Deeper into the duality between coalescent and drift

G Achaz^{1,2}, A Lambert^{1,3} and E Schertzer^{1,3}

1: SMILE group; UMR 7241 CIRB; Collège de France; Paris 2: Atelier de Bioinformatique; UMR 7205 ISyEB; MNHN; Paris

3: UMR 7599 LPMA; UPMC; Paris

A paradigm shift

1859 - ~1970 Evolution is driven by adaptation

1970 – Today Molecular evolution is driven by genetic drift

Kimura (1968) Evolutionary Rate at the Molecular level Jukes and Kings (1969) Non Darwinian Evolution

Today's H0 = a mutation-drift equilibrium

The mutation-drift equilibrium

+ mutation $\Delta M = + \mu$ $\Delta M = - M \cdot 1/cN$

At equilibrium, $\Delta M=0 \Rightarrow M^* = c N\mu$

M

Two sides of the same coin

Fixation time / time to MRCA

Time is rescaled in the appropriate unit

(e.g. N for Wright-Fisher model; N(N-1)/2 for the Moran model)

Genetic drift

$$E[T_{fix}] = 2$$

Coalescent process

$$E[T_{MRCA}] = 2$$

Are both distributions identical? If yes, why?

The Moran model (1958)

Following results hold for any exchangeable model (Cannings, 1972) (e.g. Wright-Fisher model)

1 generation = one new-born replaces one dead

Only one lineage survives indefinitely (here the thick black line)

(Griffiths, 1980)

Forward drift in the Moran model

Forward drift stops at successive fixation points

Backward coalescent in the Moran model

Backward coalescent stops at successive MRCA points

Milestones in the coalescent-drift duality

The whole process has successions of pairs (MRCA -> fixation)

Forward – backward duality

Forward drift and backward coalescent are only coupled between the MRCA and its fixation

Extracting analytical results

Classical representation

Lookdown dual representation (Donnely and Kurtz, 1996)

At every moments, lineages are ordered by their persistence

Waiting times

Time between two successive MRCAs

Waiting times

Time between two successive MRCAs

Time between MRCA and its fixation

Picking a time point in Poisson process

On a Poisson process of rate λ (\bigcirc)

A random fixed time (\blacksquare) has a waiting time of rate λ to the previous and next event (\bigcirc)

The randomly picked time can be assimilated to an event

Coalescent and drift from a random point

Fixation time (forward) and time to MRCA (backward) have the same distribution

$$\sum_{i=2}^{N} Exp(i(i-1)/2)$$

Concluding remarks

Generally:

Even the most popular models have secrets to be unraveled

On the duality between drift and coalescent:

- Forward drift and backward coalescent are only half coupled
- Fixation time has the same distribution than coalescent TMRCA