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Who are the two H’s?

W.D. Hamilton
(Hamilton & May 1977)

A. Hastings
(Hastings 1983)

Competition between
relatives

Spatial heterogeneities
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The model
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The model

Suppose that

two (or more) distinct types of individuals are present

that only di↵er in their dispersal behaviour (kernel).
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The model

Formally: The model equations
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Carrying capacity
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Carrying capacity

The abundance of resources defines a carrying capacity .

No dispersal: Population density attains carrying capacity.

Dispersal usually blurs out the population density profile.

Definition

We call a dispersal strategy balanced if N

T

=  is a stable

solution of the population density dynamics (given that all

individuals adopt the dispersal strategy).
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Balanced dispersal is evolutionarily stable

Result 1

Dispersal evolution leads to
balanced dispersal strategies.

)

A. Hastings
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Dispersal evolution at carrying capacity

Consider two dispersal types, R and I , that are both balanced and

let the variances of their dispersal kernels be V and V + v .

Then, the “faster” type never decreases in total abundance, since
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Result 2

Within the class of balanced dispersal strategies, increased
dispersal is selected for.
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Sampling in finite populations

Stochastic sampling between generations keeps p

I

heterogeneous;

the sampling variance is

p

I

(1�p

I

)
2N

T

.

Adding white noise with this variance causes the rate of

increase to diverge
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Numerical simulations (i.e., discretizations) show a gradual

increase in numbers of the faster type.

Note

The continuous equations cannot quantify the selective advantage

of increased dispersal in this case. Details of the spatial scale

matter!
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Discrete time and space

+ stochastic sampling between generations.
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+ stochastic sampling between generations.
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Discrete time and space

In the stochastic model, we are interested in the expected change
in total abundance of the faster type.

Result 3 (mathematical version)

E
h
�N total

I

i
= mJN �2

p

(1� ⇢),

where

N is the number of individuals per patch,

J is the number of patches in the habitat,

m is the increase of migration rate of the faster type,

�2
p

is the spatial type-frequency variance, and

⇢ is the correlation of type frequencies between adjacent

patches.
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Discrete time and space

Result 3 (verbal version)

The selection pressure for increased dispersal is proportional to
the variance in type frequencies induced by sampling between

successive generations.

The frequency variance �2
p

is a
measure of relatedness.

)

W.D. Hamilton
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Remark I

Let P be the average frequency of the faster type, then

E[�P] ⇡ m
4NM

P(1� P),

where M is the base migration rate.

This is analogous to haploid selection with s =

m
4NM .

It can be used to compare with numerical simulations.
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Remark II

Variability in type frequencies can emerge due to all kinds of

stochastic influences, not only random sampling.

Dispersal Evolution

Extinction events

Temporal fluctuations

Selection, genetic draft

Demographic stochasticity
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Summary

1
Spatial heterogeneities of the habitat select for balanced

dispersal strategies to optimally exploit the resources.

2
Within the class of balanced dispersal strategies, increased

dispersal is selected for by, e.g., stochastic sampling. The

emerging sampling variances directly translate into measures

of relatedness.

3
Details of spatial scaling matter to quantify this e↵ect. This

shows a limitation to the use of continuous di↵erential

equations.

4
The spatial variance of type frequencies can capture various

stochastic factors that influence the evolution of dispersal.

Does this unify di↵erent aspects of dispersal evolution?
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