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Two Tree Problem

Tree 1 vs Tree 2
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One-sided: Is tree 1 significantly better than tree 2?
Two-sided: Is there significant evidence for tree 1 or tree 2?

Two-sided more natural (usually) for a priori trees
One-sided more frequently reported by software
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Null Hypothesis: Tree 2 correct

1. Tree 2 Correct

4

2

3

1

tm

α-level test should satisfy:

PT2(reject H0) ≤ α

For almost any test

PT2(reject H0; tm = 0.1) < PT2(reject H0; tm = 0)

Need
PT2(reject H0; tm = 0) = α
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Null Hypothesis: Alternative Argument

Star tree

4
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1

If tree 2 is estimated, we do
not reject.
If not, star tree is the least
distant tree from estimated
to Tree 2.

Need
PT2(reject H0; tm = 0) = α

Analogous to testing mean: H0 : µ2 ≤ µ1, HA : µ2 > µ1,
p-values, Type I error evaluated under H0 : µ2 = µ1
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Null Hypothesis - Two Trees

Collapse as many branches as needed to make the trees
equivalent.
Don’t collapse more.

Tree 1 vs Tree 2
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Null Tree
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Kishino & Hasegawa (1989)

Log likelihoods for tree 1: l1 is like a sample mean
l1/n = n−1 ∑n

i=1 log pT1(xi ; t̂1) = n−1 ∑n
i=1 l1i .

Comparing l1 and l2 is like comparing two sample means.

l1i and l2i are dependent: paired on the same observation i .
Paired z-test adjusts for dependence of l1i and l2i .
di = l1i − l2i .

z =
d̄

(sd/
√

n)

p-value=P(Z > z), Z ∼ N(0,1) (One-sided HA)
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K-H Example - Mammalian Mitochondrial Data

Mammal Trees

opposum

mouse

rabbit

human

seal

cow
Tree 1

opposum

mouse

human

rabbit

seal

cow
Tree 2

mtREV24, 8 Gamma rate
categories

site i l1i l2i di
1 -8.533 -8.556 0.023
2 -3.775 -3.776 -0.001
...

...
3414 -14.053 -14.158 0.105

-21765.04 -21766.23 1.190

z = (1.190/3414) / (sd/
√

3414) = 0.132

One sided p-value = P(Z > 0.132) = 0.44
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K-H Test Motivation in More Detail

If l1i = log pT1(xi ; t̂1) are independent and identically
distributed,
CLT⇒ d̄ is approximately normal.

Usual models: sites evolve independently
But sites 1, . . . ,n all contribute to t̂1
So log pT1(xi ; t̂1) are not independent
whereas log pT1(xi ; t1) are independent
Argument by approximation: t̂1 ≈ t1,

l1/n = n−1
n∑

i=1

log pT1(xi ; t̂1)

≈ n−1
n∑

i=1

log pT1(xi ; t1) + r1n(t1)

r1n(t) is relatively small.
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Null Distribution of dLnL=l1 − l2

Mammal Trees

opposum

mouse

rabbit

human

seal

cow

tm = 0

Tree 1

opposum

mouse

rabbit

human

seal

cow

tm = 0

Tree 2

Simulate 5000 data sets under
mtREV24 model
α = 0.44, 8 Gamma categories
Tree 1, with tm = 0
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Null Distribution of dLnL

mixed continuous
and discrete
distribution

LnL Difference
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K-H motivation difficulty

l1/n ≈ n−1
n∑

i=1

log pT1(xi ; t1) + r1n(t1)

and

l2/n ≈ n−1
n∑

i=1

log pT2(xi ; t2) + r2n(t2)

but T1 = T2 under the null so first order terms cancel:

l1/n − l2/n ≈ r1n(t1)− r2n(t2)
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Bootstrapping: Motivation

Setting: d1, . . . ,dn independent and identically distributed (P)
Need distribution of d̄ − µ.

P̂(A) := Proportion of di in A
≈ P(D in A)

P̂ assigns mass 1/n to each observed di (empirical distribution)

EP̂ [d ] =
∑

di

p(di)di = d̄

Suggests: If d∗1 , . . . ,d
∗
n are generated from P̂

distribution of d̄∗ − d̄ ≈ distribution of d̄ − µ
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Bootstrapping

Select sites with replacement.
eg. i1 = 32, i2 = 32, . . . , in = 3
Then d∗1 = d32, . . . ,d∗n = d3 give a sample from P̂.

⇒ d̄∗ − d̄ gives a realization from P̂

Repeat a large number (B) of times

Proportion of d̄∗ − d̄ ≤ x ≈ P̂(d̄∗ − d̄ ≤ x) ≈ P(d̄ − µ ≤ x)
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KH test - RELL Version - Kishino, Miyata & Hasegawa

d̄ still used as a test statistic
N(0, s2

d/
√

n) is replaced by bootstrap distribution of d̄∗ − d̄

minor adjustment: d̄ replaced by avebd̄∗
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Null Distribution of dLnL

parameter settings from mammal data:
mtREV24, α = 0.4, n = 3415
5000 simulated data sets. B=5000.
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Normal vs RELL resampling

LnL Difference
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Normal
RELL

●

●

For a given data set, d∗1 , . . . ,d
∗
n i.i.d. from P̂ (fixed)

CLT⇒ d̄∗ − d̄ ∼ N(0, s2
d/
√

n).
Main source of variation: t̂m = 0 implies point mass at 0. 20
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Full Bootstrapping - KH setting

Bootstrapping so far has been RELL
Bootstrap principle: Bootstrapping should mimic what is
done with original data.

Original data: Estimate t̂1 & t̂2 from x1, . . . xn.

l1 − l2 = l1(t̂1)− l2t̂2)

Bootstrap principle: Estimate t̂
∗
1 & t̂

∗
2 from x∗1 , . . . x

∗
n .

l∗1 − l∗2 = l∗1 (t̂
∗
1)− l∗2 (t̂

∗
2)

By contrast, RELL uses l∗1 (t̂1)− l∗2 (t̂2)

21
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Full Bootstrapping - Mammal Example
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B=100 and 100 simulations for full
22
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Parametric Bootstrapping

Generate from P̂θ̂ instead of P̂. eg. mtREV24 on estimated
Tree 2, α
Generate from P̂θ̂
eg. mtREV24 on ML tree, α̂ = 0.4
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KH with parametric boostrapping - Mammal Example
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B = 100 and 100 simulations for parametric
24
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SH Test - Shimodaira & Hasegawa (1999)

Mammal Trees

opposum

mouse

rabbit

human

seal

cow
Tree 1

opposum

mouse

human

rabbit

seal

cow
Tree 2

T1 and T2 fixed a priori:

QKH : T1 significantly better than T2?

If instead, only T2 is fixed a priori,

QSH : ML tree significantly better than T2?

P(l1 − l2 > 0) < 1
P(lMLE − l2 > 0) = 1.
Paradox: tree 1 could be both a fixed tree of interest and
ML tree.

26



Topology Testing
Testing Splits

Formulating the Problem
The K-H Test
Adjusting for Selection Bias

SH Test - Shimodaira & Hasegawa (1999)

Mammal Trees

opposum

mouse

rabbit

human

seal

cow
Tree 1

opposum

mouse

human

rabbit

seal

cow
Tree 2

T1 and T2 fixed a priori:

QKH : T1 significantly better than T2?

If instead, only T2 is fixed a priori,

QSH : ML tree significantly better than T2?

P(l1 − l2 > 0) < 1
P(lMLE − l2 > 0) = 1.
Paradox: tree 1 could be both a fixed tree of interest and
ML tree.

26



Topology Testing
Testing Splits

Formulating the Problem
The K-H Test
Adjusting for Selection Bias

SH Test - Shimodaira & Hasegawa (1999)

Mammal Trees

opposum

mouse

rabbit

human

seal

cow
Tree 1

opposum

mouse

human

rabbit

seal

cow
Tree 2

T1 and T2 fixed a priori:

QKH : T1 significantly better than T2?

If instead, only T2 is fixed a priori,

QSH : ML tree significantly better than T2?

P(l1 − l2 > 0) < 1
P(lMLE − l2 > 0) = 1.

Paradox: tree 1 could be both a fixed tree of interest and
ML tree.

26



Topology Testing
Testing Splits

Formulating the Problem
The K-H Test
Adjusting for Selection Bias

SH Test - Shimodaira & Hasegawa (1999)

Mammal Trees

opposum

mouse

rabbit

human

seal

cow
Tree 1

opposum

mouse

human

rabbit

seal

cow
Tree 2

T1 and T2 fixed a priori:

QKH : T1 significantly better than T2?

If instead, only T2 is fixed a priori,

QSH : ML tree significantly better than T2?

P(l1 − l2 > 0) < 1
P(lMLE − l2 > 0) = 1.
Paradox: tree 1 could be both a fixed tree of interest and
ML tree.

26



Topology Testing
Testing Splits

Formulating the Problem
The K-H Test
Adjusting for Selection Bias

SH Adjustment to Bootstrap

Setting: T1 and T2 become T1, . . . ,TM ⇒ l1, . . . , lM
Mammal data. 6 taxa⇒ M = 105 trees.

Test statistic l1 − l2 replaced by lm − l1
m indice of MLE.

Bootstrapping
Replace l∗1 , . . . , l

∗
M by

l∗1 − aveb l∗1 , . . . , l
∗
M − aveb l∗M

Use observed l∗m∗ − l∗2 from bootstrapping for null
distribution.

m∗: indice of MLE for bootstrap sample.
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Mammal Data Example - Three trees

opposum

mouse

rabbit

human

seal

cow
Tree 1

opposum

mouse

human

rabbit

seal

cow
Tree 2

rabbit

mouse

human

opposum

seal

cow
Tree 3

Tree 1 was the ML tree for this data
28
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Mammal Data Example - Three trees

B = 5000, M = 3
l1 − l2 = 1.19

l∗j (after centering), first three bootstrap samples
l∗1 l∗2 l∗3 m∗ l∗1 − l∗2 lm∗ − l∗2

-359.78 -360.62 -352.52 3 0.84 8.10
-84.45 -94.44 -95.87 1 9.99 9.99
-65.93 -58.62 -62.19 2 -7.31 0.00

pKH = proportion of l∗1 − l∗2 > 1.19 = 0.44

pSH = proportion of l∗m∗ − l∗2 > 1.19 = 0.59

29
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Mammal Data Example - Three trees
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Mammal Data Example - Four trees

opposum

mouse

rabbit

human

seal

cow
Tree 1

opposum

mouse

human

rabbit

seal

cow
Tree 2

rabbit

mouse

human

opposum

seal

cow
Tree 3

opposum

human

mouse

rabbit

seal

cow
Tree 4
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Mammal Data Example - Four trees

B = 5000, M = 4
l1 − l2 = 1.19

pKH = proportion of l∗1 − l∗2 > 1.19 = 0.44

pSH3 = proportion of l∗m∗
3
− l∗2 > 1.19 = 0.59

pSH4 = proportion of l∗m∗
4
− l∗2 > 1.19 = 0.74
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SH test - Choice of Trees

The larger M is, the larger pSH is.

Because of the SH centering procedure, H0 depends on M:

H0 : µ1 = · · ·µM

µi - mean log likelihood i th tree
H0 is only possible if edge-length set to 0 to make all trees
same
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Mammal Data Example - Null trees

opposum

mouse

rabbit

human

seal

cow
Trees 1 and 2

opposum

mouse

rabbit

human

seal

cow
Cow, Seal Constraint

opposum

mouse

rabbit

human

seal

cow
All 105 trees
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SH test - Choice of Trees

With large n, even when ML is over 105 trees
lm − l2 is effectively maximum of three li − l2 when one t = 0
in generating tree.
lm − l2 is effectively maximum of 105 li − l2 under star tree

Much more likely to see large lm − l2 for star tree ⇒
harder to reject a tree

Bootstrap Principle: Bootstrapping should mimic what is
being done with original data.
If exhaustive search for ML tree, M = 105
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SOWH Test - Goldman, Anderson and Rodrigo (2000)

SH test with following modifications:
Full parametric bootstrapping from tree under H0 instead of
RELL to get l∗i
No centering.

SH replaces l∗i with l∗i − aveb l∗i .
SOWH does not

pSOWH << pSH

Sometimes, SOWH will generate from a fully-resolved trees
But, under null, it will tend to give trees for bootstrapping
that are close to true.
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Mammal Data Example - Null trees

opposum

mouse

rabbit

human

seal

cow
Trees 1 and 2

opposum

mouse

rabbit

human

seal

cow
Cow, Seal Constraint

opposum

mouse

rabbit

human

seal

cow
All 105 trees
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Concluding Remarks - Testing Topologies

Two fixed trees a priori
K-H test and variations
RELL vs Full:
RELL is fast, Full is accurate

Adjusting for Selection Bias
SOWH/SH
Choice of Null is major performance issue for SH
SH is fast, SOWH is accurate
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Outline

1 Topology Testing
Formulating the Problem
The K-H Test
Adjusting for Selection Bias

2 Testing Splits
Bootstrap Support for Splits
Adjusting for Selection Bias
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Formulating the Problem

Tree inference: Is Tree 1 correct?

cow

seal

human

opposum

mouse

rabbit

Split of Interest

Is a tree with opposum, mouse and rabbit split from
human, cow and seal correct?
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Outline

1 Topology Testing
Formulating the Problem
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2 Testing Splits
Bootstrap Support for Splits
Adjusting for Selection Bias
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Bootstrap Support

For each bootstrap sample x∗1 , . . . , x
∗
n obtain T̂ ∗

BP for opposum, mouse and rabbit = proportion of T ∗ with
that split.

opposum

mouse

rabbit

94

human

51

seal

cow100

Can be applied to any estimation procedure
By far the most frequent measure of uncertainty
How large of BP is large?
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History

Felsenstein (1985): Bootstrap Support (BP) introduced

Hillis and Bull (1993): BP is probability split is correct. 70%
is large.
Felsenstein and Kishino (1993): 1-BP is p-value for
hypothesis that split is not present. 95% is large.
Efron, Halloran and Holmes (1996) [EHH] and Efron and
Tibshirani (1998) [ET]: 1-BP is first order correct.
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Null Hypothesis

H0

4

2

3

1

tm

H0 : Split 12|34 not present

For almost any test,

PH0(reject H0; tm = 0.1) < PH0(reject H0; tm = 0)

To guarantee
PH0(reject H0) ≤ α

need
PH0(reject H0; tm = 0) = α
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P-Value Interpretation

A valid p-value should have a uniform distribution under H0

1-BP has uniform distribution with tm = 0
First Order Correctness: BP has a uniform limiting
distribution in this setting
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Problem of Regions: Normal Form

Example Region

R0

µ

Setting: Ȳ ∼ N(µ,n−1Σ)

H0 : µ not in R0 (on boundary).

Parametric Bootstrap: Generate
Ȳ ∗ ∼ N(Ȳ ,n−1Σ).
Asymptotically equivalent to
nonparametric bootstrap
BP is percentage of time Ȳ ∗ ∈ R0.
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Problem of Regions: Normal Form

Reparameterize: Z = n1/2(Ȳ − µ)

Setting: Z ∼ N(0,Σ)

Bootstrap: Generate Z ∗ ∼ N(Z ,Σ).
Rn = {n1/2(x − µ) : x ∈ R0}
BP is percentage of time Z ∗ ∈ Rn.
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Problem of Regions: Normal Form

n = 10

0

Rn

n = 100

0

Rn

n = 1000

0

Rn

Asymptotic Setting: Z ∼ N(0,Σ)

Bootstrap: Generate Z ∗ ∼ N(Z ,Σ).

BP is percentage of time Z ∗ in a half-space
ET result: BP is uniformly distributed
Smooth boundary needed for half-space approximation
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Problem of regions: Alternate Version

Tree 1

1

2

3

4

Tree 2

1
3

2 4

Tree 3

1

4

3

2

Notation: Middle edge-length estimated alone
lj(t) log likelihood for the j th topology; t middle edge-length.
Ij = E [−l ′′j (0)]/n

Vjn = I−1/2
j l ′j (0)/

√
n (standardized score)
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Asymptotic Approximations

lj (̂t) ≈ lj(0) + V 2
jnI{Vjn > 0}/2

V n = [V1n,V2n,V3n] ∼ N(0,Σ)

lj(0): likelihood under star tree⇒ independent of j .
Topology j preferred to k if Vjn > 0 and Vjn > Vkn.
R0 is v -space where split 12|34 estimated:

{v : v1 > 0, v1 > v2, v1 > v3}

For trees with split 12|34: µ = E [V n] is in R0
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Asymptotic Approximations

l∗j (̂t) ≈ l∗j (0) + V ∗2jn I{V ∗2jn > 0}/2 where V ∗jn is standardized
score for the bootstrap sample
Approximate Bootstrap: Generate V ∗n ∼ N(V n,Σ)
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Problem of regions: 3-D version

Setting: V ∼ N(µ,Σ)

Bootstrap: Generate V ∗ ∼ N(V ,Σ)

H0 : µ = 0 on boundary of
R0 = {µ : µ1 > 0, µ1 > µ2, µ1 > µ3}
BP is proportion of V ∗ in R0.

A half space, R′0 = {µ : µ1 > µ2}, contains the region R0.
BP for R′0 is larger than BP for R0

Problem of regions theory: BP for R′0 is uniform
BP is stochastically smaller than uniform
Under H0, BP larger than 95% less than 5% of the time.
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Simulation to obtain BP distribution

Generate V from N(0,Σ) ∼ Generate alignment
Xj = V 2

j I{Vj > 0}/2 ∼ lj (̂tj)− lj(0)

Generate V ∗ ∼ N(0,Σ) ∼ Generate bootstrap alignment

.
1 Repeatedly generate V ∼ N(0,Σ),

1 For each V , repeatedly generate V ∗ from N(V ,Σ)
2 Set BP = proportion of V ∗ in R0

2 P(BP > x) ≈ proportion of BP > x
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Example

Generating Tree

1

2

s

3

4

s

Tree 1: 12|34 LB-apart
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LB-apart tree: P(BP > t)

t
s l 0.70 0.90

0.01 0.01 0.13 0.03
0.01 0.50 0.14 0.03
0.10 0.10 0.13 0.03
0.10 0.50 0.13 0.03
0.50 0.50 0.12 0.02
0.50 1.00 0.13 0.03
1.00 1.00 0.12 0.02
1.00 1.50 0.12 0.02
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Adjusted Bootstrap Support

F =CDF of BP can be obtained through fast normal
simulation
Define aBP as F (BP)

Then P(aBP > 0.95) = 0.05

opposum

mouse

rabbit

94/99

human

51/73

seal

cow
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Outline

1 Topology Testing
Formulating the Problem
The K-H Test
Adjusting for Selection Bias

2 Testing Splits
Bootstrap Support for Splits
Adjusting for Selection Bias
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Selection Bias and Splits

In many? cases BP is on a priori hypothesized trees of
interest
Frequently BP is on the ML tree

opposum

mouse

rabbit

94

human

51

seal

cow100

Even if H0 is true, highly unlikely that BP ≈ 10%, otherwise
it wouldn’t be ML tree.
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aBP adjusting for selection bias

Simulation for usual distribution of BP:
1 Repeatedly generate V ∼ N(0,Σ),

1 For each V , repeatedly generate V ∗ from N(V ,Σ)
2 Set BP = proportion of V ∗ in R0

Generate V from N(0,Σ) ∼ Generate alignment
Xj = V 2

j I{Vj > 0}/2 ∼ lj (̂tj)− lj(0)

Generate V ∗ ∼ N(0,Σ) ∼ Generate bootstrap alignment
Adjustment: Only consider cases where largest Xj is at
j = 1 (12|34)
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aBP adjusting for selection bias - mammal example

opposum

mouse

rabbit

94/99/95

human

51/73/18

seal

cow
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Likelihood Ratio Test for splits

H0

4

3

2

1

HA

4

3

2

1

tm

2{lj (̂tm)− lj(0)} ≈ V 2
j I{Vj ≥ 0}

Vj ∼ N(0,1).

2{l (̂tm)− l(0)} ∼ 1
2
δ0 +

1
2
χ2

1

1/2 of the time t̂m = 0
otherwise
usual behaviour.
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alrt - Anisimova & Gascuel (2006)

Tree 1

1

2

3

4

Tree 2

1
3

2 4

Tree 3

1

4

3

2

If ML tree, then 2{lML(̂t)− l1(0)} is being used in place of

X1 := 2{l1(̂t)− l1(0)}

Alternatively T = max{X1,X2,X3}
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Distribution of T

We know
T = max{X1,X2,X3}
Xi ∼ 1

2δ0 + 1
2χ

2
1

Don’t know dependence structure of X1, X2 and X3.

Bonferroni correction (t > 0):

true p-value = P(max{X1,X2,X3} > t)
= P(X1 > t or X2 > t or X3 > t)
≤ P(X1 > t) + P(X2 > t) + P(X3 > t)

=
3
2

P(χ2
1 > t) = pT

Conservative p-value

pT ≥ true p-value

⇒ P(Type I error) ≤ α
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alrt T ′

Order X1,X2,X3 as X(1) < X(2) < X(3)

alrt replaces T = max{X1,X2,X3} with T ′ = T − X(2)

Still uses
alrt p-value =

3
2

P(χ2
1 > t ′)

Since t ′ ≤ t , conservative p-value:

alrt p-value =
3
2

P(χ2
1 > t ′)

≥ 3
2

P(χ2
1 > t) ≥ true p-value

63



Topology Testing
Testing Splits

Bootstrap Support for Splits
Adjusting for Selection Bias

alrt T ′

Order X1,X2,X3 as X(1) < X(2) < X(3)

alrt replaces T = max{X1,X2,X3} with T ′ = T − X(2)

Still uses
alrt p-value =

3
2

P(χ2
1 > t ′)

Since t ′ ≤ t , conservative p-value:

alrt p-value =
3
2

P(χ2
1 > t ′)

≥ 3
2

P(χ2
1 > t) ≥ true p-value

63



Topology Testing
Testing Splits

Bootstrap Support for Splits
Adjusting for Selection Bias

alrt with correction

Xi =d V 2
i I{Vi ≥ 0}, V ∼ N(0,Σ)

So quick simulation approximation to T ′ is possible
1 Generate V1, . . . ,VB ∼ N(0,Σ)
2 Calculate Xbi = V 2

bi I{Vbi ≥ 0}
3 T ′b = max{Xb1,Xb2,Xb3} − Xb(2)

p-value = proportion of T ′b ≥ t
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alrt Simulation

Generating Trees

S1

S2

S3

S4

LB together

S1

S2

S3

S4

LB apart

S1, . . . ,S4 caterpillar
trees with distance
0.15 between nodes
Long branch 0.2,
short 0.1
Middle branch
tm = 0.05
HKY, κ = 4.5, α = 1
A, C, G, T : 0.18,
0.24, 0.32, 0.26
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alrt Simulation Results

Number of Taxa
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Adjusting the K-H test

Mammal Trees

opposum

mouse

rabbit

human

seal

cow
Tree 1

opposum

mouse

human

rabbit

seal

cow
Tree 2

Single Split Difference between
Trees
Asymptotic Theory indicates

l1−l2 ≈ V 2
1 I{V1 > 0}−V 2

2 I{V2 > 0}

V ∼ N(0,Σ).

Can be used via normal
simulation to obtain p-value
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Asymptotic K-H distribution - Mammal Example

−2 −1 0 1 2

0.
0

0.
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LnL Difference
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F
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Normal
Median RELL
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Concluding Remarks - Inference for Splits

aBP, (1− alrt)× 100 more interpretable that BP
Selection Bias: useful to report both w/ and w/o
adjustment.
Asymptotic theory can be useful
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