Deciphering the genetic code of overlapping genes

S. Lèbre et O. Gascuel

Université de Strasbourg, ICube – UMR 7357
Institut de Biologie Computationnelle, LIRMM, CNRS & Université de Montpellier
Overlapping genes

1977: a single DNA sequence may code for several overlapping genes

Genetic code: DNA bases \{a,c,g,t\} amino \Rightarrow 1 amino acid

One sequence
- different reading frame
- same or opposite strain

5 frames
Overlapping genes

• First (70s)
 • non-viral species
 • multiple functions: regulation, translational coupling, genome imprinting...

• Recently
 • Number of overlapping genes could be greater than expected
 • Especially in the virus world
 HIV: 3 overlapping genes (env, tat, rev)
 HTLV-1 (Human T-cell leukemia virus): HBZ gene

• Favored therapeutic targets
 ➔ *Highly conserved* DNA sequences are subject to strong evolutionary constraints
 ➔ *Prevent* the *rapid adaptation* of viruses
 and fast appearance of *resistance mutations*.
Degrees of freedom?

• Mathematical results in the 1980s
 • Sander and Schultz (1979)
 • Siegel and Fitch ((1980)
 • Smith and Waterman (1980) : conditional information
 ➔ Frame dependent
 ➔ Frame \(f = -2 \) : « very rare in nature »

• But: HBZ (HTLV), ASP (HIV) overlap in \(f = -2 \)

• Still questions...

• Looking for explicit constraints:
 1) For 2 overlapping “proteins” \((\text{symmetric view})\)
 2) When 1 protein is known \((\text{asymmetric view})\)

➔ amino-acid (n-peptide) composition
➔ detecting selection pressure
➔ searching for overlapping genes
Opposite frames F^-

Let R_f be the relation such that $xR_f y$ whenever sequence y overlap the reference sequence x with frame f

$$f \in F^- = \{-2, -1, 0\} : \quad xR_f y \iff yR_f x$$
Same sense frames F^+

• Let R_f be the relation such that $xR_f y$ whenever sequence y overlap the reference sequence x with frame f

$$f \in F^- = \{-2, -1, 0\}: \quad xR_f y \iff yR_f x$$

$$F^+ = \{+1, +2\}: \quad xR_{+1} y \iff yR_{+2} x$$
Amino acid constraints

• Frame $f = -0$
 (opposite strand, without shift)
 \rightarrow 5 constraints

• From the genetic code (without stop in the 2 reading frames)
 1) Reference frame ‘aac’ (N) \rightarrow ‘gtt’ (v) in overlapping frame
 2) ‘aat’ (N) \rightarrow ‘att’ (i)
 3) ‘gtc’, ‘gta’, ‘gtg’ (v) \rightarrow ‘gac’ (D), ‘tac’ (Y), ‘cac’ (H)
 4) ‘atc’, ‘ata’ (i) \rightarrow ‘gat’ (D), ‘tat’ (Y)
 5) … \leftarrow …

• But for the other overlapping frames?

Partial codon overlap \rightarrow Dependency
Linear Algebraic approach

- **Quadons**

 In all frames \(f \neq -0 \), 4 DNA bases describe 2 overlapping codons (amino acids in both reading frame)

- **Vector** \(\mathbf{Q} \) of size \((4^4 - \#\text{stops})\) gives the number of occurrences of **quadons** or 4-letter words in the sequence (except Stops)

- **Vector** \(\mathbf{N} \) of size 40 gives the number of occurrences of 20 amino acids (without a stop) in both frames (reference and overlap),

\[
\mathbf{N} = (\ [A]_1, \ [C]_1, \ [D]_1, \ ...[Y]_1, \ [A]_2, \ [C]_2, \ [D]_2, \ ...,[Y]_2).
\]
Linear Algebraic approach

\[
\begin{bmatrix}
A_1 \\
\vdots \\
T_1 \\
\vdots \\
Y_1 \\
A_2 \\
\vdots \\
V_2 \\
\vdots \\
Y_2
\end{bmatrix}
=
\begin{bmatrix}
\cdots & 0 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & 1 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 1 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & 1 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & 0 & 1 & \cdots & \cdots & \cdots & \cdots & \cdots \\
\end{bmatrix}
\begin{bmatrix}
\text{aaaa} \\
\text{aaac} \\
\text{...} \\
\text{aact} \\
\text{...} \\
\text{atat} \\
\text{...} \\
\text{...} \\
\text{tttt}
\end{bmatrix}
\]

\[N_{[40]} = M_f^{\left[40 \times (4^4 - 24)\right]} Q_{[4^4 - 24]}\]

- # of AA (Ref & overlap)
- # of quadons (- 24 Stop)
\(\text{Remaining degrees of freedom} \)

- \(M_f \) has not full rank:
 \[\sum_{i=1}^{20} L_i = \sum_{i=1}^{20} L_{20+i} \quad (\text{Trivial constraint}) \]

- This may be the only constraint

\textit{Frame } f = -1 : \textit{only one (trivial) linear constraint} between reference/overlapping protein amino acid composition

- For all other frame shifts, additional constraints do exist

\[\text{Equality constraints correspond to the set of linear combinations of the lines of matrix } M_f \]

\[\text{Number of equality constraints} = 2 \times 20 - \text{Rank}(M_f) \]
Constraints list for all frames

Frame $f = -2 \Rightarrow 10$ constraints

(Ref)

- $A = a$
- $Y = y$
- $G = p$
- $P = g$
- $T = v$
- $V = t$
- $H + Q = c + w$
- $C + W = h + q$
- $I + M = i + m$

+the trivial constraint ($F + L + S + N + K + D + E + R$)

Symmetric

Extension to di-peptides

Frame $f = -2 \Rightarrow 125$ di-pep constraints

2x 6 null constraints (2 frames)
- $FY = 0, YY = 0, HY = 0, NY = 0, DY = 0, CY = 0$

(⇒ STOP in overlapping: YY \{‘tat’, ‘tac’\}*2 overlap in frame $f=-2$ with ‘taa’ or ‘tag’\)}
Number of equality constraints

Amino acid

-2: 10
-1: 1
0: 5
+1: 2
+2: 2

2-peptide

-2: 113
-1: 1
0: 25
+1: 4
+2: 4

3-peptide

-2: 1316
-1: 1
0: 125
+1: 8
+2: 8

- Null constraint = STOP in at least 1 frame

- Tri-peptides
- Higher order (Graph traversal algorithm)
Normalized number of equality constraints

Normalized number of constraints = $\sqrt[\text{n}]{C_n}$
where C_n is the # of constraints for peptides of length n
Average number of amino acid choice

\[
S_{n}^{f} = \left(\frac{1}{\#\text{Pep}} \sum_{c=1}^{\#\text{constraints}} |Pep_{1,c}^{f}| \right) \left(\frac{1}{Pep_{2,c}^{f}} \right)
\]

• Example
 (2-peptide constraints, \(f = -2 \))

\[
S_{n=2}^{f=-2} = \sqrt{\frac{1+1+0+0+2 \times 2 + 2 \times 2 + 6 \times 4 + ...}{20^2}}
\]

AA = AA
AG = PA
PA = AG
YY = 0
0 = YY
AH + AQ = CA + WA
CA + WA = AH + AQ
YF + YL + YS + YN + YK + YR = LY + KY + EY + RY
...

Average number of AA choice
due to sets of equality constraints
When one protein is given...

Local n-peptide constraints

Average # of AA choice due to local constraints

\[S_n^f = \left(\frac{1}{20^n} \sum_{i=1}^{20^n} |Pep_i^f| \right)^{\frac{1}{n-1}} \]

Smith & Waterman (1980)

| Reading frame m | \(I_m(C|C) \) | \(I_m(C|C \times C) \) |
|-----------------|----------------|------------------|
| Ref | 4.218 | — |
| +2 | 2.144 | 1.709 |
| +1 | 2.144 | 1.729 |
| -0 | 1.532 | — |
| -1 | 3.424 | 1.832 |
| -2 | 0.821 | 0.644 |

TABLE 2

The Average Conditional Information per Codon
 Obtained from Eqs. (8) and (9)
 When the Encoding of Each Amino Acid
 Defines a Codon Class.
a 10th protein in HIV virus?

- env : gene coding for the virus capside
- ASP may be a protein coded by a gene overlapping env with $f = -2$
- ASP
 - 189 amino acids: 103 fixed + 86 flexibles
 - Average Hydrophobicity (Kyte Doolittle)
 - Fixed AA: 0.9
 - Flexible AA:
 - Observed: 0.9
 - Expected: 0.2 ($\sigma^2 = 0.06$)

Frame $f = -2$
env aa composition
HIVb aa frequency

Highly Hydrophobic
Conclusion

• 2 points of view
 • 2 proteins: peptide equality constraints
 • 1 known protein

• Tools for studying pression selection?

 ===> Poster

Evolutionary analyses strongly support that ASP (Anti Sense Protein) overlapping ORF is the 10th gene of HIV-1 M pandemic group

Elodie Cassan, Anne-Muriel Chifolleau, Antoine Gross, Olivier Gascuel.