

Bayesian methods for detecting epistatic interactions and compensatory mutations in Influenza A viruses

Dr Samantha Lycett, Mojca Zelnikar, Prof Andrew Leigh Brown, Prof Andrew Rambaut

THE UNIVERSITY of EDINBURGH samantha.lycett@ed.ac.uk

Contents

Introduction

- Interactions between sites in influenza

- Methods for quantifying interactions:
 - Correlation of mapped changes
 - Joint models

Influenza Virus

• 8 RNA Segments coding for 10-11 Proteins

- Nucleotide mutation rate about 1 5 x 10-3 per site per year
- Genome is 13Kb : expect 10 70 mutations per genome per year

Influenza Evolution is Clock Like in Humans

Tree of H3N2 – HA sequences 2004-2012

Genetic Distance from Root

Types of Interactions

- Structural
- Between Polymerases

XJ He *et al. Nature* **000**, 1-4 (2008) doi:10.1038/nature07120

- Functional balance
- Between HA & NA

G Neumann *et al. Nature* **459**, 931-939 (2009) doi:10.1038/nature08157

Epistatic expectations and evidence

- Sites or genomic features are correlated
 - Fitness enhancing, so expect higher prevalence of favourable combinations
 - Expect unfavourable combinations to die out
 - Expect selection for compensatory mutations
- Evidence:
 - Fitness competition assays
 - Prevalence of reassortments
 - Statistical signatures

Motivating Data - Background

- Neuraminidase inhibitor drugs in use since 1999
 - An experimental study showed that drug resistant NA in H1N1 was less fit than wild type
- But rapid increase in drug resistance in H1N1
 - particularly oseltamivir during 2007 & 2008
 - in the absence of direct selective pressure
- Possible explanations:
 - "Permissive" mutations in NA, which compensate for the drug resistant mutation in the NA active site
 - "Hitch-hiking" with antigenically favourable HA, or other mutations in HA which restore HA-NA balance

H1N1 Seasonal Data

- Data set = complete genome sequences with day, month, year
- Subsample to 3 per country per year => 175 from 1995 – 2009
- Concatenate HA and NA sequences, and test for recombination/reassortment with HyPhy (GARD and Single Break Point)
- No reassortment detected between HA and NA (on this set)

Detect Epistatic Interactions ?

False Signatures – Founder Effect

Is the correlation really significant?

Correlation of sequences

Looks like:

- wild types co-occurr
- mutations co-occurr

Signatures – Co-evolution

Correlation of sequences

Method 1 – Mapping

The same double mutation has happened more than once !

Signatures – Co-evolution (Especially if short branches and dense sampling)

Correlation of sequences

Method 2 – Modelling

Mutation at site 1, quickly followed by site 2 Mutation at site 2, quickly followed by site 1

Methods 1 - Mapping

- Construct tree and reconstruct ancestral states at internal nodes
 - Tree from nucleotide sequences
 - Asymmetric discrete state amino acid model
- For each branch, compare node to ancestral node:
 - 0 = no change from ancestor
 - -1 = mutation
- Calculate correlation of pattern of changes between sites (fisher test on: 00, 01, 10, 11)
- Repeat over 1000 trees with 10 sampled reconstructions per tree
 - Trees and mappings performed in BEAST

Initial Site Selection

Variable sites with minor frequency of 10%

HA-NA Interactions by Mapping

But...

- Not multiple testing corrected
- Links are apparent associations, but could be indirect
 - Could have used this data for structural inference of a Bayesian Graphical Model (HyPhy)
- But have low numbers of co-mutations on a branch
 - Averaged over trees and reconstructions:
 - HA-158 NA-344 : 1.85 co-mutations (median=2)
 - HA-206 HA-207 : 1.80 co-mutations (median=2)

Method 2

Joint Discrete Trait Models

Detecting Coevolving sites

- Consider 2 sites: site 1 with A or B; site 2 with a or b
- Does the state of site 1 affect site 2 ?
 - Independent: rate of a <-> b (site 2) does not depend upon state at site 1 (A or B)
 - Dependent: need to consider rates of joint sites e.g. rate
 Aa Ab, Ba Bb etc

Site 1	А	В
А		1
В	2	

Site 2	а	b
а		1
b	2	

Dependent Rates

Detecting Coevolving sites

- Fit discrete asymmetric models to tip data
 - Model 1: Site 1 e.g. A B (2 states, 2 rates)
 - Model 2: Site 2 e.g. a b (2 states, 2 rates)
 - Model 3: Joint Site 1 & 2 e.g. Aa Bb (4 states, 12 rates)
- Calculate likelihood ratio between dependent and independent models:

- LR = LL(Model 3) - (LL(Model 1) + LL(Model 2))

- The 2*LR will be chi-square distributed with degrees of freedom
 = difference in parameters
 - DF = 12 (2 + 2) = 8

– P-value = 1 – prob(chi.square(2*LR, DF))

Example Independent Traits

Example Independent Traits: BEAST Results

Average Per Tree LL(Dep)-LL(indeps) indepTraits20

[For BEAST: Used 1000 empirical trees so multiple comparisons per tree]

Example Dependent Traits

Dependent 39

Rates=	Aa	Ab	Ва	Bb
Aa		0.1	1	1
Ab	1		0.01	1
Ва	0.25	0.01		1
Bb	0.25	0.25	0.1	

Generated Dependent Traits LR test using ACE => dependent model favoured (LR significant)

Example Dependent Traits

Rate Aa -> Ab = slow

slow rate for a-b when in state A (dont want to be in state Ab) Rate Ba -> Bb = fast

fast rate for a-b when in state B (want to be in state Bb) Rate Ab -> Aa = fast

fast rate for b-a when in state A (want to be in state Aa) Rate Bb -> Ba = slow

slow rate for b-a when in state B (dont want to be in state Ba)

```
Rate Ab -> Ba = slow * slow very slow
Rate Ba -> Ab = slow * slow very slow
```

Example Dependent Traits

Dependent 39

Rates=	Aa	Ab	Ва	Bb
Aa		0.1	1	1
Ab	1		0.01	1
Ва	0.25	0.01		1
Bb	0.25	0.25	0.1	

Generated Dependent Traits LR test using ACE => dependent model favoured (LR significant)

Example Dependent Traits: BEAST Results

Mean LR = 10.7 95% HPD = 8.6 - 13.0Mean p = 0.008 95% HPD = 0.0002 - 0.02 (significant)

[For BEAST: Used 1000 empirical trees so multiple comparisons per tree]

Interactions by Modelling using BEAST

- Calculate dependent and independent scores for selected sites over posterior distribution of trees and models
- Median p-values

Model	HA-203	HA-206	HA-207	NA-222	NA-275	NA-344
HA-203	-	1.000	0.337	0.665	0.239	1.000
HA-206	1.000	-	0.513	1.000	0.993	0.998
HA-207	0.337	0.513	-	0.083	1.000	0.707
NA-222	0.665	1.000	0.083	-	1.000	0.006
NA-275	0.239	0.993	1.000	1.000	-	1.000
NA-344	1.000	0.998	0.707	0.006	1.000	-

NA 222 + NA 344 – 'Permissive Mutations'

Interactions Between HA and NA by Modelling

Conclusions

- Detect epistatic interactions
 - Mapping works but is best for multiple independent changes
 - Joint state modelling is preferable for Influenza example, because want to detect changes on different branches
- Found interesting looking interactions with HA and NA

Acknowledgements

- Andrew J. Leigh Brown
- Mojca Zelnikar
- Lu Lu
- Emma Hodcroft
- Manon Ragonnet-Cronin
- Melissa Ward

- Andrew Rambaut
- Trevor Bedford
- Jess Hedge
- Gytis Dudas
- Matthew Hall

University of Edinburgh

Supported by wellcometrust

samantha.lycett@ed.ac.uk

