681.8 (2) -28641.1 (2) -28638.3 (2) -28308.2 (2) 56682.4 (2) -28647.5 (2) -28644.2 (2)
Full UCLD BSP -28304.1 (1) 56679.6 (1) -28635.6 (1) -28631.9 (1) -28304.4 (1) 56680.1 (1) -28631.8 (1) -28628.2 (1)
Intergenic SC Constant -6493.7 (4) 13016.8 (2) -6749.5 (4) -6749.3 (4) -6495.9 (4) 13016.7 (2) -6750.0 (4) -6749.6 (4)
Intergenic SC BSP -6489.4 (3) 13001.4 (1) -6740.0 (3) -6739.7 (3) -6488.9 (3) 13001.4 (1) -6742.3 (3) -6742.0 (3)
Intergenic UCLD Constant -6479.9 (1) 13037.7 (3) -6730.1 (2) -6729.4 (2) -6481.9 (1) 13038.3 (3) -6725.2 (2) -6724.8 (2)
Intergenic UCLD BSP -6480.6 (2) 13048.2 (4) -6716.7 (1) -6716.1 (1) -6482.0 (2) 13043.7 (4) -6717.1 (1) -6716.5 (1)
Synonymous SC Constant -6563.9 (4) 13149.7 (4) -6816.3 (4) -6815.8 (4) -6561.9 (4) 13149.2 (4) -6816.8 (4) -6816.3 (4)
Synonymous SC BSP -6556.1 (3) 13133.1 (2) -6806.4 (3) -6806.0 (3) -6558.5 (3) 13133.8 (2) -6806.6 (3) -6806.1 (3)
Synonymous UCLD Constant -6541.7 (2) 13138.7 (3) -6787.4 (2) -6786.7 (2) -6538.6 (2) 13138.5 (3) -6786.8 (2) -6786.1 (2)
Synonymous UCLD BSP -6533.6 (1) 13122.8 (1) -6780.8 (1) -6780.3 (1) -6536.1 (1) 13123.9 (1) -6780.9 (1) -6780.0 (1)
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Main conclusions:

PS/SS outperform AICM and HME in a series of demographic
simulations (and AICM outperforms HME)

PS/SS are the most consistent across different runs for
empirical data sets, followed by the AICM

HME clearly the worst of the four methods compared

hence, the increased computational demands / additional
implementation for PS/SS are worth it

the different estimators incorporate phylogenetic uncertainty

be careful to provide proper priors for your parameters!
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Availability:

AICM, PS/SS are now available in BEAST (as of release 1.7)
through XML specification

AICM is available in Tracer (only in repository)

general implementation: allows to calculate marginal
likelihoods for any model that can be fitted in BEAST

e.g. demographic and molecular relaxed clock models, models
of sequence evolution, trait evolution and phylogeographic
models, . . .
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Current work:

Li and Drummond (2011) developed a Bayesian model
averaging (BMA) approach for relaxed molecular clock models

Wai Lok Sibon Li & Alexei J. Drummond (2012) Model
Averaging and Bayes Factor Calculation of Relaxed Molecular
Clocks in Bayesian Phylogenetics. Mol. Biol. Evol.
29(2):751-761.

using estimates of the posterior probability of each model, Li
and Drummond (2011) examine the performance of
identifying the maximum a posteriori (MAP) model under
BMA as a model selection criterion

compare the performance of HME, sHME, AICM, PS/SS and
BMA for relaxed molecular clocks
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