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Yule model Where do evolutionary
trees comes from?
e a b ¢ d e
Number of Number of genera
species in genus | Observed | Calculated
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'G. U. Yule, A mathematical theory of evolution. Based on the Conclusions of Dr. J.C.
Willis, F.R.S. Phil. Trans. Roy. Soc. 213 (1925), 21-87. 3 4



Another viewpoint

(a)

time

Tree shape: why of interest?

=Speciation/extinction processes make statistical
predictions (e.g. about tree 'shape’, species distributions
etc).

o So data can be used to test hypotheses about these
processes

=Models are used as priors in Bayesian phylogenetics

=Models allow us to estimate, predict quantities of interest
(probabilities, expectations, amount of data required etc)

= The basic picture....
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'Part 2: Discrete models of tree shape

Pr.(T'=1)
Pr.(¢), |X[En

Exchangeability property (EP)

o

v
(

v

\\/

If 6 is a permutation of the leaves then Pr, (¢7)=Pr, ()
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' The simplest discrete model
(Yule-Harding)

A general process....

[David Aldous, 1995 ]

=“From time to time there is an “event” which is either an extinction or a
speciation, i.e., either some species B becomes extinct or some species 4
splits into two species .4 and A"

®  The time 7 until the next event, and the chance the next event is an
extinction rather than a speciation, may depend on the past in an
arbitrary way.

= Butif the next event is an extinction then each species is equally
likely to be the one to become extinct, and if the next event is a speciation
then each species is equally likely to be the one to speciate.”
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Tree shape probability 1/3

Tree probability 1/9

2/3

1/18

Less can be more....

Lemma: All such models lead to the
Yule-Harding distribution on discrete trees




‘ Another further connection...

o
o

o

®©

' This connection helps!

n n—1 2
# labelled histories =( Jx[ Jx---x[ ]
2 2 2

(n B 1)1 2:1—1

# labelled rankings of t = m Pr,(T'=1)=
n,—

Y
Example v fr(1=4)= =

‘ Connection of YH to coalescent?
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» Lemma:

a The Yule-Harding and Kingman coalescent lead to
identical distributions on discrete trees

= The ‘YHK model

‘ Uniform on ranked trees is different from
uniform on trees (PDA model)

Yule: 1/3 2/3
PDA: 1/5 4/5




‘ PDA — relevant? ‘ Other discrete models

uA model? = Aldous B-splitting
0 ‘Window’ of speciation D<f<w
o Others 3
p=-3
2 PDA
mRandom data with maximum parsimony B=0
0 (¢f YHK~= quartet puzzling [Vinh et al. 2011])

Yule

» Ford a-model
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‘ Real ‘trees | ‘ Balance of tree
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T=—10 \
wor . m Let K = number of leaves in it.
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o bt » Under YHK model K is uniform
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Size of parent clade

1
FIG. 3. Splits in the tree of Chase et al (1993), and approzimate median PrX (K - k) - —1, k - 1, 2, sees n - 1

lines for the boa-splitting model, Note the log-log scale, n

From: Aldous, D. (2001). Stochastic Models and Descriptive Statistics for Phylogenetic Trees, from Yule to Today.
Statistical Science 16: 23-34 19 20



‘ Quiz: Select your favorite taxon x
Generate a YHK tree.

Let K, =# leaves in the subtree containing x.

Is K uniform? -\J \ |

Pr(K, = k)=Pr(#S=k|x € 8)

_Pr(xe S|#S=k)xPr(#S = k) \

Pr(x € S)

I ne1 2k
[ n(n—1)
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Measures of balance /depth

m Colless index

= Distance of random leaf to root (or other leaf)

m Sackin index

Blum, Francois, Janson (2006) Annals of Applied Probability
Vol. 16, No. 4, 2195-2214
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| Comparison of K between YHK and PDA

mSelect one of two subtrees incident the root

m Let K = number of leaves in it. \/

ROR(-k) 1115

R(n) 2°8 16 64"

Example: ‘Y= /2’ likelihood ratio oc +/7 \ W

1. Probability A is a clade

mUnder PDA Pr(Y =k)= []

m “Clade”
cl(T)=set of clades of T
= YHK (Rosenberg, 2003)

-1 Insects
a(a+1)\a

= PDA o\ g
R(a)R(n—a+1)
R(n)

Candida
Baker's yeast
Eread mold
Silkwiorm moth
Screwnarm fly

Rattlesnake

Turtle

Penguin

Chicken

Tuna

tammals

Vertebrates

Pr,(4 € cl(T))=

Animals

Pr (4 € cl(T))=

Extension to & clades (Zhu, Degnan and Steel 2011). e



‘ 2. How close is the MRCA of set A4 of £

taxa to the root of the tree?

. * X x

= In YHK need to just sample
k=7 taxa to have 50% chance
(regardless of #) the
MRCA=root.

= For PDA you need to have
&> 0.17n taxa

= For YHK, the number of edges from MRCA to
root has an (asymptotically) geometric distribution
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‘ Recall induced subtree

\/T TIA

Az{ol f,e}
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3.‘ Size of the minimal clade containing x

N
= [Blum and Francois 2005] / )//
;1 =2 n-1 -
Pr(S, =k)= k(kz - \
nn-1) B
ﬁ)"'{.sfk) \\'
A -

Distribution depends on 7 only through last term.

Monotone except for last term 2

Y

Pr(T|A=1&T|A=1'|4,4 € cl(T))=Pr,(t)-Pr.(1')

| Properties of models
= Markov property (MP)

28



‘Properties of models As A Ay Ay A

\ / |
= MP) —)> extended Markov /
property T
0 [application: Sampling YKH trees from an \

untesolved tree (Bayesian)]

= Marginal Markov property
Pr(T'|A=t|4 e cl(T))=Pr, 1)
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Example of a distribution violating (SC):

70% 30%

Why?

31

‘ Sampling consistency (SC):

Forany Ac X, Pr(T'|A=t)=Pr,(¢)

> Pr,(1"

11| A=t

= “Pr,(¢) doesn’t depend on species you haven’t yet sampled.”
= Not implies by the Markov Property

m Satistied by YHK, PDA, Comb and some values of the
beta-splitting model.

30
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Jim Pitman et al (SC+Exchangeability) 3



Properties: Group elimination

= If A forms a clade, then the rest of the tree is
described by the model

Pr(T|A=t|A4 € cl(T))=Pr,(¢)
m Satisfied by Yule, PDA, Comb

= Conjecture [D. Aldous, 1995]

These three are the ONLY distributions
on discrete tree (shapes) satisfying GE

\\/\,\/
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Question: If a free had 1000 leaves would we have any idea
where the root was?

John Haigh 1970

1—1log(2) ~.307
9 vertices: p >99.6%

Probability MLE point is
1,2,3,40 >99.8%

Independent of 7

35
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Where did it start?
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Where did it start?

36



A further property (root invariance)

= “Any rooting of the tree is equally likely”

Theorem (McKenzie+S, 2000 , . .
w fy 1 eorem (McKenziex ) Formally: If #’ is obtained from # by re-rooting the tree then:

¥ _ _ 4
TR - Pféefg—eﬂ—‘“og( /:)-1 Pr (T =1)=Pr(T=t")
. m Several distributions satisfy (RI) and (EP).

m Several satisty (EP) and (SC).

Simulated estimate of &(n)

s b J
. . . . . . . L . :
o 20 40 60 80 100 120 140 160 180
(a) Number of leaves (n)

= But only one satisfies (RI) and (SC)!

38

P(longer of longer < shorter) 37

‘ Result: ‘ Part 3: Continuous trees

s Theorem [S-2012]: n

A probability distribution P on rooted phylogenetic trees _

satisties (RI) and (SC) if and only if % X }’ 5 { /

P is the PDA distribution. ANARN i f /
( N\ 4 |t [t
Y \/

= Corollary: |

Any non-PDA probability distribution on rooted \'\j

phylogenetic trees that is sampling consistent must prefer - Conditioning on 7 and ¢

some rooting (of an unrooted tree) over others. - Conditioning just on ¢
* Conditioning just on n

39
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' Pure-birth process
= A = speciation rate

n,~ geo(e_;d)

E[n,]1=(2)e”

Varn |~ (2)e*”
A, = In(n/(2))
f
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What values to take for p,A?

o “Current plant and animal diversity preserves at most 1-
2% of the species that have existed over the past 600
my”. [Erwim, PNAS 2008 ].

o Set extinction rate = speciation rate?

o Problem: If extinction rate =speciation rate the tree is guaranteed
to eventually die out eventually!

a +$°c|iUTi)(,n?: Condition on the tree not dying out (or having n species
oday

Conditioned critical process (Popovic-Aldous)

43

' Birth-death process

= A = speciation rate
® L = extinction rate
Pr(n, =k|n, >0)~ geo(p)

Eln, )=+

Eln, |n,>0]—>o

42

Conditioned critical process (Popovic-Aldous)

Set A=p
Condition on n
Uniform (improper) prior for origin (0, infinity)

Theorem (Stadler):
This leads to expected branch length distribution of the Coalesecent

o Real reconstructed trees generally look more like Yule trees with zero
extinction rate than birth=death trees with

extinction rate = speciation rate
(but conditioned on n species today)

[Eg. McPeek (2008) Amer. Natur. 172: E270-284:
Analysed 245 chordate, arthropod, mollusk, and magnoliophyte phylogenies] 44



Gamma statistic for Yule vs Coalescent trees

1 Q¥ TL
i (EE(E"&‘D Y

i=2 k=2

Y \l 1 Oliver Pybus & P. Harvey, 2000

12(n-2) 1000
g, are internode distances

birth-death ¥ >0
Yule ¥ =0

100

= For Yule pure-birth model E[]/] =0 actual trees ¥ <0

Helene Morlon et al., 2010
Mark McPeek, 2008

Number of lineages

= For Coalescent (or Popovic-Aldous) Jn
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Where do evolutionary
trees comes from?

Another viewpoint

(a)
b c ol e ;

! !

time time
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The bus ‘paradox’

"It wouldn't hurt to wait around for a little while."

You turn up at a bus stop, with no idea when the next bus will
arrive.

7% If buses arrive regularly every 20 mins what is your expected
waiting time?

g\z If buses arrive randomly every 20 mins what is your expected
" waiting time?
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The tree puzzle (I):

trec reaches ntl = 5 tips

The tree puzzle (I):

A tree evolves with each lineage randomly generating
a new lineage on average once every 1 million
years (no extinction).

Look at the tree when it has 100 species

What is the expected length of a randomly selected
extant lineage?

Answer 1: 1 million years?

Answer 2: 500,000 years? \/

50

What about ancestral lineages? 51

Solution 1: Conditioning on n:

Grow tree till it has n+1 leaves (then go back 1 second!)
p,:= average length of the n pendant edges
i,:= average length of the »n-1 internal edges
Theorem:

Elp,]1= Eli,] = ﬁ

Distribution?

52



The tree puzzle (IT):

A tree evolves with each lineage randomly generating a new lineage on
average once every 1 million years (no extinction).

Look at the tree after 500 million years

What is the expected length of a randomly selected (extant or ancestral)
lineage?

Answer 1: 1 million years?

Answer 2: 500,000 years? V'

53

What about a 'specific’ edge
(e.g. a 'root edge’)?

A tree evolves with each lineage randomly generating
a new lineage on average once every 1 million
years (no extinction).

Look at the tree when it first has 100 species

What is the expected length of a randomly selected
root lineage?

Answer 1: 1 million years? v

Answer 2: 500,000 years?

Answer 3: 990,000 years v s

Solution 2: Conditioning on .

In a binary Yule tree, grown for time ¢, let

p(f):= expected length of the average pendant edge
i(1): = expected length of the average interior edge

Theorem:
—_ 1 =
E[p(1)]= 5 O(e™)

E[i(r)) = ;7+0(e‘)

54

The tree puzzle (III):

Now suppose extinction occurs at the same rate as speciation (one per
one million years). Suppose we observe a tree today that has 100

species.
What is the expected length of a randomly selected extant linecage?
Answer 1: 1 million years? v

Answer 2: 500,000 years? 9§

Relevance?
56



Part 4: Applications:
Application 1: predicting the possible loss of ‘evolutionary heritage’

“..80 percent of the underlying tree can
survive even when approximately 95

d e v percent of species are lost.”
v g g Nee and May, Science, 1997
f h

Expected [ ~ 7= ~~<_
‘evolutionary Ts.o
heritage' SS
s N
Y
N
\
\
‘Field of bullets’ models
No. species that go extinct
57 58
However....
Nee and May's trees are modeled by Coalescent trees. w(p)= —plog(p) “__80 percent of the underlying tree can
1= survive even when approximately 95
percent of species are lost.” Nee
For Yule model, let p(p) = proportion of evolutionary o __'___‘f‘"d May, Science, 1997
heritage we expect to be preserved in a Yule tree under
‘field of bullets’ with survival probability p = |
g g @
@ ;
£ “ . .
q e ..84 percent of the underlying free is
Theorem: 2 3 lost when approximately 95 percent of
log( ) species are lost.”
—plog\p o
p)=—L2EL
—-P
g | T | | 1
0.0 0.2 0.4 0.6 [IX:} 10

59 But that top curve is not 0.8 at p=0.05! 60



Usefulness of the point process for reconstructed birth-trees Application 2: Ancestral state reconstruction

(conditioned on n and ¢)

RGR / Go rhabdomeric (Gq) opsins

ciliary (Gt) opsins

(x,..., x,) are the order
statistic or #-2 i.i.d. random

\ lil | \\ / " variables
\ 41 \ ' . Izq.

\ x4 ’ ."“ ; 23

Drosophila'sp.2 RhS opsin

ko SWS1 opsin

Podocoryne opsin
Hydra hmOps2

Homo MTRIL.
Homo MTRIB.
Hydra opsin

O Xenopus melatonin

—0

\ | X /Application:
: l Phylogenetic diversity
\ ; - PD = sum of branch lengths

\" 7 PD ~ N(2t+(n—2),u,(ﬂ—2)0'2)j

GPCR outgroup
(melatonin receptors)

. . f‘(s)_ j'e_(ls _ 1 lf:‘?ii{
For pure birth, each has density: /1= 1-¢* andso A= ;( e L) Plachetzki D C et al. Proc. R. Soc. B 2010;277:1963-1969
PIIDCEEDINGS;
o i fﬁﬁ{pw(s %
©2010 by The Royal Society SOCIETY
Minimum evolution (‘parsimony’): Minimum evolution (‘parsimony’):
[ das
L= —(A+m)S, + mD, + AS> +2S,E,):
dt
? db, )
=—(A+m)D, + mS, + AD; +2D,E)):
dt
Grow a Yule tree for time ¢, and evolve binary character on it Let
m = rate of mutation between the two states
Note: we have TWO random processes here. dk ) E + ME 3 L2 SD D,);
Estimate root state using minimum evolution.
7= mutation rate (of states), A=birth rate (of

Let P, = probability our estimate is correct.
tree)

Question: what happens to P, as ¢ becomes large?

1
R=Sr+EE: 63

64



The 'six is (just) enough’' theorem:

speciation rate

If ———— <6, then we lose al/ information about the
mutation rate
ancestral state as ¢ grows (min evolution).
speciation rate
If —————— =x>6, then we don’t!
mutation rate

limy— Py

il AN )= %(1 1= 6x)(1-2x))

N,

|
o 002 004 006 008 01 012 014 016 D018
X

Other methods

Majority Rule
Maximum likelihood

0.9

0.8

\ —— PARSIMON

p 07 ~——MAJORITY

LIKELIHO
06 \
05
04 —_—— -
IO I I I I I - - I )
0-@ RN Fot ot ot ot oF oF ¥ oV o oF WP

¢ Hanson-Smith, V., Kolaczkowski, B. and Thornton, J.W. (2010). Robustness of ancestral
sequence reconstruction to phylogenetic uncertainty. Mol. Biol. Evol. 27: 1988-99.
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Can we do better than six?
iation rat
% <4, then we lose all information about the
ancestral state as ¢ grows for any method
mutation rate
If  Sectiontae 18 between 4 and 677
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That’s all folks!

Thanks to:

= Royal Society of New Zealand,

= Allan Wilson Centre for Molecular Ecology and Evolution #ROYAL
SOCIETY o
NEW ZEALAND

ALLAN
WILSON
CENTRE
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