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Types of phylogenies and representations
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The tip-labeled time-tree

A tip-labeled time-tree is described by a tip-labeled ranked topology of
size k and coalescent intervals, u = {u2, . . . , uk}.

These time-trees of size 3 can be interpreted as describing the
possible alternative evolutionary histories or (uniparental) ancestries of
the three individuals represented by the labeled tips.
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The space of tip-labeled time-trees of size 3
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Unranked tree topologies of size 4
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How many trees are there?

For n species there are

Tn = 1 × 3 × 5 × · · · × (2n − 3) = (2n−3)!
(n−2)!2n−2

rooted, tip-labelled binary trees:

n #trees
4 15 enumerable by hand
5 105 enumerable by hand on a rainy day
6 945 enumerable by computer
7 10395 still searchable very quickly on computer
8 135135 about the number of hairs on your head
9 2027025 greater than the population of Auckland
10 34459425 ≈ upper limit for exhaustive search
20 8.20 × 1021 ≈ upper limit of branch-and-bound searching
48 3.21 × 1070 ≈ the number of particles in the Universe
136 2.11 × 10267 number of trees to choose from in the “Out of Africa”

data (Vigilant et al. 1991)



Felsenstein’s likelihood (1981)

L(T) = Pr{D|T ,Q}
The probability of the data,
Pr{D|T ,Q} can be efficiently
calculated given a phylogenetic
tree (T ), and a probabilistic
model of molecular evolution (Q).

In statistical phylogenetics,
branch lengths are traditionally
unconstrained.



Tree space as a hilly landscape
The space of all possible trees can be visualized as a hilly landscape. Nearby
points in this landscape represent similar trees, and the height of the
landscape is the probability of the tree at that point.

▶ This space can be sampled in a Bayesian analysis with MCMC

▶ The peak can be identified by a search algorithm in the context of
maximum likelihoods



Local tree search and multiple optima



Bayes rule in statistics

Pr(θ|D) = Pr(D|θ)Pr(θ)
Pr(D)

where

▶ P(D|θ) is the likelihood,
▶ Pr(θ) is the prior distribution and
▶ Pr(θ|D) is the posterior distribution.
▶ Pr(D) is the marginal likelihood of the data.
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Bayes rule in phylogenetics

p(T ,Q|D) = Pr{D|T ,Q}p(T)p(Q)

Pr{D}

where

▶ Pr(D|T ,Q) is Felsenstein’s likelihood,
▶ p(T) is the prior distribution on phylogenetic trees,
▶ p(Q) is the prior distribution on the model of evolution and
▶ p(T ,Q|D) is the posterior distribution
▶ Pr(D) is the marginal likelihood of the data.
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Bayesian reconstruction of phylogenetic trees
Yang & Rannala (1997), Mau, Newton & Larget (1998)

In the context of Bayesian phylogenetics, what we want to compute is
the probability of the tree given the data.

We can compute that from the likelihood using Bayes Theorem:

Pr( | )
P( | ) =

Pr( )
P( )|Likelihood

Posterior probability

Prior 
Probability

Normalizing constant

This is known as the Posterior probability of the tree. Another
method of reconstructing the evolutionary history is then to find the
tree that has the Maximum Posterior probability.



Markov chain Monte Carlo (MCMC) robot
[courtesy of Paul O Lewis]
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Markov chain Monte Carlo (MCMC) robot
[courtesy of Paul O Lewis]
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Pure Random Walk
[courtesy of Paul O Lewis]

Proposal scheme:

▶ random direction
▶ gamma-distributed step

length (mean 45 pixels,
s.d. 40 pixels)

▶ reflection at edges

Target distribution:

▶ equal mixture of 3
bivariate normal hills

▶ inner contours: 50%
▶ outer contours: 95%

In this case the robot is
accepting every step and 5000
steps are shown
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Burn In
[courtesy of Paul O Lewis]

Robot is now following
the rules and thus quickly
finds one of the three
hills.

Note that first few steps
are not at all
representative of the
distribution.

100 steps taken from
starting point
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Target Distribution Approximation
[courtesy of Paul O Lewis]

How good is the MCMC
approximation?

▶ 51.2% of points are
inside inner
contours (cf. 50%
actual)

▶ 93.6% of points are
inside outer
contours (cf. 95%
actual)

Approximation gets
better the longer the
chain is allowed to run.

5000 steps taken
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Target distribution versus proposal distribution

▶ The target distribution is the posterior distribution of interest
▶ The proposal distribution is used to decide which point to try next

▶ you have much flexibility here, and the choice affects only the
efficiency of the MCMC algorithm

▶ MCMC using a symmetric proposal distribution is the Metropolis
algorithm (Metropolis et al. 1953)

▶ Use of an asymmetric proposal distribution requires a modification
proposed by Hastings (1970), and is known as the
Metropolis-Hastings algorithm

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. 1953. Equation of
state calculations by fast computing machines. J. Chem. Phys. 21:1087-1092.
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The Posterior Distribution on Darwin’s Finches

This posterior probability distribution was computed using Markov chain
Monte Carlo implemented in the BEAST software package (Drummond &
Rambaut, 2007).



The posterior distribution for a moderately large time tree

22 / 112



..



Evolution is happening right now!
Rodrigo and Felsenstein, 1999; Drummond et al, 2002

Many pathogens, such as HIV, Hepatitis C and Influenza A, evolve very
rapidly, so that samples of the virus population from different times directly
reveal evolutionary change.

In fact it becomes possible to calibrate the tree and thus place the tree on a
time scale - by constraining the tips to known sampling times



..



A calibrated phylogenetic inference
Origin of HIV Epidemic in the Americas, Gilbert et al (2007)

A phylogenetic reconstruction of samples of HIV-1 virus. Each degree one
node represents a single infected individual from whom a blood sample has
been taken.



Phylodynamics

▶ The intersection of phylogenetics and mathematical
epidemiology

▶ Includes estimation of epidemiological parameters from
phylogenetic data

▶ In a Bayesian setting, this has the familiar flavor of a hierarchical
tree prior

▶ The hyperparameters of the tree prior become dynamical
parameters of the epidemiological model

▶ The most common approach is to leverage coalescent theory, by
using coalescent machinery augmented with deterministic models
of effective population size parametrized by R0 or its
epidemiological constituents (net infection rate et cetera).
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Coalescent models



Bayesian coalescent inference

▶ Kingman’s coalescent is a mathematical theory describing a
genealogy of a small random sample from a large background
population.

▶ Provides a probability distribution over tree space given a
population size history: P(G|N)

▶ Old coalescent trees come from large populations
▶ Star-like coalescent trees come from exponentially growing

populations
▶ In a Bayesian framework the coalescent is a hierarchical prior on

tree space.
▶ Backwards in time model
▶ Applied to both within-host and between-host population

dynamics
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The coalescent with serial samples
Many epidemiological agents evolve very rapidly, so that the effect of
sampling the population at different times becomes important.
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Bayesian integration of uncertainty in genealogies

How similar are these two trees? Both of them are plausible given the
data. We can use Bayesian Markov chain Monte Carlo to average the

coalescent over all plausible trees.
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The Bayesian skyline plot
Drummond et al (2005), Molecular Biology and Evolution

The Bayesian skyline
plot estimates a
demographic function
that has a certain fixed
number of steps (in this
example 15) and then
integrates over all
possible positions of the
break points, and
population sizes within
each epoch.
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Validating the Bayesian skyline plot
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Comparison of BSP to parametric coalescent model
Hepatitis C in Egypt
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Extending the BSP with Stochastic Variable Selection
Heled and Drummond (2008), Molecular Biology and Evolution
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Comparison of EBSP to BSP on Egypt Hepatitis C
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Detecting evolutionary bottlenecks using EBSP

480 contemporaneous samples from a single locus
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Detecting evolutionary bottlenecks using EBSP

16 contemporaneous samples from each of 32 loci
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Detecting evolutionary bottlenecks using EBSP

480 samples sampled through time from a single locus
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The population dynamics of genetic diversity in Influenza A
Rambaut et al (2008) Nature 453:615-620
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Birth-death models
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Birth-death-serial-sampled (BDSS) tree prior
Stadler, 2010

The per-lineage dynamics are captured by a simple set of rate equations:

I λ−→ 2I I
µ−→ R I

rψ−→ U (1)

R0 is the expected number of secondary infections per infected individual:

R0 =
λ

µ+ rψ
(2)

Where r is the probability that sampling removes the lineage from infectious category.



Connecting coalescent growth rates and epidemic models

There is a simple relationship between R0 and growth rate g at the
start of the epidemic:

R0 = 1 +
g
d

(3)

where d is total death rate (Wallinga & Lipsitch, 2007). Taking:

d = µ+ rψ (4)
g = λ− d (5)

it is easy to show this R0 is the same as for BDSS model, so
coalescent-estimated g is also an estimate of λ− µ− rψ.

Can we still estimate g accurately with exponential coalescent?



Estimating growth rate based on coalescent approach

Table : The measure of accuracy of estimating growth rate g in exponential
growth tree prior, where true value g = λ− µ− rψ = 4.24 × 10−4

BDSS 1 tree 2 trees 5 trees
mean of median 0.0004488872 0.0004460723 0.0004396722
relative error 0.1705658 0.1316335 0.07757073
relative bias 0.05869633 0.05205729 0.03696277
HPD interval width 0.0003617696 0.0002531587 0.0001581470
95% HPD accuracy 95% 96% 93%
Coalescent 1 tree 2 trees 5 trees
mean of median 0.0004845768 0.0004319822 0.0004147897
relative error 0.2701248 0.1972525 0.1244552
relative bias 0.1428698 0.01882604 −0.02172247
HPD interval width 0.0001942935 0.0001265572 7.699674 × 10−5

95% HPD accuracy 48% 46% 46%
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Sampling ancestors



Fully ranked tree with sampled internal nodes
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How many trees with sampled internal nodes are there?

We can recursively count these trees using equations:

S(n) = R(n) =
n!(n − 1)!

2n−1

S(n1, . . . , nm) =
nm∑
i=1

min{i,nm−1}∑
j=0

(
i
j

)(
nm−1

j

)

×R(nm)

R(i)
S(n1, . . . , nm−1 + i − j)

Time complexity is O(mn2), where n is the number of sampled
individuals and m is the number of sampling times.
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Birth-death-sampling-through-time model
with sampled ancestors

▶ birth rate λ
▶ death rate µ
▶ sampling rate ψ
▶ become noninfectious probability r

This model produces only trees in which each sampled node has
distinct rank.
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Bayesian MCMC analysis with BEAST 2

Since this model produces trees which are not necessarily bifurcating
we need to extend Bayesian MCMC methods and adapt BEAST 2 for
dealing with a new type of tree.

▶ Prior distribution
▶ Proposal mechanism
▶ Likelihood (peeling algorithm)
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Prior distribution

Stadler at el.:

f [T |λ, µ, ψ, r, tor = x0] = λm−1(ψ(1 − r))k

×
m−1∏
i=0

1
q(xi)

m∏
i=1

ψ(r + (1 − r)p0(yi))q(yi)
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Proposal mechanism

An extension of Wilson-Balding operator

▶ Choose an edge ei that terminates at node i.
▶ Choose an edge ej such that at least one end of ej is above i or a

leaf j which is above i excluding the edges adjacent to ei .
▶ Prune the edge ei together with the descendant subtree and

attach it to the edge ej or to the leaf j.
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Proposal mechanism

Wilson-Balding operator
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Proposal mechanism

Wilson-Balding operator
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Proposal mechanism

Wilson-Balding operator
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Proposal mechanism

Wilson-Balding operator
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Proposal mechanism

Extension of Wilson-Balding operator
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Proposal mechanism

Extension of Wilson-Balding operator
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Proposal mechanism

Extension of Wilson-Balding operator
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Proposal mechanism

Every tree is reachable with finite number of moves.

Hastings ratio is as follows:

attaching to internal leaf root
removing from branch branch

internal branch |lj |
|li |

D
(D−1)

1
|li |

e|xj |

|li |

node D
(D+1) |lj | 1 D

(D+1)e|xj |

root branch |lj |
e|xi |

D
(D−1)

1
e|xi |

-
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Sampling from prior BEAST 2

λ = 2, µ = 1, ψ = 1, and r = 0.5.

6

y3 = 0

y2 = 1

y1 = 2

x0 = 3

•
1

•
2

•
3
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Sampling from prior BEAST 2

Chain length of 100000 and log every 100.
Thus, 1000 trees were sampled. ESS is 1000.

Count Percent Topology
263 26.30 ((1)2)3
242 24.20 ((1,2))3
238 23.80 ((1,2),3)
193 19.30 ((1)2,3)
26 2.60 (1,(2)3)
20 2.00 ((1)3,2)
14 1.40 (1,(2,3))
4 0.40 ((1,3),2)

74.4% of trees have sampled internal nodes.
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Sampling from prior BEAST 2
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Sampling from prior BEAST 2
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Sampling from prior BEAST 2
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Sampling from prior BEAST 2

19.3%
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Sampling from prior BEAST 2

A[B1, . . . ,Bk] is a subtree with the root at sampled node A and
B1, . . . ,Bk are all the sampled node under nodes A that occurs in this
subtree.

Count Percent Clade
1000 100.00 1[]
544 54.40 2[]
505 50.50 3[1, 2]
456 45.60 2[1]
449 44.90 3
26 2.60 3[2]
20 2.00 3[1]
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Sampling from prior BEAST 2

A[B] means that sampled node A is an ancestor of sampled node B.

Count Percent Pair
531 53.10 3[2]
525 52.50 3[1]
456 45.60 2[1]
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Sampling from prior BEAST 2

r = 0.9
ESS = 995.77

Count Percent Topology
708 70.80 ((1,2),3)
106 10.60 ((1)2,3)
97 9.70 ((1,2))3
32 3.20 (1,(2,3))
31 3.10 ((1,3),2)
13 1.30 ((1)2)3
8 0.80 (1,(2)3)
5 0.50 ((1)3,2)

22.9 % of trees have sampled internal nodes.
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Further work:

▶ Likelihood
▶ More operators
▶ Using other models, i.e. skyline model
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Structured tree models



Structured trees
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Structured Coalescent

▶ Accommodates subdivision (demes) in the population
▶ Initially described by Tajima (1989) and Hudson (1990)
▶ Implemented in Migrate (Beerli and Felsenstein, 1999; 2001)

▶ Estimates subpopulation sizes and migration rates in both ML and
Bayesian framework

More recent Extensions
▶ Serial sampling of data (Ewing et al., 2004)
▶ Number demes change over time (Ewing and Rodrigo, 2006a)
▶ Ghost demes - demes that are hidden/not sampled (but you know

they are there; Beerli, 2004; Ewing and Rodrigo, 2006b)
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Two-deme Wright-Fisher model

..N1. N2.

m12

.

m21

▶ In general, Ni is the population size of population (deme) i.
▶ mij is the probability that an individual in population i was

produced from a parent in population j.
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Two-deme structured coalescent trees
...

N1 = N2 = 1000,m12 = m21 = 0.0008. There are 15 samples from
each deme, all sampled at the same time.
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Two-deme structured coalescent trees
...

A standard phylogenetic inference method would infer just the tree.
Here we show the true trees, tips annotated with known demes.
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Structured coalescent likelihood

The structured
coalescent likelihood
can be expressed as a
product over time
intervals from the tips to
the root of the ancestral
genealogy.

In the standard
panmictic coalescent,
the number of intervals
is known, but in the
structured coalescent its
an unknown random
variable.

Histogram of migration events
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Prior distribution of the number of migration events
in the two deme, 30 sample example.
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Bayesian MCMC of structured coalescent

In a non-structured Bayesian coalescent analysis, the tree topology
and coalescent times are sampled in a Markov chain of correlated
states. The size of the discrete structure is fixed to n − 1 coalescent
events. Operators involve modifying the ancestral relationship tree
topology or altering the times of the coalescent events.

For the structured coalescent we have to introduce new “operators”
that can add or remove migration events to the ancestral history. When
a migration event is added it must be given a time and location on the
tree. This increases the state space and thus the computational
demand on the inference.
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Beerli and Felsenstein (2001) proposal distribution

1. Tree proposals based on
“dissolving” part of the tree and
then redrawing from the
(conditional) prior.

2. Good at sampling from the prior
3. Bad when the sequence data is

informative about the tree,
because random coalescent
subtrees won’t fit the sequence
data well.
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Ewing, Nicholls and Rodrigo (2004) proposal distribution

1. “Standard” tree state proposals,
rejecting when inconsistent typed
tree generated.

2. Type-specific operators
A. Migration-pair birth/death move
B. Migration merge-split move

3. Relatively poor mixing.
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Operator design strategy

With some exceptions, we take the following general approach to
operator development.

▶ Apply a standard tree move paying no
attention to types.

▶ Type-changes along altered branches are
regenerated.

▶ Regeneration is accomplished by drawing
new migration paths from a continuous time
Markov process generated by the current
rate matrix conditional on types at each end
of the branch.

.
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Uniformization method (Fearnhead and Sherlock, 2006)
Method for drawing trajectories from a continuous time Markovian
jump process conditioned on the beginning and end states:

∂

∂t
Pi(t) =

∑
j

mijPj(t) (6)

The uniformized process has a state independent intensity
ρ = maxi(−mii) and a discrete-time transition matrix

U =
1
ρ

m + I. (7)

Method
1. Generate event times according to Poisson process with rate ρ.
2. Use standard forward-backward algorithm to determine

transitions at these event times conditional on end states.
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Comparison with ENR04-style sampler
▶ For comparison, we have taken the operators used by Ewing,

Nicholls and Rodrigo (2004) in their multi-type tree sampler and
re-implemented them in BEAST 2.

▶ The benefit of their operators is that they are computationally
simple and hence achieve reasonable mixing despite being
“small” moves.

▶ The results were compared on three sets of simulated data.
Simulated on 2-demes, 3-demes, 4-demes respectively:
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.
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Proposal kernel weights
Kernel weights

Operator ENR04 VD13
Scale(m) 1 1
Scale(N) 1 1
Scale(µ) 1 1
Scale(κ) 1 1

DeltaExchange(π) 1 1
UpDown(N,⟨µ,m⟩) 1 1

MultiTypeUniform 10 10
UpDown(⟨Tree,N⟩, ⟨µ,m⟩) 10 10

Scale(Tree) 10 10
TypeSubtreeExchangeEasy 10 -

TypeWilsonBaldingEasy 10 -
TypePairBirthDeath 10 -

TypeMergeSplitExtended 10 -
TypeBirthDeath 10 -

TypeSubtreeExchange - 10
TypeWilsonBalding - 10

NodeShiftRetype(root) - 10
NodeShiftRetype(rest) - 10
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Two-deme: true tree example
...

N0 = 1
2

.

N1 = 2

.

m01 = 0.8

.

m10 = 0.4
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Two-deme performance comparison

95% HPD coverage mean ESS seconds/eff. sample
Parameter VD13 ENR04 VD13 ENR04 VD13 ENR04

N0 0.96 0.96 3337 1517 12 21
N1 0.96 0.96 4827 1632 9 19

m0,1 0.93 0.93 5918 2296 7 14
m1,0 0.90 0.90 5927 1945 7 16
µ 0.94 0.94 2112 388 20 82

Tree Height 0.93 0.92 3274 206 13 154
Tree Length - - 1319 235 32 135

VD13 is 2 to 12 times faster depending on the summary statistic. Tree length
is a good central statistic.
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Three-deme: true tree example
...

N0

.

N1

.

N2

.

m01

.

m02

.

m10

.

m12

.

m20

.

m21
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Three-deme performance comparison

95% HPD coverage mean ESS seconds/eff. sample
Parameter VD13 ENR04 VD13 ENR04 VD13 ENR04

N0 0.96 0.95 3119 1620 16 21
N1 0.98 0.98 4064 1767 12 20
N2 0.97 0.97 3244 1563 16 22

m0,1 0.93 0.93 1499 954 34 37
m1,0 0.93 0.93 1279 800 41 44
m0,2 0.93 0.93 1477 981 35 36
m2,0 0.95 0.95 1385 866 37 40
m1,2 0.94 0.92 1205 746 43 47
m2,1 0.90 0.93 1489 941 35 37
µ 0.99 0.98 1411 266 37 132

Tree Height 0.98 0.97 1874 125 28 284
Tree Length - - 896 159 59 223

VD13 is 1 to 10 times faster depending on the summary statistic. Tree
length is a good central statistic.
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Four-deme: true tree example
...
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Four-deme performance comparison

95% HPD coverage mean ESS seconds/eff. sample
Parameter VD13 ENR04 VD13 ENR04 VD13 ENR04

N0 0.96 0.96 2560 1578 23 25
N1 0.94 0.94 2743 1486 21 27
N2 0.91 0.91 2458 1467 24 27
N3 0.95 0.95 2699 1569 22 25

m0,3 0.80 0.81 935 739 64 55
m0,1 0.93 0.93 811 652 74 62
m2,1 0.91 0.92 913 693 65 58
m3,0 0.95 0.95 898 726 66 56
m1,0 0.84 0.85 777 649 77 62
m1,2 0.84 0.85 718 542 83 75
m3,2 0.88 0.89 901 756 66 53
m2,3 0.93 0.93 914 716 65 56
µ 0.94 0.93 956 185 62 220

Tree Height 0.95 0.96 1115 91 53 447
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Multi-type birth-death process
Assume that the process is started with one infected individual in
deme or of type i ∈ {1 . . . d} at time t = 0. With time increasing from
the past to the present, in a time step ∆t the process can undergo

1. a birth event, so that another infected individual is created in
deme i:

Ni(t +∆t) = Ni(t) + 1,

2. a death event, implying the recovery or removal of an infected
individual in deme i:

Ni(t +∆t) = Ni(t)− 1,

3. a sampling event, yielding the removal of an infected individual as
in 2., but this time the removal is observed, or

4. a migration event, indicating that an individual changes from
deme i to deme j ̸= i:

Ni(t +∆t) = Ni(t)− 1 and Nj(t +∆t) = Nj(t) + 1.

The process terminates when no infected individuals are left.
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Multi-type birth-death process notation

t0 = 0

λ1,1, µ1,1, ψ1,1

λ2,2, µ2,2, ψ2,2

t1

λ1,2, µ1,2, ψ1,2

λ2,2, µ2,2, ψ2,2

t2

λ1,3, µ1,3, ψ1,3

λ2,3, µ2,3, ψ2,3

tm = y4y1 y2 y3x1 x2 z1

1

Notation under the multi-type birth–death model. Birth events are
denoted by xj , sampling events by yj and the one migration event z1.
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Priors for comparison of BDMM with Structured Coalescent

Simulations Multi-type Birth–death Structured Coalescent
Ri LogN(0.4,0.6) LogN(0.5,1) -
δ LogN(-1,1) N (80,20) -
s B(1,10) B(1,100) -
tm - LogN(2.,1.25) -

m(sc)
ij Exp(0.01) Exp(0.01) Exp(0.01)
Ni - - LogN(-2,2)

Table : Prior distributions for the simulation study and the phylogeographic
analysis of human Influenza H3N2 sequences from Australia and New
Zealand. The Beta distribution is denoted by B, the normal distribution by N ,
(i, j ∈ {1,2}).
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Parameter estimates

Multi-type Birth–death Structured Coalescent
Median 95% HPD Median 95% HPD

R1 1.00 (0.93–1.06) - -
R2 1.01 (0.98–1.05) - -
δ1 71 (26–112) - -
δ2 72 (26–114) - -
s1 0.0035 (0.0001–0.0132) - -
s2 0.0013 (0.0001–0.0066) - -

m12 0.024 (0.0002–0.064) - -
m21 0.035 (0.0036–0.077) - -

Migration events in tree 18 (13–23) 11 (8–13)
Root of the tree (yr) 1997 (1996–1998) 1999 (1997–2000)

Origin of the epidemic (yr) 1978 (1966–1985) - -
N1 - - 0.85 (0.43–1.37)
N2 - - 1.22 (0.77–1.74)
msc

12 - - 0.024 (9 × 10−7–0.099)
msc

21 - - 0.076 (0.004–0.153)

Table : Phylogeographic analysis of Influenza H3N2. Posterior median
estimates with 95% HPD intervals of Australasian H3 dataset.
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Comparison of estimate migration history

Figure : H3N2 analysis: Posterior distribution of multi-type phylogenies.
The posterior phylogenies of the multi-type birth–death analysis and
Structured coalescent of human influenza virus, with the two sampling
locations Australia and New Zealand denoted by blue and purple,
respectively, were plotted with the program DensiTree.
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Posterior distribution of number of migrations
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Figure : H3N2 analysis: Posterior distribution of the number of
migrations. The histograms show the posterior density of the number of
migrations in the phylogenetic tree from the analysis under the multi-type
birth–death model (blue) and under the structured coalescent (purple).
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Integrating population dynamics with population genetics?

Genealogical models

▶ Focus on genetics of a
population, especially neutrality

▶ Account for stochastic nature of
mutation and drift

▶ Forward simulation and
equilibrium solutions

▶ Powerful inference tools

Population dynamics models

▶ Focus on coupled interactions
between different types, hosts

▶ Often deterministic, rather than
stochastic models

▶ Forward simulation and
equilibrium solutions

▶ Parameters closely aligned to
real measurable quantities
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Integrating population dynamics with population genetics?

Genealogical models
▶ Generally poor at describing

dynamics and selection
▶ Not readily parameterized by

“real-life” parameters
▶ Parameters such as Ne(t)

can’t be compared with real
measurements in absolute
terms

Population dynamics models

▶ Poor at handling evolution
▶ Poor at describing genetic

variation
▶ Poor inference tools
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Dynamical population genetics
What would a synthesis look like?

▶ Microscopic descriptions of all processes including
▶ Selection, competition
▶ Mutation, type switching
▶ Birth, death, infection, genetic drift et cetera
▶ Demographic stochasticity
▶ Environmental stochasticity

▶ Natural modeling of stochastic parts of the process
▶ Retains non-linear coupling between different types and hosts
▶ Handles both neutral and selected variation
▶ Parameters can be readily connected with real measurable

quantities
▶ Simulation, analysis and inference tools
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