Testing Topologies and Splits

Edward Susko

Department of Mathematics and Statistics Dalhousie University

Outline

 Focus on Inference for Likelihood Methods and Bootstrapping

Topology Testing

- Formulating the Problem
- The K-H Test
- Adjusting for Selection Bias

2 Testing Splits

- Bootstrap Support for Splits
- Adjusting for Selection Bias

3

・ロン ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

Formulating the Problem The K-H Test Adjusting for Selection Bias

Outline

- Formulating the Problem
- The K-H Test
- Adjusting for Selection Bias

2 Testing Splits

- Bootstrap Support for Splits
- Adjusting for Selection Bias

Formulating the Problem The K-H Test Adjusting for Selection Bias

Outline

- Formulating the Problem
- The K-H Test
- Adjusting for Selection Bias

2 Testing Splits

- Bootstrap Support for Splits
- Adjusting for Selection Bias

Formulating the Problem The K-H Test Adjusting for Selection Bias

Two Tree Problem

- One-sided: Is tree 1 significantly better than tree 2?
- Two-sided: Is there significant evidence for tree 1 or tree 2?

Formulating the Problem The K-H Test Adjusting for Selection Bias

Two Tree Problem

- One-sided: Is tree 1 significantly better than tree 2?
- Two-sided: Is there significant evidence for tree 1 or tree 2?
- Two-sided more natural (usually) for a priori trees
- One-sided more frequently reported by software

Formulating the Problem The K-H Test Adjusting for Selection Bias

Null Hypothesis: Tree 2 correct

• α -level test should satisfy:

 $P_{T_2}(\text{reject } H_0) \leq \alpha$

Formulating the Problem The K-H Test Adjusting for Selection Bias

Null Hypothesis: Tree 2 correct

• α -level test should satisfy:

 $P_{T_2}(\text{reject } H_0) \leq \alpha$

ヘロト ヘ団 ト ヘヨト ヘヨト

For almost any test

$$P_{T_2}(\text{reject } H_0; t_m = 0.1) < P_{T_2}(\text{reject } H_0; t_m = 0)$$

Need

$$P_{T_2}(\text{reject } H_0; t_m = 0) = \alpha$$

∃ 990

Formulating the Problem The K-H Test Adjusting for Selection Bias

Null Hypothesis: Alternative Argument

- If tree 2 is estimated, we do not reject.
- If not, star tree is the least distant tree from estimated to Tree 2.

Formulating the Problem The K-H Test Adjusting for Selection Bias

Null Hypothesis: Alternative Argument

- If tree 2 is estimated, we do not reject.
- If not, star tree is the least distant tree from estimated to Tree 2.

(日)

$$P_{T_2}(\text{reject } H_0; t_m = 0) = \alpha$$

3

Formulating the Problem The K-H Test Adjusting for Selection Bias

Null Hypothesis: Alternative Argument

- If tree 2 is estimated, we do not reject.
- If not, star tree is the least distant tree from estimated to Tree 2.

Need

$$P_{T_2}(\text{reject } H_0; t_m = 0) = \alpha$$

 Analogous to testing mean: H₀ : μ₂ ≤ μ₁, H_A : μ₂ > μ₁, p-values, Type I error evaluated under H₀ : μ₂ = μ₁

Formulating the Problem The K-H Test Adjusting for Selection Bias

Null Hypothesis - Two Trees

- Collapse as many branches as needed to make the trees equivalent.
- Don't collapse more.

Formulating the Problem The K-H Test Adjusting for Selection Bias

Outline

• Formulating the Problem

The K-H Test

Adjusting for Selection Bias

2 Testing Splits

- Bootstrap Support for Splits
- Adjusting for Selection Bias

Formulating the Problem The K-H Test Adjusting for Selection Bias

Kishino & Hasegawa (1989)

- Log likelihoods for tree 1: l_1 is like a sample mean $l_1/n = n^{-1} \sum_{i=1}^n \log p_{T_1}(x_i; \hat{t}_1) = n^{-1} \sum_{i=1}^n l_{1i}$.
- Comparing l_1 and l_2 is like comparing two sample means.

Formulating the Problem The K-H Test Adjusting for Selection Bias

Kishino & Hasegawa (1989)

- Log likelihoods for tree 1: l_1 is like a sample mean $l_1/n = n^{-1} \sum_{i=1}^n \log p_{T_1}(x_i; \hat{t}_1) = n^{-1} \sum_{i=1}^n l_{1i}$.
- Comparing l_1 and l_2 is like comparing two sample means.
- I_{1i} and I_{2i} are dependent: paired on the same observation *i*.
- Paired z-test adjusts for dependence of I_{1i} and I_{2i} .

•
$$d_i = l_{1i} - l_{2i}$$
.

$$z = \frac{\bar{d}}{(s_d/\sqrt{n})}$$

p-value= $P(Z > z), Z \sim N(0, 1)$ (One-sided H_A)

Topology Testing Testing Splits Adjusting for

K-H Example - Mammalian Mitochondrial Data

۲	mtREV24, 8	Gamma rate	Э
	categories		
.i+.	- <i>i</i>	1	1

site <i>i</i>	I _{1i}	I _{2i}	a_i
1	-8.533	-8.556	0.023
2	-3.775	-3.776	-0.001
÷		÷	
3414	-14.053	-14.158	0.105
	-21765.04	-21766.23	1.190

.

K-H Example - Mammalian Mitochondrial Data

 mtREV24, 8 Gamma rate 							
calegones							
site <i>i</i>	I _{1i}	I _{2i}	di				
1	-8.533	-8.556	0.023				
2	-3.775	-3.776	-0.001				
÷		÷					
3414	-14.053	-14.158	0.105				
	-21765.04	-21766.23	1.190				

 $z = (1.190/3414) / (s_d/\sqrt{3414}) = 0.132$

One sided p-value = P(Z > 0.132) = 0.44

Topology Testing Testing Splits Formulating the Prob The K-H Test Adjusting for Selection

K-H Test Motivation in More Detail

• If $l_{1i} = \log p_{T_1}(x_i; \hat{t}_1)$ are independent and identically distributed,

 $CLT \Rightarrow \bar{d}$ is approximately normal.

Topology Testing Testing Splits Testing for Selectio

K-H Test Motivation in More Detail

If *l*_{1i} = log *p*_{T1}(*x_i*; *t*₁) are independent and identically distributed,

 $CLT \Rightarrow \overline{d}$ is approximately normal.

- Usual models: sites evolve independently
- But sites $1, \ldots, n$ all contribute to \hat{t}_1
- So log p_{T1}(x_i; t̂1) are not independent whereas log p_{T1}(x_i; t̂1) are independent

Topology Testing Testing Splits Formulating the Probl The K-H Test Adjusting for Selection

K-H Test Motivation in More Detail

If *l*_{1i} = log *p*_{T1}(*x_i*; *t*₁) are independent and identically distributed,

 $CLT \Rightarrow \bar{d}$ is approximately normal.

- Usual models: sites evolve independently
- But sites $1, \ldots, n$ all contribute to \hat{t}_1
- So log p_{T1}(x_i; t
 ₁) are not independent whereas log p_{T1}(x_i; t₁) are independent
- Argument by approximation: $\hat{t}_1 \approx t_1$,

$$\begin{aligned} & l_1/n = n^{-1} \sum_{i=1}^n \log p_{T_1}(x_i; \hat{t}_1) \\ & \approx n^{-1} \sum_{i=1}^n \log p_{T_1}(x_i; t_1) + r_{1n}(t_1) \end{aligned}$$

 $r_{1n}(t)$ is relatively small.

Formulating the Problem The K-H Test Adjusting for Selection Bias

Null Distribution of $dLnL = l_1 - l_2$

- Simulate 5000 data sets under mtREV24 model
- $\alpha = 0.44$, 8 Gamma categories
- Tree 1, with $t_m = 0$

Formulating the Problem The K-H Test Adjusting for Selection Bias

Null Distribution of dLnL

Formulating the Problem The K-H Test Adjusting for Selection Bias

ヘロト 人間 とくほとくほとう

K-H motivation difficulty

$$l_1/n \approx n^{-1} \sum_{i=1}^n \log p_{T_1}(x_i; t_1) + r_{1n}(t_1)$$

and

$$l_2/n \approx n^{-1} \sum_{i=1}^n \log p_{T_2}(x_i; t_2) + r_{2n}(t_2)$$

Formulating the Problem The K-H Test Adjusting for Selection Bias

K-H motivation difficulty

$$l_1/n \approx n^{-1} \sum_{i=1}^n \log p_{T_1}(x_i; t_1) + r_{1n}(t_1)$$

and

$$I_2/n \approx n^{-1} \sum_{i=1}^n \log p_{T_2}(x_i; t_2) + r_{2n}(t_2)$$

but $T_1 = T_2$ under the null so first order terms cancel:

$$l_1/n - l_2/n \approx r_{1n}(t_1) - r_{2n}(t_2)$$

Formulating the Problem The K-H Test Adjusting for Selection Bias

Bootstrapping: Motivation

Setting: d_1, \ldots, d_n independent and identically distributed (*P*) Need distribution of $\bar{d} - \mu$.

$$\hat{P}(A) :=$$
 Proportion of d_i in A
 $\approx P(D \text{ in } A)$

 \hat{P} assigns mass 1/n to each observed d_i (empirical distribution)

Formulating the Problem The K-H Test Adjusting for Selection Bias

Bootstrapping: Motivation

Setting: d_1, \ldots, d_n independent and identically distributed (*P*) Need distribution of $\bar{d} - \mu$.

$$\hat{P}(A) :=$$
 Proportion of d_i in A
 $\approx P(D \text{ in } A)$

 \hat{P} assigns mass 1/n to each observed d_i (empirical distribution)

$${\mathcal E}_{\hat{P}}[d] = \sum_{d_i} {\mathcal P}(d_i) d_i = ar{d}$$

Formulating the Problem The K-H Test Adjusting for Selection Bias

Bootstrapping: Motivation

Setting: d_1, \ldots, d_n independent and identically distributed (*P*) Need distribution of $\bar{d} - \mu$.

$$\hat{P}(A) :=$$
 Proportion of d_i in A
 $\approx P(D \text{ in } A)$

 \hat{P} assigns mass 1/n to each observed d_i (empirical distribution)

$$E_{\hat{P}}[d] = \sum_{d_i} p(d_i) d_i = \bar{d}$$

Suggests: If d_1^*, \ldots, d_n^* are generated from \hat{P}

distribution of $ar{d}^* - ar{d} pprox$ distribution of $ar{d} - \mu$

Formulating the Problem The K-H Test Adjusting for Selection Bias

Bootstrapping

• Select sites with replacement. eg. $i_1 = 32, i_2 = 32, \dots, i_n = 3$ Then $d_1^* = d_{32}, \dots, d_n^* = d_3$ give a sample from \hat{P} .

 $\Rightarrow ar{d}^* - ar{d}$ gives a realization from \hat{P}

Formulating the Problem The K-H Test Adjusting for Selection Bias

Bootstrapping

• Select sites with replacement. eg. $i_1 = 32, i_2 = 32, \dots, i_n = 3$ Then $d_1^* = d_{32}, \dots, d_n^* = d_3$ give a sample from \hat{P} .

 $\Rightarrow ar{d}^* - ar{d}$ gives a realization from \hat{P}

• Repeat a large number (B) of times

Proportion of $\bar{d}^* - \bar{d} \le x \approx \hat{P}(\bar{d}^* - \bar{d} \le x) \approx P(\bar{d} - \mu \le x)$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ の < @

KH test - RELL Version - Kishino, Miyata & Hasegawa

- \bar{d} still used as a test statistic
- $N(0, s_d^2/\sqrt{n})$ is replaced by bootstrap distribution of $\bar{d}^* \bar{d}$

Topology Testing Testing Splits Testing for Sel

KH test - RELL Version - Kishino, Miyata & Hasegawa

- \bar{d} still used as a test statistic
- $N(0, s_d^2/\sqrt{n})$ is replaced by bootstrap distribution of $\bar{d}^* \bar{d}$
- minor adjustment: \bar{d} replaced by ave_b \bar{d}^*

Formulating the Problem The K-H Test Adjusting for Selection Bias

Null Distribution of dLnL

 parameter settings from mammal data: mtREV24, α = 0.4, n = 3415 5000 simulated data sets. B=5000.

Formulating the Problem The K-H Test Adjusting for Selection Bias

Normal vs RELL resampling

- For a given data set, d_1^*, \ldots, d_n^* i.i.d. from \hat{P} (fixed) $\text{CLT} \Rightarrow \bar{d}^* - \bar{d} \sim N(0, s_d^2/\sqrt{n}).$
- Main source of variation: $\hat{t}_m = 0$ implies point mass at 0.

Formulating the Problem The K-H Test Adjusting for Selection Bias

Full Bootstrapping - KH setting

- Bootstrapping so far has been RELL
- Bootstrap principle: Bootstrapping should mimic what is done with original data.

Formulating the Problem The K-H Test Adjusting for Selection Bias

Full Bootstrapping - KH setting

- Bootstrapping so far has been RELL
- Bootstrap principle: Bootstrapping should mimic what is done with original data.
- Original data: Estimate $\hat{t}_1 \& \hat{t}_2$ from $x_1, \ldots x_n$.

$$l_1 - l_2 = l_1(\hat{t}_1) - l_2\hat{t}_2)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Formulating the Problem The K-H Test Adjusting for Selection Bias

Full Bootstrapping - KH setting

- Bootstrapping so far has been RELL
- Bootstrap principle: Bootstrapping should mimic what is done with original data.
- Original data: Estimate $\hat{t}_1 \& \hat{t}_2$ from $x_1, \ldots x_n$.

$$l_1 - l_2 = l_1(\hat{t}_1) - l_2\hat{t}_2)$$

• Bootstrap principle: Estimate $\hat{t}_1^* \& \hat{t}_2^*$ from $x_1^*, \ldots x_n^*$.

$$l_1^* - l_2^* = l_1^*(\hat{t}_1^*) - l_2^*(\hat{t}_2^*)$$
Full Bootstrapping - KH setting

- Bootstrapping so far has been RELL
- Bootstrap principle: Bootstrapping should mimic what is done with original data.
- Original data: Estimate $\hat{t}_1 \& \hat{t}_2$ from $x_1, \ldots x_n$.

$$l_1 - l_2 = l_1(\hat{t}_1) - l_2\hat{t}_2)$$

• Bootstrap principle: Estimate $\hat{t}_1^* \& \hat{t}_2^*$ from $x_1^*, \ldots x_n^*$.

$$l_1^* - l_2^* = l_1^*(\hat{t}_1^*) - l_2^*(\hat{t}_2^*)$$

• By contrast, RELL uses $l_1^*(\hat{t}_1) - l_2^*(\hat{t}_2)$

Formulating the Problem The K-H Test Adjusting for Selection Bias

< E

< ∃⇒

э

Full Bootstrapping - Mammal Example

B=100 and 100 simulations for full

Formulating the Problem The K-H Test Adjusting for Selection Bias

Parametric Bootstrapping

Generate from P̂_θ instead of P̂. eg. mtREV24 on estimated Tree 2, α
Generate from P̂_θ
eg. mtREV24 on ML tree, â = 0.4

The K-H Test Adjusting for Selection Bias

KH with parametric boostrapping - Mammal Example

• B = 100 and 100 simulations for parametric

Formulating the Problem The K-H Test Adjusting for Selection Bias

Outline

- Formulating the Problem
- The K-H Test
- Adjusting for Selection Bias

2 Testing Splits

- Bootstrap Support for Splits
- Adjusting for Selection Bias

Formulating the Problem The K-H Test Adjusting for Selection Bias

SH Test - Shimodaira & Hasegawa (1999)

Mammal Trees
Tree 1 cow seal mouse opposum human
Tree 2 cow seal mouse opposum rabbit

- T_1 and T_2 fixed a priori:
 - Q_{KH} : T_1 significantly better than T_2 ?

Formulating the Problem The K-H Test Adjusting for Selection Bias

SH Test - Shimodaira & Hasegawa (1999)

Mammal Trees
Tiree 1 cow seal mouse opposum human
Tree 2 cow seal mouse opposum rabbit

• T_1 and T_2 fixed a priori:

 Q_{KH} : T_1 significantly better than T_2 ?

• If instead, only T₂ is fixed a priori,

 Q_{SH} : ML tree significantly better than T_2 ?

Formulating the Problem The K-H Test Adjusting for Selection Bias

SH Test - Shimodaira & Hasegawa (1999)

Mammal Trees
Tree 1 cow seal mouse opposum rabbit
Tree 2 cow seal mouse opposum rabbit

• T_1 and T_2 fixed a priori:

 Q_{KH} : T_1 significantly better than T_2 ?

• If instead, only T₂ is fixed a priori,

 Q_{SH} : ML tree significantly better than T_2 ?

•
$$P(l_1 - l_2 > 0) < 1$$

• $P(l_{MLE} - l_2 > 0) = 1$

Formulating the Problem The K-H Test Adjusting for Selection Bias

SH Test - Shimodaira & Hasegawa (1999)

Mammal Trees
Tree 1 cow seal mouse opposum human
Tree 2 cow seal mouse opposum rabbit

• T_1 and T_2 fixed a priori:

 Q_{KH} : T_1 significantly better than T_2 ?

• If instead, only T₂ is fixed a priori,

 Q_{SH} : ML tree significantly better than T_2 ?

- $P(l_1 l_2 > 0) < 1$
- $P(I_{MLE} I_2 > 0) = 1.$
- Paradox: tree 1 could be both a fixed tree of interest and ML tree.

Formulating the Problem The K-H Test Adjusting for Selection Bias

SH Adjustment to Bootstrap

- Setting: T_1 and T_2 become $T_1, \ldots, T_M \Rightarrow I_1, \ldots, I_M$
 - Mammal data. 6 taxa \Rightarrow M = 105 trees.
- Test statistic *I*₁ *I*₂ replaced by *I_m I*₁ *m* indice of MLE.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ 釣�(♡

SH Adjustment to Bootstrap

- Setting: T_1 and T_2 become $T_1, \ldots, T_M \Rightarrow I_1, \ldots, I_M$
 - Mammal data. 6 taxa $\Rightarrow M = 105$ trees.
- Test statistic *I*₁ *I*₂ replaced by *I_m I*₁ *m* indice of MLE.

Bootstrapping

- Replace I_1^*, \dots, I_M^* by $I_1^* - ave_b I_1^*, \dots, I_M^* - ave_b I_M^*$
- Use observed $I_{m^*}^* I_2^*$ from bootstrapping for null distribution.
 - m^* : indice of MLE for bootstrap sample.

Formulating the Problem The K-H Test Adjusting for Selection Bias

Mammal Data Example - Three trees

Tree 1 was the ML tree for this data

・ロット (雪) (日) (日)

Formulating the Problem The K-H Test Adjusting for Selection Bias

Mammal Data Example - Three trees

•
$$l_1 - l_2 = 1.19$$

Formulating the Problem The K-H Test Adjusting for Selection Bias

Mammal Data Example - Three trees

- *B* = 5000, *M* = 3
- $l_1 l_2 = 1.19$
- I_i^* (after centering), first three bootstrap samples

<i>I</i> ₁ *	l_2^*	<i>I</i> 3*	<i>m</i> *	$l_{1}^{*} - l_{2}^{*}$	$I_{m^*} - I_2^*$
-359.78	-360.62	-352.52	3	0.84	8.10
-84.45	-94.44	-95.87	1	9.99	9.99
-65.93	-58.62	-62.19	2	-7.31	0.00

 $pKH = \text{proportion of } l_1^* - l_2^* > 1.19 = 0.44$

pSH = proportion of $l_{m^*}^* - l_2^* > 1.19 = 0.59$

Formulating the Problem The K-H Test Adjusting for Selection Bias

Mammal Data Example - Four trees

Formulating the Problem The K-H Test Adjusting for Selection Bias

Mammal Data Example - Four trees

• *B* = 5000, *M* = 4

•
$$l_1 - l_2 = 1.19$$

$$pKH$$
 = proportion of $l_1^* - l_2^* > 1.19 = 0.44$
 pSH_3 = proportion of $l_{m_3^*}^* - l_2^* > 1.19 = 0.59$
 pSH_4 = proportion of $l_{m_4^*}^* - l_2^* > 1.19 = 0.74$

Formulating the Problem The K-H Test Adjusting for Selection Bias

SH test - Choice of Trees

• The larger *M* is, the larger p_{SH} is.

Formulating the Problem The K-H Test Adjusting for Selection Bias

SH test - Choice of Trees

- The larger M is, the larger p_{SH} is.
- Because of the SH centering procedure, H₀ depends on M:

$$H_0: \mu_1 = \cdots \mu_M$$

 μ_i - mean log likelihood *i*th tree

*H*₀ is only possible if edge-length set to 0 to make all trees same

Formulating the Problem The K-H Test Adjusting for Selection Bias

Mammal Data Example - Null trees

SH test - Choice of Trees

- With large *n*, even when ML is over 105 trees
 - $I_m I_2$ is effectively maximum of three $I_i I_2$ when one t = 0 in generating tree.
 - $I_m I_2$ is effectively maximum of 105 $I_i I_2$ under star tree
- Much more likely to see large *l_m* − *l*₂ for star tree ⇒ harder to reject a tree

SH test - Choice of Trees

- With large *n*, even when ML is over 105 trees
 - $l_m l_2$ is effectively maximum of three $l_i l_2$ when one t = 0 in generating tree.
 - $I_m I_2$ is effectively maximum of 105 $I_i I_2$ under star tree
- Much more likely to see large *I_m* − *I*₂ for star tree ⇒ harder to reject a tree
- Bootstrap Principle: Bootstrapping should mimic what is being done with original data.
- If exhaustive search for ML tree, M = 105

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

SOWH Test - Goldman, Anderson and Rodrigo (2000)

- SH test with following modifications:
 - Full parametric bootstrapping from tree under H₀ instead of RELL to get I^{*}_i
 - No centering.
 - SH replaces I_i^* with $I_i^* ave_b I_i^*$.
 - SOWH does not
 - *p_{SOWH} << p_{SH}*

SOWH Test - Goldman, Anderson and Rodrigo (2000)

- SH test with following modifications:
 - Full parametric bootstrapping from tree under H₀ instead of RELL to get I^{*}_i
 - No centering.
 - SH replaces I_i^* with $I_i^* ave_b I_i^*$.
 - SOWH does not
 - *p_{sowн} << p_{sн}*
 - Sometimes, SOWH will generate from a fully-resolved trees
 - But, under null, it will tend to give trees for bootstrapping that are close to true.

Formulating the Problem The K-H Test Adjusting for Selection Bias

Mammal Data Example - Null trees

Formulating the Problem The K-H Test Adjusting for Selection Bias

Concluding Remarks - Testing Topologies

- Two fixed trees a priori
 - K-H test and variations
 - RELL vs Full: RELL is fast, Full is accurate
- Adjusting for Selection Bias
 - SOWH/SH
 - Choice of Null is major performance issue for SH
 - SH is fast, SOWH is accurate

Bootstrap Support for Splits Adjusting for Selection Bias

Outline

1 Topology Testing

- Formulating the Problem
- The K-H Test
- Adjusting for Selection Bias

2 Testing Splits

- Bootstrap Support for Splits
- Adjusting for Selection Bias

Bootstrap Support for Splits Adjusting for Selection Bias

Formulating the Problem

• Tree inference: Is Tree 1 correct?

 Is a tree with opposum, mouse and rabbit split from human, cow and seal correct?

э

Bootstrap Support for Splits Adjusting for Selection Bias

Outline

1 Topology Testing

- Formulating the Problem
- The K-H Test
- Adjusting for Selection Bias

2 Testing Splits

- Bootstrap Support for Splits
- Adjusting for Selection Bias

Bootstrap Support

- For each bootstrap sample x_1^*, \ldots, x_n^* obtain \hat{T}^*
- BP for opposum, mouse and rabbit = proportion of T* with that split.

Bootstrap Support

- For each bootstrap sample x_1^*, \ldots, x_n^* obtain \hat{T}^*
- BP for opposum, mouse and rabbit = proportion of *T*^{*} with that split.

- Can be applied to any estimation procedure
- By far the most frequent measure of uncertainty

Bootstrap Support

- For each bootstrap sample x_1^*, \ldots, x_n^* obtain \hat{T}^*
- BP for opposum, mouse and rabbit = proportion of *T*^{*} with that split.

- Can be applied to any estimation procedure
- By far the most frequent measure of uncertainty
- How large of BP is large?

・ロト・日本・山下・ 山下・ (日・)

Bootstrap Support for Splits Adjusting for Selection Bias

• Felsenstein (1985): Bootstrap Support (BP) introduced

- Felsenstein (1985): Bootstrap Support (BP) introduced
- Hillis and Bull (1993): BP is probability split is correct. 70% is large.
- Felsenstein and Kishino (1993): 1-BP is p-value for hypothesis that split is not present. 95% is large.

History

- Felsenstein (1985): Bootstrap Support (BP) introduced
- Hillis and Bull (1993): BP is probability split is correct. 70% is large.
- Felsenstein and Kishino (1993): 1-BP is p-value for hypothesis that split is not present. 95% is large.
- Efron, Halloran and Holmes (1996) [EHH] and Efron and Tibshirani (1998) [ET]: 1-BP is first order correct.

・ロット (雪) (日) (日) (日)

Bootstrap Support for Splits Adjusting for Selection Bias

Null Hypothesis

• H₀ : Split 12|34 not present

Bootstrap Support for Splits Adjusting for Selection Bias

Null Hypothesis

H ₀	
1	
3	
2	
t _m	
4	

- H₀ : Split 12|34 not present
- For almost any test,

$$P_{H_0}(\text{reject } H_0; t_m = 0.1) < P_{H_0}(\text{reject } H_0; t_m = 0)$$

To guarantee

$$P_{H_0}(\text{reject } H_0) \leq \alpha$$

need

$$\mathsf{P}_{H_0}(\mathsf{reject}\;H_0;t_m=0)=lpha$$
P-Value Interpretation

- A valid p-value should have a uniform distribution under H₀
- 1-BP has uniform distribution with $t_m = 0$
- First Order Correctness: BP has a uniform limiting distribution in this setting

 Topology Testing
 Bootstrap Support for Splits

 Testing Splits
 Adjusting for Selection Bias

Problem of Regions: Normal Form

- Setting: $\bar{\mathbf{Y}} \sim N(\boldsymbol{\mu}, n^{-1}\boldsymbol{\Sigma})$
- H_0 : μ not in R_0 (on boundary).

- Setting: $\bar{\mathbf{Y}} \sim N(\boldsymbol{\mu}, n^{-1}\boldsymbol{\Sigma})$
- $H_0: \mu$ not in R_0 (on boundary).
- Parametric Bootstrap: Generate $\bar{\mathbf{Y}}^* \sim N(\bar{\mathbf{Y}}, n^{-1}\Sigma).$
- Asymptotically equivalent to nonparametric bootstrap

- Setting: $\bar{\mathbf{Y}} \sim N(\boldsymbol{\mu}, n^{-1}\boldsymbol{\Sigma})$
- $H_0: \mu$ not in R_0 (on boundary).
- Parametric Bootstrap: Generate $\bar{\mathbf{Y}}^* \sim N(\bar{\mathbf{Y}}, n^{-1}\Sigma).$
- Asymptotically equivalent to nonparametric bootstrap
- BP is percentage of time $\bar{\mathbf{Y}}^* \in \mathbf{R}_0$.

 Topology Testing
 Bootstrap Support for Splits

 Testing Splits
 Adjusting for Selection Bias

• Reparameterize:
$$\mathbf{Z} = n^{1/2} (\bar{\mathbf{Y}} - \boldsymbol{\mu})$$

- Reparameterize: $\boldsymbol{Z} = n^{1/2}(\bar{\boldsymbol{Y}} \boldsymbol{\mu})$
- Setting: *Z* ~ *N*(**0**, Σ)
- Bootstrap: Generate $Z^* \sim N(Z, \Sigma)$.

Problem of Regions: Normal Form

- Reparameterize: $\boldsymbol{Z} = n^{1/2}(\bar{\boldsymbol{Y}} \boldsymbol{\mu})$
- Setting: *Z* ~ *N*(**0**, Σ)
- Bootstrap: Generate $\boldsymbol{Z}^* \sim N(\boldsymbol{Z}, \boldsymbol{\Sigma})$.

•
$$R_n = \{ n^{1/2} (x - \mu) : x \in R_0 \}$$

• BP is percentage of time $Z^* \in R_n$.

 Topology Testing
 Bootstrap Support for Splits

 Testing Splits
 Adjusting for Selection Bias

Problem of Regions: Normal Form

<ロ> <同> <同> < 同> < 同> < 同> <

≣ ৩৭়ে 47

• Asymptotic Setting: $\boldsymbol{Z} \sim N(\boldsymbol{0}, \boldsymbol{\Sigma})$

• Bootstrap: Generate $Z^* \sim N(Z, \Sigma)$.

- Asymptotic Setting: $\boldsymbol{Z} \sim N(\boldsymbol{0}, \boldsymbol{\Sigma})$
- Bootstrap: Generate $Z^* \sim N(Z, \Sigma)$.
- BP is percentage of time Z* in a half-space

- Asymptotic Setting: $\boldsymbol{Z} \sim N(\boldsymbol{0}, \boldsymbol{\Sigma})$
- Bootstrap: Generate $Z^* \sim N(Z, \Sigma)$.
- BP is percentage of time Z* in a half-space
- ET result: BP is uniformly distributed

- Asymptotic Setting: $\boldsymbol{Z} \sim N(\boldsymbol{0}, \boldsymbol{\Sigma})$
- Bootstrap: Generate $Z^* \sim N(Z, \Sigma)$.
- BP is percentage of time Z* in a half-space
- ET result: BP is uniformly distributed
- Smooth boundary needed for half-space approximation

 Topology Testing
 Bootstrap Support for Splits

 Testing Splits
 Adjusting for Selection Bias

Problem of regions: Alternate Version

Notation: Middle edge-length estimated alone

• $l_j(t)$ log likelihood for the *j*th topology; *t* middle edge-length.

•
$$I_j = E[-I_j''(0)]/n$$

• $V_{jn} = I_j^{-1/2} I'_j(0) / \sqrt{n}$ (standardized score)

Topology Testing Testing Splits Bootstrap Support for Splits Adjusting for Selection Bias

Asymptotic Approximations

•
$$l_j(\hat{t}) \approx l_j(0) + V_{jn}^2 I\{V_{jn} > 0\}/2$$

Topology Testing Testing Splits Bootstrap Support for Splits Adjusting for Selection Bias

Asymptotic Approximations

•
$$l_j(\hat{t}) \approx l_j(0) + V_{jn}^2 I\{V_{jn} > 0\}/2$$

• $V_n = [V_{1n}, V_{2n}, V_{3n}] \sim N(\mathbf{0}, \Sigma)$

Bootstrap Support for Splits Adjusting for Selection Bias

Asymptotic Approximations

- $I_j(\hat{t}) \approx I_j(0) + V_{jn}^2 I\{V_{jn} > 0\}/2$
- $V_n = [V_{1n}, V_{2n}, V_{3n}] \sim N(\mathbf{0}, \Sigma)$
- $I_j(0)$: likelihood under star tree \Rightarrow independent of *j*.
- Topology *j* preferred to *k* if $V_{jn} > 0$ and $V_{jn} > V_{kn}$.
- R₀ is **v**-space where split 12|34 estimated:

$$\{\textit{v}:\textit{v}_1>0,\textit{v}_1>\textit{v}_2,\textit{v}_1>\textit{v}_3\}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Asymptotic Approximations

- $I_j(\hat{t}) \approx I_j(0) + V_{jn}^2 I\{V_{jn} > 0\}/2$
- $V_n = [V_{1n}, V_{2n}, V_{3n}] \sim N(\mathbf{0}, \Sigma)$
- $I_j(0)$: likelihood under star tree \Rightarrow independent of *j*.
- Topology *j* preferred to *k* if $V_{jn} > 0$ and $V_{jn} > V_{kn}$.
- R₀ is **v**-space where split 12|34 estimated:

$$\{v: v_1 > 0, v_1 > v_2, v_1 > v_3\}$$

• For trees with split 12|34: $\mu = E[V_n]$ is in R_0

Topology Testing Testing Splits Bootstrap Support for Splits Adjusting for Selection Bias

Asymptotic Approximations

- $l_j^*(\hat{t}) \approx l_j^*(0) + V_{jn}^{*2} I\{V_{jn}^{*2} > 0\}/2$ where V_{jn}^* is standardized score for the bootstrap sample
- Approximate Bootstrap: Generate V^{*}_n ~ N(V_n, Σ)

- Setting: $\boldsymbol{V} \sim \boldsymbol{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
- Bootstrap: Generate $V^* \sim N(V, \Sigma)$
- $H_0: \mu = 0$ on boundary of $R_0 = \{\mu: \mu_1 > 0, \mu_1 > \mu_2, \mu_1 > \mu_3\}$
- BP is proportion of V^* in R_0 .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Setting: $\boldsymbol{V} \sim \boldsymbol{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
- Bootstrap: Generate $V^* \sim N(V, \Sigma)$
- $H_0: \mu = 0$ on boundary of $R_0 = \{\mu: \mu_1 > 0, \mu_1 > \mu_2, \mu_1 > \mu_3\}$
- BP is proportion of V^* in R_0 .
- A half space, $R'_0 = \{\mu : \mu_1 > \mu_2\}$, contains the region R_0 .

- Setting: $\boldsymbol{V} \sim \boldsymbol{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
- Bootstrap: Generate $V^* \sim N(V, \Sigma)$
- $H_0: \mu = 0$ on boundary of $R_0 = \{\mu: \mu_1 > 0, \mu_1 > \mu_2, \mu_1 > \mu_3\}$
- BP is proportion of V^* in R_0 .
- A half space, $R'_0 = \{\mu : \mu_1 > \mu_2\}$, contains the region R_0 .
- BP for R'_0 is larger than BP for R_0

- Setting: $\boldsymbol{V} \sim \boldsymbol{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
- Bootstrap: Generate $V^* \sim N(V, \Sigma)$
- $H_0: \mu = 0$ on boundary of $R_0 = \{\mu: \mu_1 > 0, \mu_1 > \mu_2, \mu_1 > \mu_3\}$
- BP is proportion of V^* in R_0 .
- A half space, $R'_0 = \{\mu : \mu_1 > \mu_2\}$, contains the region R_0 .
- BP for R'_0 is larger than BP for R_0
- Problem of regions theory: BP for R₀ is uniform

- Setting: $\boldsymbol{V} \sim \boldsymbol{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
- Bootstrap: Generate $V^* \sim N(V, \Sigma)$
- $H_0: \mu = 0$ on boundary of $R_0 = \{\mu: \mu_1 > 0, \mu_1 > \mu_2, \mu_1 > \mu_3\}$
- BP is proportion of V^* in R_0 .
- A half space, $R'_0 = \{\mu : \mu_1 > \mu_2\}$, contains the region R_0 .
- BP for R'_0 is larger than BP for R_0
- Problem of regions theory: BP for R'_0 is uniform
- BP is stochastically smaller than uniform
- Under H₀, BP larger than 95% less than 5% of the time.

Simulation to obtain BP distribution

- Generate V from N(0, Σ) ~ Generate alignment
- $X_j = V_j^2 I\{V_j > 0\}/2 \sim I_j(\hat{t}_j) I_j(0)$
- Generate $V^* \sim N(0, \Sigma) \sim$ Generate bootstrap alignment

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ 釣�(♡

Simulation to obtain BP distribution

Generate V from N(0, Σ) ~ Generate alignment

•
$$X_j = V_j^2 I\{V_j > 0\}/2 \sim I_j(\hat{t}_j) - I_j(0)$$

- Generate $V^* \sim N(0, \Sigma) \sim$ Generate bootstrap alignment
- **1** Repeatedly generate $V \sim N(0, \Sigma)$,
 - For each V, repeatedly generate V* from $N(V, \Sigma)$
 - 2 Set BP = proportion of V^* in R_0
- 2 $P(BP > x) \approx$ proportion of BP > x

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - 釣�()?

Topology Testing Testing Splits Bootstrap Support for Splits Adjusting for Selection Bias

• Tree 1: 12|34 LB-apart

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

Topology Testing Testing Splits Bootstrap Support for Splits

LB-apart tree: P(BP > t)

		t	
S	1	0.70	0.90
0.01	0.01	0.13	0.03
0.01	0.50	0.14	0.03
0.10	0.10	0.13	0.03
0.10	0.50	0.13	0.03
0.50	0.50	0.12	0.02
0.50	1.00	0.13	0.03
1.00	1.00	0.12	0.02
1.00	1.50	0.12	0.02

Adjusted Bootstrap Support

- *F* =CDF of BP can be obtained through fast normal simulation
- Define aBP as F(BP)
- Then *P*(*aBP* > 0.95) = 0.05

3

ヘロト ヘ団ト ヘヨト ヘヨト

Topology Testing Testing Splits Bootstrap Support for Splits Adjusting for Selection Bias

Outline

1 Topology Testing

- Formulating the Problem
- The K-H Test
- Adjusting for Selection Bias

2 Testing Splits

- Bootstrap Support for Splits
- Adjusting for Selection Bias

Selection Bias and Splits

- In many? cases BP is on a priori hypothesized trees of interest
- Frequently BP is on the ML tree

Even if H₀ is true, highly unlikely that BP ≈ 10%, otherwise it wouldn't be ML tree.

aBP adjusting for selection bias

Simulation for usual distribution of BP:

- Repeatedly generate $V \sim N(0, \Sigma)$,
 - For each V, repeatedly generate V^* from $N(V, \Sigma)$
 - **2** Set BP = proportion of V^* in R_0
 - Generate V from N(0, Σ) ~ Generate alignment

•
$$X_j = V_j^2 I\{V_j > 0\}/2 \sim I_j(\hat{t}_j) - I_j(0)$$

- Generate $V^* \sim N(0, \Sigma) \sim$ Generate bootstrap alignment
- Adjustment: Only consider cases where largest X_j is at j = 1 (12|34)

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - 釣�()?

 Topology Testing
 Bootstrap Support for Splits

 Testing Splits
 Adjusting for Selection Bias

aBP adjusting for selection bias - mammal example

・ロト・(部)、(主)、(主)、(主)、(の)、(の) 59

Likelihood Ratio Test for splits

H_0		
	1	
	2	
	3	
	4	

٩

$$2\{I_j(\hat{t}_m) - I_j(0)\} \approx V_j^2 I\{V_j \ge 0\}$$

 $V_j \sim N(0, 1).$

 Topology Testing
 Bootstrap Support for Splits

 Testing Splits
 Adjusting for Selection Bias

Likelihood Ratio Test for splits

٥

 $2\{l_j(\hat{t}_m) - l_j(0)\} \approx V_j^2 I\{V_j \ge 0\}$ $V_j \sim N(0, 1).$

$$2\{I(\hat{t}_m) - I(0)\} \sim \frac{1}{2}\delta_0 + \frac{1}{2}\chi_1^2$$

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

• 1/2 of the time $\hat{t}_m = 0$ otherwise usual behaviour.

alrt - Anisimova & Gascuel (2006)

• If ML tree, then $2\{I_{ML}(\hat{t}) - I_1(0)\}$ is being used in place of

$$X_1 := 2\{l_1(\hat{t}) - l_1(0)\}$$

• Alternatively $T = \max\{X_1, X_2, X_3\}$

 Topology Testing
 Bootstrap Support for Splits

 Testing Splits
 Adjusting for Selection Bias

Distribution of T

- We know
 - $T = \max\{X_1, X_2, X_3\}$
 - $X_i \sim \frac{1}{2}\delta_0 + \frac{1}{2}\chi_1^2$

• Don't know dependence structure of X_1 , X_2 and X_3 .

Distribution of T

- We know
 - $T = \max\{X_1, X_2, X_3\}$

•
$$X_i \sim \frac{1}{2}\delta_0 + \frac{1}{2}\chi_1^2$$

• Don't know dependence structure of X_1 , X_2 and X_3 .

• Bonferroni correction (*t* > 0):

true p-value =
$$P(\max{X_1, X_2, X_3} > t)$$

= $P(X_1 > t \text{ or } X_2 > t \text{ or } X_3 > t)$
 $\leq P(X_1 > t) + P(X_2 > t) + P(X_3 > t)$
= $\frac{3}{2}P(\chi_1^2 > t) = p_T$
Distribution of T

- We know
 - $T = \max\{X_1, X_2, X_3\}$

•
$$X_i \sim \frac{1}{2}\delta_0 + \frac{1}{2}\chi_1^2$$

• Don't know dependence structure of X₁, X₂ and X₃.

• Bonferroni correction (*t* > 0):

true p-value =
$$P(\max{X_1, X_2, X_3} > t)$$

= $P(X_1 > t \text{ or } X_2 > t \text{ or } X_3 > t)$
 $\leq P(X_1 > t) + P(X_2 > t) + P(X_3 > t)$
= $\frac{3}{2}P(\chi_1^2 > t) = p_T$

• Conservative p-value

$$p_T \geq \text{true p-value}$$

 $\Rightarrow P(\text{Type I error}) \leq \alpha$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ の < @

Topology Testing Bootstrap Support for Splits Testing Splits Adjusting for Selection Bias

alrt T'

- Order X_1, X_2, X_3 as $X_{(1)} < X_{(2)} < X_{(3)}$
- alrt replaces $T = \max\{X_1, X_2, X_3\}$ with $T' = T X_{(2)}$
- Still uses

alrt p-value =
$$\frac{3}{2}P(\chi_1^2 > t')$$

 Topology Testing
 Bootstrap Support for Splits

 Testing Splits
 Adjusting for Selection Bias

alrt T'

- Order X_1, X_2, X_3 as $X_{(1)} < X_{(2)} < X_{(3)}$
- alrt replaces $T = \max\{X_1, X_2, X_3\}$ with $T' = T X_{(2)}$
- Still uses

alrt p-value =
$$\frac{3}{2}P(\chi_1^2 > t')$$

• Since $t' \leq t$, conservative p-value:

alrt p-value =
$$\frac{3}{2}P(\chi_1^2 > t')$$

 $\geq \frac{3}{2}P(\chi_1^2 > t) \geq \text{true p-value}$

Bootstrap Support for Splits Adjusting for Selection Bias

alrt with correction

•
$$X_i =_d V_i^2 I\{V_i \ge 0\}, V \sim N(0, \Sigma)$$

So quick simulation approximation to T' is possible

O Generate
$$V_1, \ldots, V_B \sim N(0, \Sigma)$$

2 Calculate
$$X_{bi} = V_{bi}^2 I\{V_{bi} \ge 0\}$$

$$T'_{b} = \max\{X_{b1}, X_{b2}, X_{b3}\} - X_{b(2)}$$

• p-value = proportion of
$$T'_b \ge t$$

Bootstrap Support for Splits Adjusting for Selection Bias

alrt Simulation

- *S*₁,..., *S*₄ caterpillar trees with distance 0.15 between nodes
- Long branch 0.2, short 0.1
- Middle branch $t_m = 0.05$
- HKY, κ = 4.5, α = 1
- *A*, *C*, *G*, *T*: 0.18, 0.24, 0.32, 0.26

Topology Testing Testing Splits Bootstrap Support for Splits Adjusting for Selection Bias

alrt Simulation Results

æ.

Bootstrap Support for Splits Adjusting for Selection Bias

Adjusting the K-H test

- Single Split Difference between Trees
- Asymptotic Theory indicates

$$I_1 - I_2 \approx V_1^2 I\{V_1 > 0\} - V_2^2 I\{V_2 > 0\}$$

- $\textbf{\textit{V}} \sim \textit{N}(\textbf{0}, \Sigma).$
- Can be used via normal simulation to obtain p-value

Topology TestingBootstrap Support for SplitsTesting SplitsAdjusting for Selection Bias

Asymptotic K-H distribution - Mammal Example

Concluding Remarks - Inference for Splits

- aBP, $(1 alrt) \times 100$ more interpretable that BP
- Selection Bias: useful to report both w/ and w/o adjustment.
- Asymptotic theory can be useful

Topology Testing Testing Splits Bootstrap Support for Splits Adjusting for Selection Bias

Acknowledgements

Andrew Roger Matt Spencer

SEB group at Dalhousie