Computational Population Genomics

Rasmus Nielsen Departments of Integrative Biology and Statistics, UC Berkeley Department of Biology, University of Copenhagen

Demographic history of eastern pacific stickleback vs. western pacific stickleback.

Data: DNA sequences

Eastern	1	CGAAAAGTATCCATCTCGCAGTGCTGAGCTAGACA
Eastern	2	CGAAAAGTATCCATCTCGCAGTGCTGAGCTAGACA
Eastern	3	CGAAAAGTATCCATCTCGCAGTGCTGAGCTAGACA
Eastern	4	CGAAAGGTATCCATCTCGCAGTGCTGAGTTAGACA
Eastern	5	CAAAAAGTATCCATCTCGCAGTGCTGAGTTAGACA
Eastern	6	CAAAAAGTATCCATCTCGCAGTGCTGAGTTAGACA
Eastern	7	CGAAAAGTATCCATCTCGCAGTGCTGAACTAGACA
Eastern	8	CGAAAAGTATCCATCTCGCAGTGCTAAGCTAGACA
Eastern	9	TGAAAAGTATCCATCTCGCAGTGCTAAGCTAGACA
Western	1	CGAAAAGTATCCATCTCGCAGTGCTGAGCTAGACA
Western	2	CGCGAAGCACTTGCCCCATAGCGCTAAGCCGCGTT
Western	3	CGCGTAGCACTTGCCCCATAGCGCTAAGCCGCGTT
Western	4	CGCAAAGCGCTTGCCCCATAACGCTAAGCCGCGTT
Western	5	CGCAAAGCGCTTGCCCCATAACGCTAAGCCGCGTT
Western	6	CGCAAAGCACTTGCCCCATAACGCTAAGCCGCGTT
Western	7	CGCAAAGCACTTGCCCCATAACGCTAAGCCGCGTT

Rai N, Chaubey G, Tamang R, Pathak AK, et al. (2012) The Phylogeography of Y-Chromosome Haplogroup H1a1a-M82 Reveals the Likely Indian Origin of the European Romani Populations. PLoS ONE 7(11): e48477. doi:10.1371/journal.pone.0048477 http://www.plosone.org/article/info:doi/10.1371/journal.pone.0048477

Dangers of naïve phyleography

- Trees are random.
- Many different trees can arise under the same population history.
- The same tree can be compatible with many different population histories.

A sample of size two

In a Wright-Fisher model with 2N gene copies

 $P(\text{two gene copies do not have the same ancestor in } m \text{ generations}) = (1 - 1 / 2N)^{m}$

Now scale by the population size and consider the limit of large population sizes. Set m = 2Nt and let $N \rightarrow \infty$, then

$$(1-1/2N)^{2Nt} \rightarrow e^{-t}$$

The waiting time to a coalescence event is exponentially distributed with mean 1.

Coalescence trees

Kingman 1982 proved that the following genealogical process arises in the limit of large *N*:

The ancestral process $\{A_n(t), t \ge 0\}$ for a sample of size *n*, with state space on $\{n, n-1, ..., 1\}$ is a pure death process with transition rates

$$\boldsymbol{q}_{jj} = \begin{cases} \binom{i}{2} \text{ if } j = i - 1, j > 0\\ 0 \text{ otherwise} \end{cases}$$

and absorbing state in $A_n(t) = 1$. Time (*t*) is here scaled in terms of the population size 2*N*. Since all alleles gene copies are exchangeable, the probability that any particular two gene copies among the *i* gene copies coalesce is = i(i-1)/2.

Mutation

Demographic history of eastern pacific stickleback vs. western pacific stickleback.

Data: DNA sequences

Eastern	1	CGAAAAGTATCCATCTCGCAGTGCTGAGCTAGACA
Eastern	2	CGAAAAGTATCCATCTCGCAGTGCTGAGCTAGACA
Eastern	3	CGAAAAGTATCCATCTCGCAGTGCTGAGCTAGACA
Eastern	4	CGAAAGGTATCCATCTCGCAGTGCTGAGTTAGACA
Eastern	5	CAAAAAGTATCCATCTCGCAGTGCTGAGTTAGACA
Eastern	6	CAAAAAGTATCCATCTCGCAGTGCTGAGTTAGACA
Eastern	7	CGAAAAGTATCCATCTCGCAGTGCTGAACTAGACA
Eastern	8	CGAAAAGTATCCATCTCGCAGTGCTAAGCTAGACA
Eastern	9	TGAAAAGTATCCATCTCGCAGTGCTAAGCTAGACA
Western	1	CGAAAAGTATCCATCTCGCAGTGCTGAGCTAGACA
Western	2	CGCGAAGCACTTGCCCCATAGCGCTAAGCCGCGTT
Western	3	CGCGTAGCACTTGCCCCATAGCGCTAAGCCGCGTT
Western	4	CGCAAAGCGCTTGCCCCATAACGCTAAGCCGCGTT
Western	5	CGCAAAGCGCTTGCCCCATAACGCTAAGCCGCGTT
Western	6	CGCAAAGCACTTGCCCCATAACGCTAAGCCGCGTT
Western	7	CGCAAAGCACTTGCCCCATAACGCTAAGCCGCGTT

Two population island model

The ancestral process $\{A(t), t \ge 0\}$ for a sample (n_1, n_2) , is a Markov process with state space on $\{n_1 + n_2, n_1 + n_2 - 1, ..., 0\} \times \{n_1 + n_2, n_1 + n_2 - 1, ..., 0\} \setminus (0,0)$, with initial state (n_1, n_2) , and transition rates

$$q((i,j) \rightarrow (i-1,j)) = \binom{i}{2} \text{ if } i \ge 2$$

$$q((i,j) \rightarrow (i,j-1)) = \binom{i}{2} r \text{ if } j \ge 2$$

$$q((i,j) \rightarrow (i-1,j+1)) = M_1 i \text{ if } i \ge 1$$

$$q((i,j) \rightarrow (i+1,j-1)) = M_2 j \text{ if } j \ge 1$$

and absorbing states in A(t) = (0,1) and A(t) = (1,0). Time (*t*) is here scaled in terms of the population size of population 1. Since all alleles gene copies are exchangeable, the probability that any particular two gene copies among the *i* gene copies coalesce is = i(i - 1)/2.

Inference

- Assume we have some DNA sequence data (X).
- We are interested in a possibly vector valued parameter
 Θ.
- We have p(G | Θ), the density (with respect to a multidimensional Lebesgue measure) of genealogies (coalescent trees), G.
- We can also easily calculate p(X | G), using standard Markov chain theory and a dynamic programming algorithm.

This suggests the following representation:

Felsenstein's Equation

$$p(X \mid \Theta) = \int_{G \in \psi} p(X \mid G) p(G \mid \Theta) dG$$

•Can only be evaluated directly in very simple cases.

•Simulation based approaches are typically used for real data.

Importance Sampling

$$\int_{\Psi} p(X|G)p(G|\Theta)dG = \int_{\Psi} p(X|G)p(G|\Theta)\frac{h(g)}{h(g)}dG$$

$$= E\left[\frac{p(X|G)p(G|\Theta)}{h(g)}\right]$$

So

$$p(X | \Theta) \approx \frac{1}{k} \sum_{i=1}^{k} \frac{p(X | G_i) p(G_i | \Theta)}{h(g_i)}$$

where $G_{i,i} = 1, 2, ..., k$, has been simulated from h(G).

MCMC algorithms

Demographic history of eastern pacific stickleback vs. western pacific stickleback.

Data: DNA sequences

Eastern	1	CGAAAAGTATCCATCTCGCAGTGCTGAGCTAGACA
Eastern	2	CGAAAAGTATCCATCTCGCAGTGCTGAGCTAGACA
Eastern	3	CGAAAAGTATCCATCTCGCAGTGCTGAGCTAGACA
Eastern	4	CGAAAGGTATCCATCTCGCAGTGCTGAGTTAGACA
Eastern	5	CAAAAAGTATCCATCTCGCAGTGCTGAGTTAGACA
Eastern	6	CAAAAAGTATCCATCTCGCAGTGCTGAGTTAGACA
Eastern	7	CGAAAAGTATCCATCTCGCAGTGCTGAACTAGACA
Eastern	8	CGAAAAGTATCCATCTCGCAGTGCTAAGCTAGACA
Eastern	9	TGAAAAGTATCCATCTCGCAGTGCTAAGCTAGACA
Western	1	CGAAAAGTATCCATCTCGCAGTGCTGAGCTAGACA
Western	2	CGCGAAGCACTTGCCCCATAGCGCTAAGCCGCGTT
Western	3	CGCGTAGCACTTGCCCCATAGCGCTAAGCCGCGTT
Western	4	CGCAAAGCGCTTGCCCCATAACGCTAAGCCGCGTT
Western	5	CGCAAAGCGCTTGCCCCATAACGCTAAGCCGCGTT
Western	6	CGCAAAGCACTTGCCCCATAACGCTAAGCCGCGTT
Western	7	CGCAAAGCACTTGCCCCATAACGCTAAGCCGCGTT

FIGURE 8.—The integrated likelihood surfaces for M_1 (dots) and M_2 (solid lines) estimated from the data by ORTI *et al.* 1994.

Price of Sequencing

1990: 1 dollar per base.
2000: 0.01 dollars per base.
2012: 10⁻⁸ dollar per base.

Additional Challenges

(1) Each site in a genome may have it's own tree.(2) Missing data and errors.

Additional Challenges

(1) Each site in a genome may have it's own tree.
(2) Missing data and errors.

Recombination

Consider the ancestral history of a single chromosome backwards in time

A sample of size one

We will look at a model in which recombination events occur in each generation with probability r between two homologous sequences. Then

P(gene copy does not recombine in *m* generations) = $(1 - r)^m$

We now look at the similar time scale as for the case of the coalescent process without recombination, i.e. we scale by the population size and consider the limit of large population sizes. Set m = 2Nt, R = 2Nr and let $N \rightarrow \infty$, then

$$\left(1-R/2N\right)^{2Nt} \to e^{-Rt}$$

The waiting time to a recombination event is exponentially distributed with parameter R = 2Nr.

Mean waiting time to recombination: R = 2NrMean waiting time to coalescence: 2N Ancestral recombination Graph for 2 loci and n = 2

Ancestral recombination Graph for 2 loci and n = 2

Ancestral recombination Graph for 2 loci and n = 2

Each site in a genome may have it's own tree.

Because of recombination, each position in the genome has it own tree – possibly shared with some nearby positions.

A process on Ancestral Recombination Graphs (ARG) can describe the coalescence process with recombination.

The size of increases of the ARG increases fast with the size of the region considered.

Methods based on full likelihood are very computationally intensive, implementation heavy, and cannot be applied to large genomics regions.

So we cheat!

Use statistics that are not sufficient.
Use approximating models.
Do both...
Give up on parametric inferences.

Site Frequency Spectrum

Cheating 1: Composite likelihood

$$L(\Theta) \equiv \prod_{j \in \Phi} \left(p_j(\Theta) \right)^{n_j}$$

Sampling probability of a SNP with site pattern *j* (a binary vector)

Number of SNPs with pattern *j* in the data

SNPs within a gene are correlated. But estimator is consistent (Wiuf 2006).

Estimation

$$p_j(\Theta) = \frac{E[t]}{E[T]}$$

$$x = \{3, 2\}$$

$$T = 5\tau_5 + 4\tau_4 + 3\tau_3 + 2\tau_2$$

$$t = \tau_4 + \tau_3 + 2\tau_2$$

Sampling distribution can be calculated analytically or using simple simulation schemes.

Data

Directly sequenced polymorphism data from 20 European-Americans, 19 African-Americans and one chimpanzee from 9,316 protein coding genes (Bustamante et al. 2005).

Objectives

To detect natural selection in individual genes using the frequency spectrum.

To account for demography by estimating parameters of a demographic model.

Demographic model

European-Americans African-Americans

migration

Population growth

Admixture

Bottleneck
Estimates

European-Americans African-Americans

Strong effect of migration: M=16 at present

Divergence time: 75k yrs

Bottleneck and growth: 200-fold increase in population size

European-Americans

Cheating 2: Approximate Bayesian Computation

- 1. Draw $\theta_i \sim \pi(\theta)$.
- 2. Simulate $x_i \sim p(x | \theta_i)$.
- 3. Reject θ_i if $\rho(S(x_i), S(y)) > \epsilon$.

Cheating 3: approximating models

Sequentially Markov Coalescent (SMC)

- Assumes $p(G_i | G_{i-1}, G_{i-2}, ...) = p(G_i | G_{i-1}).$
- Greatly simplifies calculations.
- At least two versions: SMC (McVean and
- Cardin) and SMC' (Marjoram and Wall).

CATGACGTGAGACCAGATATAGCAGATGG CATGGCGTGAGACCAGATATACCAGTTGG

Joint probability that a randomly chosen site is the left endpoint of an *L*-base IBS region and that *t* is the TMRCA of the rightmost base pair of the region:

$$P(L,t) = e^{-t\theta} \int_{t_0=0}^{\infty} P(L-1,t_0) P(T_b = t \mid T_{b-1} = t_0) dt_0$$

 $T_b: \text{TMRCA of site } b \\ \theta: 4N\mu$

Harris and Nielsen 2013. PLoS Genetics doi:10.1371

Kelley Harris

	$ au_a$ (gens)	$ au_s$ (gens)	f	N
True value:	400	2,000	0.05	10,000
Mean:	431	1,990	0.0505	9,806
Std dev:	51	41	0.00652	27
Bias:	31	-10	0.0005	-194
Mean squared error:	3280	1781	4.27×10^{-5}	3.84×10^4
True value:	200	2,000	0.05	10,000
Mean:	220	1,983	0.0499	10,003
Std dev:	28	39	0.00328	287
Bias:	20	-17	-0.0001	-3
Mean squared error:	1184	1810	1.08×10^{-5}	8.23×10^4

Using MS, we simulated 200 replicates of the admixture scenario depicted in Figure 2B. In 100 replicates, the gene flow occurred 400 generations ago, while in the other 100 replicates it occurred 200 generations ago. Our estimates of the four parameters τ_a , $\tau_{s,t}f$, N are consistently close to the true values, showing that we are able distinguish the two histories by numerically optimizing the likelihood function.

doi:10.1371/journal.pgen.1003521.t001

Polar Bear Physiology

- Diet is extremely rich in fat
- Fasting triglyceride levels: 292 mg/dl
- Fasting cholesterol levels 381 mg/dl

Bear Genomics

Sequencing of 79 polar bear and 10 brown bear genomes (BGI).

			Polymorphisms		Fixed mutations		
	Coding seq	Effective	Polar	Brown	Polar	Brown	
Gene	length	length	bear	bear	bear	bear	Rank of <i>F_{st}</i>
TTN	100,203	99,416	571	803	74	8	0.994
APOB	13,290	13,264	50	162	27	1	0.976
OR5D13	9 45	871	4	38	12	0	0.906
FCGBP	7,410	5,216	42	83	20	1	0.941
XIRP1	5,538	3,848	23	52	17	0	0.970
COL5A3	5,166	4,402	46	92	18	1	0.900
LYST	11,400	11,172	50	83	22	2	0.980
ALPK3	4,848	3,007	28	47	19	0	0.989
VCL	3,438	3,106	24	56	12	0	0.906
SH3PXD2B	2,673	2,458	15	44	13	2	0.973
EHD3	1,608	1,230	12	38	9	0	0.981
IPO4	2,934	1,260	11	31	10	0	0.959
ARID5B	3,555	3,109	29	50	13	0	0.933
ABCC6	4,527	3,346	34	65	15	2	0.945
LAMC3	4,269	1,885	21	44	11	0	0.946
CUL7	4,914	2,701	28	42	14	0	0.926
C15orf55	3,414	3,001	17	53	9	1	0.974
POLR1A	5,154	4,499	37	58	15	1	0.916
AIM1	4,728	4,344	33	48	14	0	0.992
OR8B8	966	965	1	16	6	0	0.961

Coat color

			Polymorphisms		Fixed mutations		-
	Coding seq	Effective	Polar	Brown	Polar	Brown	
Gene	length	length	bear	bear	bear	bear	Rank of <i>F_{st}</i>
TTN	100,203	99,416	571	803	74	8	0.994
APOB	13,290	13,264	50	162	27	1	0.976
OR5D13	945	871	4	38	12	0	0.906
FCGBP	7,410	5,216	42	83	20	1	0.941
XIRP1	5,538	3,848	23	52	17	0	0.970
COL5A3	5,166	4,402	46	92	18	1	0.900
LYST	11,400	11,172	50	83	22	2	0.980
ALPK3	4,848	3,007	28	47	19	0	0.989
VCL	3,438	3,106	24	56	12	0	0.906
SH3PXD2B	2,673	2,458	15	44	13	2	0.973
EHD3	1,608	1,230	12	38	9	0	0.981
IPO4	2,934	1,260	11	31	10	0	0.959
ARID5B	3,555	3,109	29	50	13	0	0.933
ABCC6	4,527	3,346	34	65	15	2	0.945
LAMC3	4,269	1,885	21	44	11	0	0.946
CUL7	4,914	2,701	28	42	14	0	0.926
C15orf55	3,414	3,001	17	53	9	1	0.974
POLR1A	5,154	4,499	37	58	15	1	0.916
AIM1	4,728	4,344	33	48	14	0	0.992
OR8B8	966	965	1	16	6	0	0.961

GO analysis of selected genes

Related to cardiovascular function

				Polymorphisms		Fixed mutations		-
	Coding seq	Effective	Polar	Brown	Polar	Brown		
Gene	length	length	bear	bear	bear	bear	Rank of <i>F</i> st	
TTN	100,203	99,416	571	803	74	8	0.994	
APOB	13,290	13,264	50	162	27	1	0.976	
OR5D13	945	871	4	38	12	0	0.906	
FCGBP	7,410	5,216	42	83	20	1	0.941	
(XIRP1)	5,538	3,848	23	52	17	0	0.970	
COL5A3	5,166	4,402	46	92	18	1	0.900	
IYST	11,400	11,172	50	83	22	2	0.980	
ALPK3	4,848	3,007	28	47	19	0	0.989	
VCL	3,438	3,106	24	56	12	0	0.906	
SH3PXD2B	2,673	2,458	15	44	13	2	0.973	
(EHD3)	1,608	1,230	12	38	9	0	0.981	
IPO4	2,934	1,260	11	31	10	0	0.959	
ARID5B	3,555	3,109	29	50	13	0	0.933	
(ABCC6)	4,527	3,346	34	65	15	2	0.945	
LAMC.3	4,269	1,885	21	44	11	0	0.946	
CUL7	4,914	2,701	28	42	14	0	0.926	
C150155	3,414	3,001	17	53	9	1	0.974	
POLR1A	5,154	4,499	37	58	15	1	0.916	
AIM1	4,728	4,344	33	48	14	0	0.992	
OR8B8	966	965	1	16	6	0	0.961	

APOB Apolipoprotein B (LDL cholesterol component)

Cheating 4: Back to non-parametrics

Saqqaq Genome

Structure and Admixture Analyses

Fig. 1. Estimated population structure. Each individual is represented by a thin vertical line, which is partitioned into K colored segments that represent the individual's estimated membership fractions in K clusters. Black lines separate individuals of different populations. Populations are labeled below the figure, with their regional affiliations above it. Ten *structure* runs at each

K produced nearly identical individual membership coefficients, having pairwise similarity coefficients above 0.97, with the exceptions of comparisons involving four runs at K = 3 that separated East Asia instead of Eurasia, and one run at K = 6 that separated Karitiana instead of Kalash. The figure shown for a given *K* is based on the highest probability run at that *K*.

Admixture components

Mason Liang

Population Genetics of Admixture

- How do admixture components change through time?
- What is the relationship between a particular distribution of admixture components and particular population histories?

$$H = \frac{1}{L} \int_0^L A(\ell) d\ell$$

 $A(\ell) = \begin{cases} 0 : \ell \text{ descended from first source population} \\ 1 : \ell \text{ descended from second source population} \end{cases}$

$$k_1 \equiv \frac{1}{n} \sum_{i=1}^n H_{i(g)}$$

$$\mathbb{E}(k_1) = \mathbb{E}(H_{1(g)})$$

= $\frac{1}{L} \int_0^L \mathbb{P}\{A_{1(g)}(\ell) = 1\} d\ell$
= $\mathbb{P}\{A_{1(g)}(0) = 1\}.$

$$k_2 \equiv \frac{1}{n-1} \sum_{i=1}^{n} \left(H_{i(g)} - k_1 \right)^2$$

$$\mathbb{E}(k_2) = \frac{1}{n-1} \sum_{i=1}^n \mathbb{E}(H_{i,g}^2) - \frac{1}{n(n-1)} \sum_{i,j=1}^n \mathbb{E}(H_{i,g}H_{j,g})$$
$$= \mathbb{E}(H_{1,g}^2) - \mathbb{E}(H_{1,g}H_{2,g}).$$

$$\begin{split} \mathbb{E}(H_{1(g)}^2) &= \frac{1}{L^2} \mathbb{E}\left(\int_0^L A_{1(g)}(\ell) d\ell \int_0^L A_{1(g)}(\ell) d\ell\right) \\ &= \frac{1}{L^2} \int_0^L \int_0^L \mathbb{E}\left(A_{1(g)}(\ell) A_{1(g)}(\ell')\right) d\ell d\ell' \\ &= \frac{1}{L^2} \int_0^L \int_0^L \mathbb{P}\left\{A_{1(g)}(\ell) = 1, A_{1(g)}(\ell') = 1\right\} d\ell d\ell'. \end{split}$$

Similarly,

$$\mathbb{E}(H_{1(g)}H_{2(g)}) = \frac{1}{L^2} \int_0^L \int_0^L \mathbb{P}\left\{A_{1(g)}(\ell) = 1, A_{2(g)}(\ell') = 1\right\} d\ell d\ell'$$

In matrix form:

$$\mathbf{v}_{2(g)} = \left(\begin{array}{c} \mathbb{P}\left\{ A_{1,g}(\ell) = 1, A_{1,g}(\ell') = 1 \right\} \\ \mathbb{P}\left\{ A_{1,g}(\ell) = 1, A_{2,g}(\ell') = 1 \right\} \end{array} \right)$$

$$\mathbb{E}(k_2) = \frac{1}{L^2} \int_0^L \int_0^L \left(\begin{array}{cc} 1 & -1 \end{array} \right) \mathbf{v}_{2(g)} d\ell d\ell'$$

A single admixture event

$$\mathbb{E}(k_2) = \frac{1}{L^2} \int_0^L \int_0^L \left(\begin{array}{cc} 1 & -1 \end{array} \right) \cdot (\mathbf{L}_2 \mathbf{U}_2)^g \mathbf{v}_{2(0)} d\ell d\ell'$$
$$= \frac{1}{L^2} \left(1 - \frac{1}{N} \right)^g \left(s_{1,0} - s_{1,0}^2 \right) \int_0^L \int_0^L [\ell \ell']^g d\ell d\ell'.$$

$$\mathbf{U}_2 = \begin{pmatrix} \left[\ell\ell'\right] & \left[\ell|\ell'\right] \\ 0 & 1 \end{pmatrix}$$
$$\mathbf{L}_2 = \begin{pmatrix} 1 & 0 \\ 1/N & 1-1/N \end{pmatrix}$$

$$[\ell \ell'] = \frac{1 + \exp(-2|\ell - \ell'|)}{2}$$

2011] and equation 1, plotted on a logarithmic scale. The variance we predict is always larger, but the two a very similar when g is small.

1000 Genomes Data

s colored

green.

Conclusions (admixture components)

- We have analytical formulas for the moments of the admixture proportion distribution for multiple models.
- These results can be used as an additional method for estimating parameters of the admixture distribution.

Mason Liang
2. Admixture tracts

Furope 63%
Africa 35%
Asia 2%
Not Genotyped

Figure from 23andMe

Mason Liang

Black: WF Red: Coalescent Blue: SMC Green: SMC'

el. The red, green, and blue lines correspond to m = 0.5, 0.3, and 0.1. The left plot is for a likelihood-ratio test with $\alpha = 0.05$ and the right plot is with $\alpha = 0.002$.

Conclusions (tract lengths)

- Tracts lengths are clustered spatially.
- Tracts lengths are not exponentially distributed.
- Inferences of demographic parameters from tracts will be biased if not taking these two factors into account.

Mason Liang

Additional Challenges

(1) Each site in a genome may have it's own tree.(2) Missing data and errors.

Acknowledgements

Polar Bears:

Shiping Liu, Eline D. Lorenzen, Matteo Fumagalli, Bo Li, Kelley Harris, Zijun Xiong,Long Zhou, Thorfinn Sand Korneliussen, Mehmet Somel, Courtney Babbitt, Greg Wray, Jianwen Li, Weiming He, Zhuo Wang, Wenjing Fu, Xueyan Xiang, Claire C. Morgan, Aoife Doherty, Mary J. O'Connell, James O. McInerney, Erik W. Born, Love Dale, Rune Dietz, Ludovic Orlando, Christian Sonne, Guojie Zhang, Eske Willerslev, Jun Wang.

Admixture tracts:

Mason Liang

IBS tracts

Kelley Harris

