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Three methods
Minimum evolution (‘parsimony’): o
Need tree topology but not
branch lengths or model
?
Majority Rule
Don’t even need tree
Definition:
. . . For a method M that estimates the ancestral
Maximum likelihood state at a node v of a tree from leaf data, and a
model of character state change, the Accuracy
of Matvis:

Need tree, branch lengths and model
Pr(M(leaf data)= state of v]




frn = min{# red tips : M P(root) = {red}}
fn="Jfn—1+ fn—2
fi=2,f2=3
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Q1: Which is more accurate for root state prediction from
an ‘evolved’ character: parsimony or majority?

2 —n— —n—
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Q2. Is it easier to estimate the ancestral state at the root of the tree,
or an interior node?

t/2
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e

(b)

Root state can be estimated with low precision but
all other interior nodes can be

Root state can be estimated with high precision but
no other node can be

Part 3: Random trees

Yule (pure birth) model

Each lineage gives birth independently at some
T constant rate A

Grow for time ¢, or till it has » leaves, or
condition on both n and ¢

s
T

'G. U. Yule, A mathematical theory of evolution. Based on the Conclusions of Dr. J.C.
Willis, F.R.S. Phil. Trans. Roy. Soc. 213 (1925), 21-87. 8




So what happens on a ‘typical’ tree?

Grow a Yule (pure-birth) tree at

speciation rate A for time ¢ N A
Evolve a binary state from the root to t
the tips binary character (mutation rate m) \

X

Estimate the root state from the tip states using maximum parsimony.

. . . 1
Let P, = probability our estimate is correct £, =S, +§E’

Question: what happens to P, as ¢ becomes large?

Dynamical system

Ciff =—(A+m)S, + mD, + A(S} +2S,E,);
t
db,

dt

=—(A+m)D, + mS, + MD} +2D,E,);

dE,
dt

m = mutation rate (of states),
A = birth rate (of tree)

=-AE,+ ME} +2S,D,);

P=S+2F,
2

'six is (just) enough':

speciation rate

If ————— <6, then we lose all information about the
mutation rate
ancestral state as ¢ grows (min evolution).
speciation rate
If —————— >6,then wedon’t
mutation rate

- P, > lim P, = f(z) where
t— 00

EE f@»:%(b+¢ﬂ—&wﬂ—2@>

0 002 004 006 008 07 072 014 016 078 x = mutation rate/speciation rate

Comparisons (simulations)
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- Hanson-Smith, V., Kolaczkowski, B. and Thornton, ].W. (2010). Robustness of ancestral
sequence reconstruction to phylogenetic uncertainty. Mol. Biol. Evol. 27: 1988-99.




What about majority rule?

ati t . .
Pl <4, then any method loses all information about the
mutation rate
ancestral state as t grows (we’ll see why in 10 mins!).

Theorem [Mossel +S, 2014]

1 1 4m
Pr(MR correct) > 5 + 3 (1 — T)

All't

What can we say in general (for Yule trees)? ; H

Assume any conservative GTR model on any number of states

0 Theorem 1: The accuracy of any method in predicting the state at the
root node of the tree vanishes (as 7 or 7 goes to infinity) when the
mutation rate passes a threshold (dep. on the speciation rate).

0 Theorem 2: There is a very simple method that can predict the state
of a randomly selected node with an accuracy that does not vanish
(as 7 or 7 grows) for any fixed mutation rate.

Part 2: Information loss on trees

0 Probability Primer:
Let X and Y be any two discrete random variables.
The mutual information of (X,Y') is:

roxin) = Snte v (5505)

= DxL(pxv|lpxpy)
I(X;Y)=0 < X and Y are independent

Fano’s lemma

I(X;Y) << 1=Y cannot accurately predict X

by any method!

Markovian processes that destroy information
(exponentially fast)

Theorem: For any finite state Markov chain, where a
transition from any state to any other is possible in some
fixed number of steps with probability > p >0 then:

I(Xo; X)) < Ce

* Transition rates can vary arbitrarily with time E
* Theorem applies to a (1-dimensional)
Markov chain, not for a Markov

V\W I(X,: Xe)
process on a (branching) tree (but k

applies to a path from root to leaf). p




| Data processing inequality

r X —-Y—~Z7 (where X 1y Z ) then
I(X;2)<I(X;Y)and I(Y; Z)

o
I

Xp — Xﬁ — XLI
Thus, I(Xp;Xﬁ) > I(Xp;Xﬁl)

But! — MP can be more accurate on subsets of leaves of (an ultrametric
tree) than on all leaves!

IFischer, M. and Thatte, B. (2009). Journal of Theoretical Biology 260: 290--293. 17

‘ A caution...

= Throwing away data never increases information (e.g. deleting
fast evolving sites for tree estimation) — same for MLE under
true model.

0 But when don’t know the ‘true’ model (i.e. always except in simulations!)

it can still (sometimes) be a good thing to do (to avoid correcting under
an incorrect model). ..

 Application 2

But! — MP can be more accurate when substitution probabilities
increase!

' S. Roch (Pers. Comm).

| Another property of I: subadditivity

If (Y1,Ys,...,Y},) are conditionally independent given X then:

k
I(X;(Y1,Ys,...,Y%)) SZI(XQYi)

=1

Example: Data = k characters (c,, ¢,,...) generated i.i.d. by an
unknown tree topology 7, with some prior on branch lengths.

I(T;Data) < kI(T;cy)




| Application

Subadditivity of Iimplies that [ (X 3 V) < ZI(XmYl)
lel

Butis I(X,;X.) < I(X,;Yz)?

For 2-state symmetric model — yes! Evans et al. (2000)
For r-state symmertic models 7>4 — no! Allan Sly, (2011).

21

Getting our hands (slightly) dirty. ..

m For the 2-state symmetric model

I(Xp; Y1) = exp(—4rt)

(X5 Xe) < I(X,; YC@ 10%,:72) < S I(X,.¥0)

lel

~

I(X,; Xr) < nexp(—4rt)

22

‘ So why was 4 best possible?...
[10 mins ago]

I(X,, Xr) < nexp(—4rt)

Ny ~ Geo(e™ )
= E[V;] = exp(At)

0.0t

5

*ys: Other useful tricks: “Coupling” and

petrcolation/branching process theory

23

Reconstructing a complete scenario:

a curions combinatorial result

D(€) = min{d(e,€’) : e,e’ € C}

Theorem [S+Penny, 2005]

D(&) > 3 = MP reconstruction from leaf states is correct at every node of T—7

24




Part 3: Reconstructing trees

Another combinatorial curiosity...

Theorem [Dress +S, 2005]

Suppose that :

* nspecies evolved on some unknown tree 7.

*  for every three species, the sequence at the median node can be determined.
*  the sequences are long enough that each edge of the tree has a transition in at least one

site.
Then the unknown tree T can be reconstructed without error.

[Easy proof using ‘symbolic ultrametric theory’ of Boecker and Dress] 25

Examples of deep and controversial
phylogenetic resolutions

» Origin of metazoa
(~550-600 mya)

= Origin of photosynthesis
(>2.5 bya)

= Rooting the ‘tree’ of life
(~3.5 bya)

\
-

| e
[
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Tree reconstruction: connection with information

theory

f‘"%fh‘f‘"'% L

Xz

Y -85 = X,
S I(Y; X) <I(S;X¢)

Time
!
I(S; Xg) <) I(S; Xc,)
I(S:Xz,) S 1(S5 Xx,)

I(SZ 5 Xﬂi) S Z ZI(Slﬁle)

les; j=1

— Y

k > exp(4rt)/n

27

Problems for reconstructing a tree
(even when the model is known and nice!)

= Short interior edges A

= Long edges

= Many taxa ()

28




Simplest model

e — p(e)

time

Kimura and Crow’s “infinite alleles” model.
The probability of any partition can be computed via Mobius inversion (Evans et al. 2004) 29

How many such ‘evolved’ characters are needed?

P = max{p(e)},p = min{p(e) : e is interior}

Theorem [Mossel +S, 2004]

For P < %, the number of characters k needed to corrected reconstruct T
(w.p. >1—¢)is: k‘:c-@
Proof relies on combinatorial arguments, and
basic property of branching processes.

P>, k changes to poly(n).

What about finite-state models, which will generate homoplasy? 30

Finite state models: short and long edges

k = sequence length needed to accurately
A reconstruct this tree

as T grows, k grows at rate exp(cT)

What about is t shrinks?

B D

Infinite alleles model as t — 0, k grows at rate %

Y

Finite state model a ﬁ

as t — 0, k grows at rate t% ~/

but if T'=t then as t — 0, k grows at the rate %

31

Deep divergences

P

time

i } ¢

1
Question: How do these two factors Lk = © (exp(cT) X —
(short, long) interact? €

32




Recent developments

Does ‘rates across sites’ help?

0 For long edges it can: for certain distributions instead of

k = O(exp(cT')) it suffices to have k = @(TW)

[Martyn and S. (2012). JTB 314: 157-163.]

What about additional noise from lineage sorting?

0 For short edges, the sequence length can still be kept at

o[

Dasarathy, Nowak, Roch (2014). [Data requirement for phylogenetic inference from
multiple loci: A new distance method. ArXiv: April 28, 2014: ]

How does the required sequence length (for tree
reconstruction) depend on » (=# taxa)?

cat dalsy rice
cat  mushroom daisy rice bacteria
Cat ........ ACCCGTCGTT....
Daisy .... CACCATCGTT...
Rice....... AACCAGCGTT...

mushroom

bacteria

#data-sets of k characters for n species, over an r-letter alphabet

= (rM)F = pnF b(n) = 29 1og(m)

=k > c-log(n)

34

Fine, but what about 'evolved' data

Suppose we evolve k characters independently on a tree m

under a 2-state symmetric model with o 6

p(e) € [p, P] for every edge e /\/

Theorem 1 [Erdos, PL, Szkeley, S, Warnow (1999)]
For some (‘stringy’) trees accurate tree reconstruction is possible with k& = © (log(n))

But for other (‘bushy’) trees our approach required k — © (nt)

However, for almost all trees it suffices to have: k = © (log(n)s)

. . 1 1
Conjecture: Provided that P < 51— 7
accurate tree reconstruction can be achieved for ALL trees with & = ©(log(n))

U Theorem 2 [Daskalakis, Mossel, Roch (2011)]

This conjecture holds (and is tight)

Does finding a tree need more data than to ‘test’ if a given
one is correct?

Reconstructing:

o Given k characters generated by (unknown) tree T
We need log(n) sites for finite-state and infinite state models to reconstruct 7.

Testing:

o Given data, and candidate tree, T,,is 7= 17,7

Theorem
0 For finite-state data we still need log(#) sites to test
0 But for infinite-state data a constant(!) number of sites suffices
o Teasing:
Given data, and that and ‘7 =T, or T5’, which is it?




Can adding more taxa help (even if you don’t care about them)?

Add taxa = build tree == ignore the added taxa

Sequence length required to find the correct tree (on the
subset of species) can be reduced logarithmically this way

Intermission....

The Interface of Mathematics and Biology
The 19th Annual New Zealand Phylogenomics Meeting

Sunday 1st - Friday 6th February, 2015

Part 4: Lateral gene transfer

Simone Linz Daniel Huson Andreas Pedersen

FXARIOTES

I Ancestral genome sizes specify the minimum rate of
lateral gene transfer during prokaryote evolution
z2 b 1 c 1 d 1
=
i Wom 1 Woom T Wooom 1 Woom
I [] Gene presence > Gene origin / LGT @ Gene loss
u In prokaryotes, if nearly all genes have been
transferred between lineages many times is it
meaningless to talk about a species ‘tree’?
b}
Biology Direct ottt
Phylogenetic modeling of lateral gene transfer
Review reconstructs the pattern and relative timing

Prokaryotic evolution and the tree of life are two different things
*1, Maureen A O'Malley?, Robert G Beiko®, Marc Ercshefsky?,

end, Laura Franklin-11all%, Francois-Joseph Lapointe?,

2, Tal Dagan®, Yan Boucher” and William Martin®

Opinion
The tree of one percent
Tal Dagan and William Martin

Pt | Novamber 2004

of speciations

Gorgoly L S20RG, Rastion o, Sophie 5. Abby*", Uk Tanwier™", a0 Vincent Sunbin ™"

Lateral gene transfer as a support for the tree of life

Sophle 5. Abby* "%, Lek Tanrier***, Mascio Gouy*”, and Viecert Dautbie* "

Gorese Blodngy 3006, 71418 (ot 10 1 g 2008-7.15-118)

40
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LGT
-
a b c a b ¢
% /<\ ’
a b c

42

LGT combinatorics

43

Suppose we have some ‘species tree’

(e.g. the tree of bacterial cell divisions)

w Can random LLGT lead to statistical inconsistency in

estimating this species tree from gene trees?

u When can we infer a species tree from gene trees?




Possibilities for the LGT rates in the model: A Likelihood Framework to Measure Horizontal Gene Transfer

=* Achim Radtke,* and Amdr von Haeseler?$§

Rate of transfer from x to y is constant ) l
Rate of transfer from x to y depends on the branches ¢

Rate of transfer from x to y depends on d(x,y) and/or time

In all cases, the number of LGT events in the tree
has a Poisson distribution

45

Easy: Under model, 3-taxon tree
reconstruction is statistically consistent if no
other lineages are involved.

Harder: What about 3-taxon
reconstruction if other taxa present? time

(cf: lineage sorting story — there extra lineages don’t matter)?

tibcy

46

LGT: the gene tree for (a,b,c)
[ 'fixing' and 'moving’ transfers]

t(p)
—p
time b}
C———y
—
a b c 04

Walking between trees (“pass the port”)

48




Theorem

P(a|b(j) = % [1 _ e—7lt(1 _ e—?/t - e—B(l + C_Qll))]
P(blac) = P(c|ab)
fOT' H = %/\t{a,*}y and B = 3A(t{b,(:} — t{a,*})

49

A zone of inconsistency

Corollary
P(a|be) < P(blac) = P(c|ab)
if and only if t(,cy — t{ax} s greater than

1 14e—2m = LAt
EDY hl(m H = 3AUax}

P(albe) =

[1—e (1 — e — e B(1 4 72))]

W=

<} = Haw)

B = 3\(tye — tay)

50

What about the other tree?

Ly,

Hoep ~ Hany

More precz'selg} for v’ and pp = ér\t{b,c}, and B = 3(At(,. — t{b_,}), we have:
1 - .
P(albc) = 3 [1+e 7 (1+e _eBl-e 2”))]

and in this case
P(albe) > P(blac)(= P(c|ab))

Jor all values of t, .y and g,y — -

51

The other tree shape

a b ¢ d
(a) The fork-shaped four-taxon tree topology.

a b ¢ d
(b) The pectinate four-taxon tree topology (ab; ¢ d)

52




‘ The other tree shape
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The other tree shape

No statistical
inconsistency
arises for this
tree shape

54

Can we reconstruct a tree under rampant LGT?

Theorem [c.f also Roch and Snir 2013]

Triplet-based (R*) tree reconstruction is a statistically consistent estimator of the
species tree under the random LGT model if the expected number G of LGTs per gene is
‘not too high’.

Example: for Yule trees with n leaves the following suffices:

n-2
3ln(%)

Particular case: [S,Linz, Huson, Sanderson]

Gs

001 %

Take n=200 (Yule-shape tree), and suppose each gene is transferred on
average 10 times. Then the species tree is identifiable from sufficiently
many gene trees.

55

Can we reconstruct a tree under rampant LGT?

Theorem 1 [Roch and Snir, 2013] 001
Under the bounded rates (e.g. Yule model), it is possible to reconstruct the topology of a

phylogenetic tree for n taxa w.h.p. from N = Q(log(n)) gene tree topologies if the
expected number of LGT transfers is no more than a constant times n/log(n).

Theorem 2 [Roch and Snir, 2013]

Under the Yule model, it is not possible to reconstruct the topology of a phylogenetic tree
w.h.p. from N gene trees if the expected number of LGT events is more than Q(n log(N))

Roch, S., Snir, S, 2013. Recovering the tree-like trend of evolution despite
extensive lateral genetic transfer: a probabilistic analysis. J. Comput. Biol. 20 56
(2),93-112
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1338 rooted gene trees on variable taxon sets from
the Actinobacteria phylum.

“Primordial tree” in Dendroscope 58
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