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Population tree – Species tree

Both describe historical relations between groups, which are
(approximately) isolated.

Difference comes from the main source of genetic variation:
mutation vs drift.

This work concentrates on methods which are applicable to
data with large numbers of markers (SNP,AFLP,MLST etc.)
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Multi-species coalescent

Computationally very expensive.
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Multi-species coalescent

For biallelic markers efficient algorithms to compute the
likelihood of a species tree have been recently introduced.
(RoyChoudhury et al 2008 Genetics, Bryant et al 2012 MBE)

But they are still limited to relatively small data sets.
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Wright-Fisher model

An alternative to the coalescent is provided by the
Wright-Fisher model.

If Xt is the count of an allele A in a population of size N at
time t, then

Xt+1 | Xt ∼ Bin(N,Xt/N).

By scaling with ψt = Xt/N and τ = t/N, we get diffusion
approximation

ψτ+ε | ψτ ∼ N(ψτ , εψτ (1− ψτ )).

Used in phylogenetics by Cavalli-Sforza, Edwards, Felsenstein
and others in the 60’s and 70’s.
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Wright-Fisher model

Diffusion approximation

ψτ+ε | ψτ ∼ N(ψτ , εψτ (1− ψτ ).

The Gaussian approximation is good only for small values of ε.
(Atoms on boundaries, scaling).

Alternative, Balding-Nichols model:
Beta-distribution instead of Gaussian.

Should be a better approximation.

Also, computational advantages due conjugacy as the
sampling from populations often binomial.
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Full model
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Tree used in simulation (A) and estimated tree (B)
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Tree of human populations from SNPs
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WF-model with mutation

Extend the simple WF-model with mutation occuring at rate
u from A and at rate v to A.

The one-generation distribution then changes to

Xt+1 | Xt ∼ Binomial(N, ηt),

where ηt = N−1((1− u)Xt + v(N − Xt)).

Again, diffusion approximation is obtained as

ψτ+ε | ψτ ∼ N(ητ , εητ (1− ητ )).

Poor approximation, as the mean and variance do not scale
linearly or nearly linearly with time.
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WF-model with mutation

Solution:
Compute the actual expectation and variance of the WF
process:

E (Xt) =E (E (Xt | Xt−1)) = . . .

Var(Xt) =E (Var(Xt | Xt−1)) + Var(E (Xt | Xt−1)) = . . .

Then we can approximate the change with

ψτ+ε | ψτ ∼ Beta(ατ,ε, βτ,ε),

where ατ,ε and βτ,ε are chosen to get the correct mean and
variance.
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Comparison of approximations

N = 1e4
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Infinite alleles model

The idea can be generalized to more complex situations such
as (truncated) infinite alleles model.

r − 1 distinct alleles are followed and r th allele type represents
all other alleles.

Consequently, mutation occurs only from the r − 1 alleles to
the r th allele (rate u).

Let Xi ,t denote the number of alleles of type i at time t, with
population size N.

The allele counts have a multinomial distribution conditional
on the alleles of the previous generation

X1t , . . . ,Xrt |X1(t−1), . . . ,Xr(t−1) ∼ Multinomial(N, ηt),

where ηt is a r dimensional vector with entries

ηjt =

{
1− (1− u)

(
1− ψr(t−1)

)
if j = r and

(1− u)ψj(t−1) otherwise.
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Infinite alleles model

Similarly, as in the biallelic case, we can explicitly compute the
mean and covariance as

E (Xit) = E (E (Xit | Xi(t−1))) = . . .

and

Cov(Xit ,Xjt) =E (Cov(Xit ,Xjt | Xi(t−1),Xj(t−1)))

+ Cov(E (Xit ,Xjt | Xi(t−1),Xj(t−1)))

= . . .
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Beta-Dirichlet model

Because of the covariance structure, a Dirichlet is not an
adequate approximation.

Instead, we first model the mutation with

ψrτ ∼ Beta(γµrτ , γ(1− µrτ )). (1)

And then the drift with

(1− ψrτ )ψ0τ | ψrτ ∼ Dirichlet(φψ10, . . . , φψ(r−1)0). (2)

To get same expectations and covariance structure as with the
infinite alleles model, we use

φ =
(m + 1)e−(m+1)τ

1− e−(m+1)τ
and

γ =
m
(
1− e−(m+1)τ

)(
1− e−(m+1)τ

)
− (m + 1)e−mτ (1− e−τ )

.
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Global population structure of S. pneumoniae
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Computation?

Posterior distribution of the topolgy and branch specific
parameters (time, mutation rate).

Different strategies with different models.

In general case, MCMC.

For biallelic loci combination of Laplace approximization,
AMIS and numerical maximization algorithms.
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Future work

Comparison with the coalescent approach.

Computational strategies.

Migration? Graphs instead of trees?

More complex mutational models? Microsatellites?
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