Phylogenetics in action

Detecting competition based on phylogenetic trees

joint work with Gabriel Leventhal & Rampal Etienne

tanja.stadler@env.ethz.ch

My main questions

What is the number of niches for which species compete?

My main questions

What is the number of niches for which species compete?

What is the number of hosts for which pathogens compete?

Part A:

Competition between species

Part A:

Competition between species

density-dependent speciation and extinction?

Likelihood approach for quantifying competition between species

Mathematical

- Define a density-dependent macroevolutionary model
- Find efficient way to calculate likelihood function:

 Probability of the phylogenetic tree given the parameters

Computational

Implement R packages TreePar & TreeSim

Density-dependent speciation and extinction model

- stem age of a clade T
- speciation rate $\lambda(m) = \beta(1-m/K)$ *K* is number of niches
- extinction rate μ
- sampling probability ρ

Density-dependent speciation and extinction model

Birth-death model

- stem age of a clade T
- speciation rate $\lambda(m) = \beta(1-m/K)$ K is number of niches
- extinction rate μ
- sampling probability ρ

Phylogenetic trees

- *m*: number of species at time *t* in complete tree
- *n*: number of species at time *t* in reconstructed tree
- f(t|m): probability density of observing the reconstructed tree between t and present given m species at time t

- m: number of species at time t in complete tree
- n: number of species at time t in reconstructed tree
- f(t|m): probability density of observing the reconstructed tree between t and present given m species at time t

$$f(t + \Delta t|m) = [1 - m(\lambda(m) + \mu)\Delta t] f(t|m)$$

$$+(k - n) [\lambda(m)f(t|m + 1) + \mu f(t|m - 1)] \Delta t$$

$$+2n\lambda(m)\Delta t f(t|m + 1)$$

- m: number of species at time t in complete tree
- n: number of species at time t in reconstructed tree
- f(t|m): probability density of observing the reconstructed tree between t and present given m species at time t

$$f(t + \Delta t|m) = [1 - m(\lambda(m) + \mu)\Delta t] f(t|m)$$

$$+(k - n) [\lambda(m)f(t|m + 1) + \mu f(t|m - 1)] \Delta t$$

$$+2n\lambda(m)\Delta t f(t|m + 1)$$

$$\Delta t \to 0$$

$$\frac{d}{dt}f(t|.) = Mf(t|.)$$

Dendroica warbler phylogeny

* empirical data

our density-dependence model

environmental model (ΔAIC=5.93) (Stadler, PNAS, 2011)

density-dependence w/o extinction (p=0.97) (Rabosky et al., Proc. Roy. Soc. B, 2008)

constant rates model (p=1.00) (Nee et al., Phil. Trans. Roy. Soc. B, 1994)

Warbler phylogeny

(from Rabosky et al., Proc. Roy. Soc. B, 2008)

Dendroica warbler phylogeny

* empirical data

our density-dependence model

environmental model (ΔAIC=5.93) (Stadler, PNAS, 2011)

density-dependence w/o extinction (p=0.97) (Rabosky et al., Proc. Roy. Soc. B, 2008)

constant rates model (p=1.00)

Limitation

Method only works for trees up to 50 species

Warbler phylogeny

(from Rabosky et al., Proc. Roy. Soc. B, 2008)

Formicidae ant phylogeny

• empirical data our density-dependence model environmental model (ΔAIC=36.43) constant rates model (p=1.00)

Part B:

Competition for susceptible host

What is the number of hosts for which pathogens compete?

Part B:

Competition for susceptible host

What is the number of hosts for which pathogens compete?

Model for epidemic spread (SI model)

Birth-death model

- time of epidemic outbreak T
- transmission rate $\lambda(S) = \beta S/K$
- "becoming-non-infectious" rate μ
- sampling probability ρ

Phylogenetic trees

Model for epidemic spread (SI model)

Swiss HIV-1 cluster (29 patients)

ρ		K (SI)		SI	R_0	BD
0.1	85	[63,176]	2.68	[1.93,3.96]	1.37	[1.27,1.54]
0.2	57	[42,128]	3.11	[2.23, 4.86]	1.55	[1.4, 1.83]
0.3	46	[34,106]	3.38	[2.43, 5.36]	1.69	[1.5, 2.06]
0.4	41	[28,99]	3.58	[2.56, 5.53]	1.83	[1.59, 2.28]
0.5	37	[25,92]	3.73	[2.68, 5.63]	1.95	[1.67, 2.49]
0.6	36	[22,87]	3.81	[2.77, 6.21]	2.06	[1.74, 2.68]
0.7	33	[21,84]	3.9	[2.86, 6.03]	2.17	[1.81, 2.87]
0.8	32	[21,81]	3.93	[2.94, 5.71]	2.27	[1.88,3.06]
0.9	31	[19,79]	4.05	[3.03, 5.81]	2.38	[1.95, 3.24]
1	31	[18,77]	4.2	[3.12, 5.98]	2.47	[2.01, 3.41]

----exponential growth model
----SI model

Likelihood ratio test rejects exponential growth model at 2.5% level

Phylogenetic methods...

...for determining the number of ecological niches

• ...for determining the host population size (SI model)

…available in the R packages TreeSim and TreePar

Phylogenetic methods...

...for determining the number of ecological niches

...for determining the host population size (SI model)

...available in the R packages TreeSim and TreePar

Can we calculate the likelihood faster?

At which taxonomic level do species compete?

Can we allow for recovered & immune hosts (SIR)?

Phylogeny of Acknowledgements

