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Trees vs networks

Phylogenetic trees

Darwin described evolution as ‘descent with modification’, a phrase that
does not necessarily imply a tree representation...
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The implicit assumption of using trees is that, at a macroevolutionary scale,
each (current or extinct) species or gene only descends from one ancestor
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Phylogenetic trees

Darwin described evolution as ‘descent with modification’, a phrase that
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The implicit assumption of using trees is that, at a macroevolutionary scale,
each (current or extinct) species or gene only descends from one ancestor

For alleles within a population, we already know this is not true... because
of sex (cf. Adam Siepel’s talk yesterday about ARGs)



Trees vs networks

Reticulate evolution

However, sometimes inheritance is from multiple ancestors, because of
reticulate events, e.g:

1) Hybrid speciation
2) Lateral gene transfer

3) Recombination
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Reticulate evolution

However, sometimes inheritance is from multiple ancestors, because of
reticulate events, e.g:
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Trees vs networks

Reticulate evolution

However, sometimes inheritance is from multiple ancestors, because of

reticulate events, e.g:

1) Hybrid speciation
2) Lateral gene transfer
3) Recombination
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Trees vs networks

Reticulate evolution

However, sometimes inheritance is from multiple ancestors, because of
reticulate events, e.g:

1) Hybrid speciation | Putative phylogeny of HIV/SIV
infecting primates

2) Lateral sene transfer (Bailes et al. Science 2003)

3) Recombination
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Phylogenetic networks

Phylogenetic networks

Bacteria Eukarya Archaea

In the presence of reticulate events,
phylogenies are networks, not trees

The study of phylogenetic networks is
a new interdisciplinary field: maths,
CS, biology...
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Phylogenetic networks

Phylogenetic networks

Any phylogeny is a schematic representation of part
of a potentially very complex story:

m
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Reticulation:

part of the genome is
inherited from one lineage,
another part from the other
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Phylogenetic networks

Trees displayed by a network

Although the evolution of these genomes is best described by a network,
the evolution of each part still follows a tree:
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Trees displayed by a network

Although the evolution of these genomes is best described by a network,
the evolution of each part still follows a tree:
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Phylogenetic networks

Phylogenetic network inference

a bcd e f

Implicit assumption/hope in the phylogenetic
network community: at a macroevolutionary scale,
the ratio data/reticulations is ‘large enough’ to
allow the inference of the network itself...

(c.f. ARGs)
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Phylogenetic networks

Phylogenetic network inference

An optimization problem where a candidate N
network is evaluated on the basis of how
well the trees it displays fit the data:

a bcd e
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Many possible formulations: abcd e a bcde

Data: .
H [EleTe] GGG
Sequence alignments: g@%m! Ia
(typically given in blocks) 6aGG
A
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Phylogenetic network inference

An optimization problem where a candidate N
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Many possible formulations: abcd e a bcde
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subject to constraints on the complexity of N =1



Phylogenetic networks

Phylogenetic network inference

An optimization problem where a candidate N
network is evaluated on the basis of how
well the trees it displays fit the data:

a bcd e
Many possible formulations: abcd e a bcde

Data: .
H [EleTe] GGG
Sequence alignments: g@%m! Ia
(typically given in blocks) 6aGG
A

Goal
Find N that minimizes Pr(4;,4,..., A,,|N) = HPr(AZ-|N) = H ( Z Pr(Ai|T)Pr(TN))

i=1 i=1 \TeT(N)




Phylogenetic networks

Phylogenetic network inference

An optimization problem where a candidate N
network is evaluated on the basis of how
well the trees it displays fit the data:

a bcd e f

/\

Many possible formulations: abcd e f a bcde f

Data:
Clusters of taxa: {a,b},{d,e},{d,e, f},{a,b,c,d,e, f},{e, [}, {c,d,e, f},...

Goal:
Find N that maximizes the number of input clusters that are "explained’ by one of
the trees displayed by N

subject to constraints on the complexity of N



Phylogenetic networks

Phylogenetic network inference

An optimization problem where a candidate N
network is evaluated on the basis of how
well the trees it displays fit the data:

a bcd e

X Xy

Many possible formulations: abcd e a bcde

Data:

Trees with 3 taxa: /<\ /<\ /<\ /<\ /<\
(inferred from other data) a a a c d
Goal:

Find N that maximizes the number of input trees that are "consistent’ with one of
the trees displayed by N

subject to constraints on the complexity of N



Phylogenetic networks

Phylogenetic network inference

An optimization problem where a candidate N
network is evaluated on the basis of how
well the trees it displays fit the data:

a bcd e

X Xy

Many possible formulations: abcd e a bcde
Data:
Any trees on the same taxa: /<\
(inferred from other data)

a cd e c f a b de f
Goal:

Find N that maximizes the number of input trees that are "consistent’ with one of
the trees displayed by N

subject to constraints on the complexity of N



Phylogenetic networks

Phylogenetic network inference

An optimization problem where a candidate N
network is evaluated on the basis of how
well the trees it displays fit the data:

a bcd e

Many possible formulations... abcd e a bcde
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Identifiability problems

Different networks can display the same trees

Some networks display exactly N, N,
the same trees:
a b c a b c
n [ h
a b c a b c a b c
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Some networks display exactly N, N,
the same trees:
Because N, and N, display
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the same trees, they are a c a
equally good to any of the

. T, T, T.
inference methods we saw ! 2 }
— no matter the input data
d d d
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Different networks can display the same trees

Some networks display exactly N, N,
the same trees:
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the same trees, they are
equally good to any of the

. T, T, T.
inference methods we saw ! 2 }
— no matter the input data
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Data
(Recall that a network is evaluated />\ /<\
on the basis of how well the trees it TUEEIE L.
displays fit the data)
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Identifiability problems

Different networks can display the same trees

Some networks display exactly N, N,
the same trees:

Because N, and N, display
the same trees, they are
equally good to any of the
inference methods we saw
— no matter the input data

UNIDENTIFIABILITY



Branch lengths

Branch lengths are informative

Branch lengths can be used to distinguish between otherwise
indistinguishable scenarios:

N N, N;
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Branch lengths

Branch lengths are informative

Branch lengths can be used to distinguish between otherwise
indistinguishable scenarios:

N,

N, is the only network to which we can assign branch lengths so that it
displays T, and T,



Branch lengths

Branch lengths are informative

From now on we assume that all networks
(and the trees they display) have branch lengths




Identifiability problems

Indistinguishable networks

However, branch lengths
do not eliminate
unidentifiability...

N, and N, display the same trees (i.e. including branch lengths) and are thus
indistinguishable even to methods accounting for lengths



Canonical networks

Unzipping a network

Key observation: we can move reticulations up or down (until they hit a
speciation node) and the trees displayed by a network remain the same:
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Canonical networks

Unzipping a network

Key observation: we can move reticulations up or down (until they hit a
speciation node) and the trees displayed by a network remain the same:

By moving reticulations always down, N; and \
N, both end up becoming the same network.

True in general: indistinguishable networks
always transform into the same network.
We call this the canonical form of N; and N.. a



Canonical networks

Take home message (1) for the mathematician

* N; and N, are indistinguishable if they display the same trees (with branch lengths)

* A funnelis a node with indegree > 0 and outdegree = 1: i Y \f/

N* is the canonical form of N if:
N* is indistinguishable from N and
N* has no funnel
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Set of
indistinguishable
networks
Theorem

e Every network has a canonical form

 The canonical form of a network is unique
(under mild assumptions — ‘U.m.a.)



Canonical networks

Take home message (1) for the mathematician

* N; and N, are indistinguishable if they display the same trees (with branch lengths)

* A funnelis a node with indegree > 0 and outdegree = 1: i Y \f/

N* is the canonical form of N if:
N* is indistinguishable from N and

Set of
N* has no funnel

indistinguishable
networks
Theorem

e Every network has a canonical form

 The canonical form of a network is unique
(under mild assumptions — ‘U.m.a.)

Corollary 1
U.m.a., N; and N, are indistinguishable iff they have the same canonical form

Corollary 2
U.m.a., a network in canonical form is uniquely determined by the trees it displays



Canonical networks

Take home message (2) for the biologist

The canonical form of a network N is a simplified, but ‘equivalent’, version of N
that excludes all unrecoverable aspects of N. For example:

canonical
form of N

{A7+ X2 + g,
Ar 4+ AL+ A+ gt

/\4 )\4 )\r,

S




Canonical networks

Take home message (2) for the biologist

The canonical form of a network N is a simplified, but ‘equivalent’, version of N
that excludes all unrecoverable aspects of N. For example:

canonical
form of N

{A7+ X2 + g,
Ar 4+ AL+ A+ gt

/\4 )\4 )\r,

S

a b c d e a b c d e

If N is reconstructed by an inference method, then even assuming perfect data, the
true phylogenetic network is just one of the many that are indistinguishable from N ...
the canonical form is representative of all of them.



Canonical networks

Take home message (3) for the computational biologist

Network inference methods should Theorem
Every network has a canonical form

The canonical form of a network is unique
(under mild assumptions)

only attempt to reconstruct what they
can uniquely identify: canonical forms




Canonical networks

Take home message (3) for the computational biologist

Network inference methods should Theorem o .
only attempt to reconstruct what they Every network has a canonical form

. . . . The canonical form of a network is unique
can uniquely identify: canonical forms (under mild assumptions)

Instead of searching (or directly constructing) within network space, one
should carry out the inference in a reduced space:

Canonical networks

Network space

e Should reduce computation time Classes of indistinguishable
networks

e Partially address the problem of multiple optimal networks



Multiple optimal networks

Inferring networks in canonical
form should partially address the
problem of multiple optima

Huson and Scornavacca. Syst Biol 2012: ——

A minimum hybridization network computed by
Dendroscope 3 [...] It is one of 486 networks
calculated by the program.

It is not hard to see that some
of these 486 networks are
simply indistinguishable

Canonical network
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Canonical networks

Canonical forms for the mathematician, again

The existence is proven with a simple Theorem
reduction algorithm <«— ¢ Every network has a canonical form

e The canonical form of a network is unique

: : (under mild assumptions)
Uniqueness is much harder to prove

and relies on the network satisfying
the following property:

No pair of distinct paths having the same endpoints o
have the same length T
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Canonical networks

Canonical forms for the mathematician, again

The existence is proven with a simple Theorem
reduction algorithm <«— ¢ Every network has a canonical form

e The canonical form of a network is unique

: : (under mild assumptions)
Uniqueness is much harder to prove

and relies on the network satisfying
the following property:

No pair of distinct paths having the same endpoints o
have the same length T
D AF DN
For example N e€m e€my
here:

M We must impose:

A+ A6 #F Ao+ A3+ A5 + Ag
A+ g #F Ao+ Ao+ Ao + Ag
A2+ Az + A5 +Ag # Ao+ Mg + Ag + Ag

a b c which happens with probability 1

Ao

A1l



Thank you for your attention!

DO YOU EVER FEEL
ALONE WHEN YOU'RE
WITH PEOPLE?

ARE THERE
ANY QUESTIONS?
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