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Phylogenetic invariants

Introduced by Lake, Felsenstein and Cavender ’87.

First attempts to use invariants: Steel et al. ’93, Ferretti-Sankoff ’95.

Main problems: not all invariants known, not clear how to use them,
evaluation of fit of model and tree topology at the same time.

Felsenstein’s book: “invariants are worth attention, not for what they
do for us now, but what they might lead to in the future”.

Invariants can deal with very general models as GMM (which does
NOT assume a stationary distribution, NOR time-reversibility, NOR
global homogeneity, NOT even local homogeneity along each edge),
mixtures (or fully partitioned model) or the coalescent.

Nowadays:

theoretical issues solved for the basic models.
widely used in identifiability problems (Allman-Rhodes ’06,’07,’12...)
successful reconstruction methods for quartets based on invariants:
Erik+2 (Sys. Bio. 2016, Fernández-Sánchez’ poster)
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Hidden Markov process

px1x2x3 = Prob(X1 = x1,X2 = x2,X3 = x3) = joint probability of the
observed variables X1,X2,X3. Then,

px1x2x3 =
∑

y4,yr∈{A,C,G,T}

πyr S1(yr , x1)S4(yr , y4)S2(y4, x2)S3(y4, x3)

Parameters: entries of Si and π.
Constraints on Si and π specify the evolutionary model:
(non-homogeneous) JC69, K80, K81, F81, SSM, GMM, ...
Si does need to be of type exp(tiQi ) (and if it is, the rate matrices Qi

can be different for different branches).
NO global instantaneous mutation rate matrix assumed ⇒
”non-homogeneous across lineages”.
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Joint distribution at the leaves px1...xn can be expressed as a
polynomial in terms of the parameters of the model.

Are there polynomial relations among these probabilities that are
satisfied no matter what the parameters are? Why should we care
about them?
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Example: Jukes-Cantor

Some relations depend on the model chosen (not on the tree
topology):

∑
px1x2...xn = 1 (trivial) and

pAA...A = pCC ...C = pGG ...G = pTT ...T

pA...AC = pA...AG = pA...AT = · · · = pT ...TG

. . .
These are called model invariants (relations satisfied on all tree
topologies)

But some relations depend on the tree topology.

Definition

Phylogenetic Invariants of a tree T0: polynomial relations satisfied by
any joint distribution that has evolved under an evolutionary model
M on T0.

Topology invariants: invariants of T0 that are not satisfied by some
joint distributions on some other tree topologies (hence, they could
be used to distinguish between different topologies).
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Example: Lake’s linear invariants

For the JC60 model on the tree 12|34 the following are linear topology
invariants known as Lake’s invariants:

H1 : pxyxy + pxyzw = pxyzy + pxyxw

H2 : pxyyx + pxywz = pxyyz + pxywx

for any x , y , z ,w in {A,C ,G ,T}.
Any other linear topology invariant is a linear combination of these
two.

Degree 1 (linear) ... interesting enough?

M. Casanellas (UPC) Linear invariants June 2016 6 / 19



Linear invariants can deal with mixtures

Mixture of Markov processes on a tree T : sites undergo the same
model on T (but not with the same instantaneous mutation rates); m
partitions in the alignment;
NO constraint between the substitution matrices of different partitions.

In general, it becomes impossible to decide which tree topology
generated the data (even for ∞ data): the tree topology is not
identifiable any more. But for some models it is possible.
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The space of mixtures for a given model M

Definition

Fix an evolutionary model M. PT ,Θ = distribution at the tips of of T , T
evolving under M with parameters Θ .
The space of mixtures on T is the affine linear variety

DT =

{
p =

∑
i

λiPT ,Θi

∣∣∣ ∑
i

λi = 1

}
.

If T = phylogenetic trees on the set X of taxa, the space of phylogenetic
mixtures on X is the affine linear variety

D =

{
p =

∑
i

λiPTi ,Θi

∣∣∣ ∑
i

λi = 1 , Ti ∈ T

}
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Linear invariants and mixtures

If linear topology invariants exist for the model considered, then the tree
topology that generated the mixture is identifiable:

2-states, Neyman symmetric model: there are no linear topology
invariants (Matsen-Mossel-Steel), so tree topology cannot be
identified for mixtures on an arbitrary number of categories.

(nonhomogeneous) JC69, K80 have linear topology invariants but
K81, SSM and GMM no (tree topology can only be identified for
mixtures on a certain number of categories).
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Space of Mixtures and linear phylogenetic invariants

Relationship between mixtures and linear invariants:

DT =
〈
~p
∣∣∣ p = PT ,Θ

〉
︸ ︷︷ ︸

ET

∩{trivial invariant}

D =
〈
~p
∣∣∣ p = PT ,Θ T ∈ T

〉
︸ ︷︷ ︸

E

∩{trivial invariant}

Linear model invariants: L orthogonal (dual) space to E .

Linear invariants for a tree T : LT orthogonal (dual) space to ET .

Linear topology invariants: quotient space LT/L

So far, only linear invariants for models with uniform stationary
distribution and 4 states had been studied.
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Equal Input model on k-states (EI-model)

π = a stationary distribution on k states; for each edge e, consider a
parameter θe ∈ [0, 1] and let conditional probabilities satisfy:

Prob(β|α, e) = πβ · θe ,

for any states α, β.

For k = 4, this is Felsenstein’81 model:

Se =

 1− (1− πA)θe πC θe πG θe πT θe
πAθe 1− (1− πC )θe πG θe πT θe
πAθe πC θe 1− (1− πG )θe πT θe
πAθe πC θe πG θe 1− (1− πT )θe


Fully symmetric model: π uniform distribution. k = 4→
Jukes-Cantor model.

Coincides with the random cluster model on k states.

For k =∞: Kimura’s infinite alleles model.
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k ≥ 4, Generalizing Lake’s invariants

π fixed (inferred from data?)

Felsensten’81

H1 :
pxyxy

π(x)π(y)
+

pxyzw

π(z)π(w)
=

pxyzy

π(z)π(y)
+

pxyxw

π(x)π(w)

H2 :
pxyyx

π(x)π(y)
+

pxywz

π(z)π(w)
=

pxyyz

π(z)π(y)
+

pxywx

π(x)π(y)

Generalized to k states EI−models, k ≥ 3 (and more general models).
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Model invariants for EI−models, π fixed

Set of taxa [n] = {1, 2, . . . , n} k ≥ 2.

Theorem (C-Steel)

We provide a set of linearly independent points that span the space of
mixtures Dπ for almost any π . The dimension of Dπ equals

]{partitions of [n] of size ≤ k} − 1

(if k ≥ n it equals Bn − 1 where Bn: Bell number.)

Consequence: easy way to obtain a set of generators for the space of linear
model invariants.

k = 4, dimDπ = 22n−3+1
3 + 2n−2 − 1.

Results are also valid for k =∞, Kimura’s infinite alleles model.
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Topology invariants for EI−models, π fixed

Theorem (C-Steel)

We provide a set of linearly independent points that span the space of
mixtures DπT , for any π fixed, any k, any n ≥ 3.
The dimension of DπT equals |co(T )| − 1, where co(T ) is the set of
partitions of {1, . . . , n} compatible with T .

Corollary

Algorithm to obtain a basis of the set of linear topology invariants for
the EI model on n ≥ 4 leaves, any k; dimension = |Σk | − |co(T )| =
number of partitions of {1, . . . , n} of size ≤ k incompatible with T .

Corollary

For k ≥ n or for n = 4, Lake-type invariants generate all linear topology
invariants. For k < n, NO.
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What if there are NO linear topology invariants?

But still, different models give rise to different linear spaces ⇒ use linear
model invariants.
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Why should one care? Model selection:

Linear model invariants are satisfied by any number of mixtures on
(possibly) different topologies.

They allow to distinguish between different models and can be used
for model selection.

C-Fernández-Sánchez-Kedzierska’12: algorithm that provides all linear
model invariants for any number of taxa for JC69, K80, K81, SSM.

This has been used in SPIn (Kedzierska-Drton-Guigó-C, MBE 2012):
it tells you wether your data is likely to come from a mixture (possibly
on a collection of different tree topologies) of (nonhomogeneous)
JC69, K80, K81 or SSM processes.

Not many models ... but good results compared to jmodeltest

because we consider nonhomogeneous models across lineages
(different instantaneous mutation rates at different lineages) and
allow mixtures!
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Results on simulated (unmixed) data

SPIn

SPIn JC69* n=1000, ST
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Mixture data

SPIn SPIn
SPIn: JC69* n=300, a=0.31 b=0.41 λ=0.5, MST, 
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jModelTest jModelTest
jModelTest: JC69* , n=300, a=0.31 b=0.41 λ=0.5, MST
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0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 categories, 1 tree 2 categories, 2 trees
M. Casanellas (UPC) Linear invariants June 2016 18 / 19



Thank you for your attention!

Advertisement:

ALGEBRAIC AND COMBINATORIAL PHYLOGENETICS
whole MONTH research program

Barcelona June 12th - July 10th (approx.) 2017.
A WORKSHOP + COURSES by:

Mike Steel
Arndt von Haeseler

Piotr Zwiernik

Some funding available for participants, check the ”webpage” (coming
soon...)
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