Using Stochastic Mapping for model estimation

Laurent GUÉGUEN Lab. Biométrie et Biologie Évolutive - UMR CNRS 5558 – Lyon 1

June 16th 2014

- Stochastic Mapping
- 2 Model estimation
- 3 Simulations
- 4 Conclusion

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Stochastic Mapping	Model estimation	Simulations	Conclusion
	00000	0000	O
What is mapping?			

Reconstruction of branch history

- Number of given events :
 - Transitions/transversions
 - Towards GC /towards AT
 - Non-synonymous/synonymous
- Time spent in a given state :
 - Stability of amino-acids

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Complementary to ancestral sequence reconstruction (node) [Nielsen, 2002]

Stochastic Mapping	Model estimation		Conclusion
0000	00000	0000	
Branch history			

An alphabet \mathcal{A} and sets of events $\mathcal{L}_1, \mathcal{L}_2 \subset \mathcal{A} \times \mathcal{A}$.

Transitions vs Transversions

Towards GC vs Towards AT

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

On a branch on a given site σ there is an history :

which is unknown.

Stochastic Mapping	Model estimation	Simulations	Conclusion
OO●O		0000	O
Conditional mapping	ng		

In the context of probabilistic modelling :

• Markovian model : ${\mathfrak M}$

we infer a distribution of the histories on a branch :

Formula to compute, on a branch of length t, given states s and e: $E(N_{\mathcal{L}}|s, e, t, \mathcal{M})$ expected number of \mathcal{L} -events; $E(t_a|s, e, t, \mathcal{M})$ expected time spent in state a. [Minin and Suchard, 2008, Tataru and Hobolth, 2011]

Stochastic Mapping	Model estimation	Simulations 0000	Conclusion O
Stochastic mapping	3		

But ancestral sequences are unknown, only the extant sequences \mathbb{D} .

We need to integrate on all the ancestral states.

Given a markovian process $\mathcal P$, on a branch β , on a site $\sigma,$ a posteriori joint-probabilities of states :

$$P_{eta}(s,e|\mathbb{D}_{\sigma},\mathbb{P})$$

Expected number of \mathcal{L} -events :

 $\begin{array}{l} E_{\beta}(N_{\mathcal{L}}|\mathcal{M},\mathcal{P},\mathbb{D}) = \sum_{\text{site } \sigma} \sum_{s,e} E(N_{\mathcal{L}}|s,e,\mathcal{M}) P_{\beta}(s,e|\mathbb{D}_{\sigma},\mathcal{P}) \\ \text{Expected time spent in state } a: \end{array}$

$$E_{\beta}(t_a|\mathcal{M},\mathcal{P},\mathbb{D}) = \sum_{\text{site } \sigma} \sum_{s,e} E(t_a|s,e,\mathcal{M}) P_{\beta}(s,e|\mathbb{D}_{\sigma},\mathcal{P})$$

Same complexity as likelihood computation \implies Fast Usually \mathcal{M} is the model of \mathcal{P} on branch β .

Stochastic Mapping	Model estimation		Conclusion
0000	0000	0000	
Parameters and Ev	ents		

Estimation of model parameters from counts

Usual nucleotidic models :

 $\kappa = \frac{\text{Rate of transitions}}{\text{Rate of transversions}}$

 $\theta = \frac{\text{Rate of substitutions towards GC}}{\text{Rate of substitutions towards GC} + \text{Rate of substitutions towards AT}}$

Usual codon model (Yang & Nielsen 1998) :

 $\omega = \frac{\mathrm{dN}}{\mathrm{dS}}$

But : Rates are required, ie counts "per relevant site".

- \Rightarrow take into account ancestral sequences and models;
- \Rightarrow More relevant information on the past substitution process.

Stochastic Mapping	Model estimation	Simulations	Conclusion
0000		0000	O
dN and dS			

Usual measures of evolution of codon sequences :

- $dN\,$ number of non-synonymous substitutions per non-synonymous site.
- dS number of synonymous substitutions per synonymous site.

What does it mean? It depends on :

- the ancestral sequence
- the model

[Goldman and Yang, 1994] : Number of (non-)synonymous substitutions that would be performed by a neutral model

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 \Longrightarrow Normalization by the rates of a **neutral** model $\omega = 1.$

Stochastic Mapping	Model estimation		Conclusion
0000	00000	0000	
Model ability			

The expected amount of substitutions in $\ensuremath{\mathcal{L}}$ that a model is able to perform on a branch.

Generator of model $\mathcal M$: $\mathbb Q$

Instantaneous model ability :

During a small time dt, with letter $X(\tau)$ at time τ

Sum of the substitution rates of events in $\ensuremath{\mathcal{L}}$:

$$\sum_{b\in\mathcal{A}; (X(\tau),b)\in\mathcal{L}} \mathfrak{Q}_{X(\tau),b} dt = \mathfrak{Q}_{X(\tau),\mathcal{L}} dt$$

with $Q_{a,\mathcal{L}} = \sum_{b \in \mathcal{A}; (a,b) \in \mathcal{L}} Q_{a,b}.$

Since the history is not known, given states s and e:

$$\sum_{a\in\mathcal{A}} \mathfrak{Q}_{a,\mathcal{L}} P(X(\tau) = a|s, e, t, \mathfrak{M}) dt$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Stochastic Mapping	Model estimation		Conclusion
0000	00000	0000	
Model ability			

So, the ability of $\ensuremath{\mathcal{M}}$ along the branch is :

$$\begin{aligned} A^{\mathcal{L}}(\mathcal{M}|s, e, t) &= \int_{\tau=0}^{t} \sum_{a \in \mathcal{A}} \mathcal{Q}_{a, \mathcal{L}} P(X(\tau) = a|s, e, t, \mathcal{M}) dt \\ &= \sum_{a \in \mathcal{A}} \mathcal{Q}_{a, \mathcal{L}} \int_{\tau=0}^{t} P(X(\tau) = a|s, e, t, \mathcal{M}) dt \\ &= \sum_{a \in \mathcal{A}} \mathcal{Q}_{a, \mathcal{L}} E(t_a|s, e, t, \mathcal{M}) \end{aligned}$$

And, given a markovian process \mathcal{P} , on a branch β , a posteriori model ability in \mathcal{L} :

$$A_{\beta}^{\mathcal{L}}(\mathcal{M}|\mathbb{D},\mathcal{P}) = \sum_{\mathsf{site } \sigma} \sum_{s,e} \sum_{a \in \mathcal{A}} Q_{a,\mathcal{L}} E(t_a|s,e,\mathcal{M}) P_{\beta}(s,e|\mathbb{D}_{\sigma},\mathcal{P})$$

Same complexity as likelihood computation \Longrightarrow Fast

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Stochastic Mapping	Model estimation	Simulations	Conclusion
0000	○○○○●	0000	O
Parameter estimati	on		

- Perform substitution mapping;
- Over the counts :
 - Use the same model as the one defined in process $\ensuremath{\mathcal{P}}$;
 - Change the parameter value by its "null" value : $\mathcal{M}_0\,;$
 - Divide the count by the ability of the "null" model :

 $\frac{E_{\beta}(N_{\mathcal{L}}|\mathcal{M},\mathcal{P},\mathbb{D})}{A_{\beta}^{\mathcal{L}}(\mathcal{M}_{0}|\mathbb{D},\mathcal{P})}$

Stimate the parameters from the normalized counts.

For example, on YN98(F1X4) :

parameter	null value	$\mathcal{L}_1-events$	$\mathcal{L}_2 - events$	formula
κ	1	transitions	transversions	$\frac{\mathcal{L}_1}{\mathcal{L}_2}$
θ	0.5	towards GC	towards AT	$\frac{\mathcal{L}_1^2}{\mathcal{L}_1 + \mathcal{L}_2}$
ω	1	nonsynonymous	synonymous	$\frac{\mathcal{L}_1}{\mathcal{L}_2}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Stochastic Mapping	Model estimation	Simulations	Conclusion
0000	00000	0000	
Simulations			

100 codon alignments with YN98(F1X4) modelling

() Simulation of an alignment with **three** models $\Rightarrow \mathbb{D}$;

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- **2** Maximum likelihood inference using **one** model $\Rightarrow \mathcal{P}$;
- Setimation of the parameters of the three models.

Stochastic Mapping	Model estimation	Simulations	Conclusion
0000	00000	0000	
$\mathcal{M}_1=\mathcal{M}_2=\mathcal{M}_3$			

Estimation of $\boldsymbol{\omega}$

э

æ

Stochastic Mapping	Model estimation	Simulations	Conclusion
0000	00000	0000	
$\mathcal{M}_1 eq \mathcal{M}_2 eq \mathcal{M}_3$			

Estimation of $\boldsymbol{\omega}$

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ▲ 圖 ● の Q @

Stochastic Mapping	Model estimation	Simulations	Conclusion
0000	00000	0000	
$\mathcal{M}_1 eq \mathcal{M}_2 eq \mathcal{M}_3$			

Estimation of $\boldsymbol{\omega}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Stochastic Mapping	Model estimation	Conclusion
		•
To conclude		

• Normalization of mapping counts to get better information of the substitution process, taking into account :

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- a posteriori ancestral sequences
- bias in the model
- \Rightarrow New formula for dN and dS.
- Unbiased estimator with good model
- On the way to get non-homogeneity