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Contents in more detail

The scaled mutation parameter θ and Watterson’s estimate
of θ
Inadmissability of Watterson’s estimate and a uniformly
better estimate.
Estimating the scaled recombination parameter — and
improvements
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Neutral Evolution and the Wright–Fisher Model

The Wright–Fisher assumptions
Population of genes or chromosome segments of size N
Constant population size N over time
Random inheritance mechanism as described above

lead to the basic population genetic null model:
neutral evolution without demographic effects.
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Coalescent Process

Model the random genealogical
history of a sample of n
sequences.
Look backward in time: Going
one unit up in the coalescent
corresponds to going back N
generations in time.
By letting N →∞, discrete
Wright-Fisher genealogies can
be approximated by time
continuous coalescent process.
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Basic Properties of the Coalescent under
Wright–Fisher Model

Time scale: t = generations/N.
Let L denote the total length of the coalescent. Then

P(L ≤ t) = (1− e−t/2)n−1

E(L) = 2
∑n−1

j=1
1
j ≈ 2 log(n) + 2C.

Var(L) = 4
∑n−1

j=1
1
j2 ≈

2π2

3 .
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Estimating the scaled mutation parameter θ
Assumptions

Assume that n nucleotide sequences are sampled from a
population under coalescent model.
We consider infinite sites model, i.e. each mutation takes
place at a new location and therefore generates a new
segregating site.
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Estimating the scaled mutation parameter θ

Want to estimate scaled mutation parameter

θ = 2Nµ,

where µ denotes the individual mutation rate per
generation.
(Notice: θ = 4Nµ if N defined as number of diploid
individuals.)
θ is twice the expected number of mutations occurring
during one time unit on the coalescent tree.
Typically µ ≈ 10−9 × b, with b being the sequence length
(number of bases).
For Drosophila N ≈ 106.
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Estimation problem from statistical point of view

We observe Poisson process with rate θ/2 on time interval
[0, L].
Only probability distribution but not the value of L is known.
We observe S events and want to estimate θ.
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Watterson’s estimate

Watterson (1974), Ewens (1973)
Let S denote total number of mutations that occurred on
the coalescent
Watterson’s estimate:

θ̂W = 2S/E(L).

Watterson (1974) cited > 1250 times.
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Properties of Watterson’s estimate

Watterson’s estimate is unbiased:

Eθ θ̂W = θ

MSEθ(θ̂W ) = Varθ(θ̂W ) = 2
E(L) θ +

Var(L)
[E(L)]2 θ

2.
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Further properties of Watterson’s estimate

θ̂W is consistent.
θ̂W is asymptotically normal distributed (Klein et al. (1999) )
As n→∞, θ̂W achieves asymptotic variance of the
maximum likelihood estimator (MLE) calculated in the
idealized situation where the number of mutations is known
for each branch of the coalescent tree. (Fu and Li (1993).)
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But Watterson’s estimate can be improved using
shrinkage

Theorem

Watterson’s estimator θ̂W is inadmissable
There is a shrinkage estimate whose MSE is below that of
θ̂W for all 0 < θ <∞.
This shrinkage estimate cannot be uniformly improved by
any other estimate linear in S (i.e. of the form anS + bn).

(F & Gach (2008).)

Classical example of improvement by shrinkage: James and
Stein (1961) estimate.
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How to obtain a uniformly better estimator?

Minimize the MSE with respect to normalization factor c:

min
c

MSEθ(cθ̂W ) = min
c

Eθ

(
c

2S
E(L)

− θ
)2

Solution depends on θ:

θ̃ =
2S

E(L) + Var(L)
E(L) + 2

θ

Two possible approaches:
θ̂
(1)
s := 2S

E(L)+ Var(L)
E(L)

θ̂
(2)
s := 2S

E(Ln)+
Var(Ln)
E(Ln)

+ 2
θ̂W

.
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How large is the gain? (MSE relative to Watterson)

n = 20
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MSE relative to Watterson

n = 100
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Does this approach work more generally?

Lemma

Let θ̂ denote an estimate of a parameter θ > 0. Assume
furthermore that E(θ̂) = θ and

Var(θ̂) = aθ + bθ2

with a,b ≥ 0.
Then with c := [a/θ + (b + 1)]−1

MSE(cθ̂) ≤ MSE(θ̂),

and strict inequality holds, if c < 1, i.e. unless a = b = 0.
If b > 0, an estimator uniformly better than θ̂ is given by

θ̂s :=
θ̂

b + 1
.

Andreas Futschik Shrinkage Estimators in Population Genetics



Application to other Estimators

estimate formula variance
Watterson (1975) θ̂W θ/cn +

∑n−1
i=1 i−2/c2

nθ
2

Tajima (1983) θ̂π = 2
n(n−1)

∑n−1
i=1 i(n − i)ηi

n+1
3(n−1) θ +

2[n2+n+3]
9n(n−1) θ

2

Fu and Li (1993) θ̂FL = η1 θ + 2 ncn−2(n−1)
(n−1)(n−2) θ

2

Zeng, Fu, Shi, Wu (2006) θ̂L = 1
n−1

∑n
i=1 iηi

n
2(n−1) θ +

[
2 n2

(n−1)2
(
∑n

i=1 i−2 − 1) − 1
]
θ2

Fay and Wu (2000) θ̂H = 2
n(n−1)

∑n−1
i=1 i2ηi θ +

2[36n2(2n+1)
∑n

i=1 i−2−116n3+9n2+2n−3]

9n(n−1)2
θ2

Here
ηi . . . number of sites where the mutant allele is present i
times in sample of size n
cn :=

∑n−1
i=1 i−1
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Recombination
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Ancestral Recombination Graph
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Why recombination is more complicated

Recombination is more difficult to estimate than scaled
mutation parameter
Not all recombination events leave traces in data
4-gamete test: two loci A, B with two genotypes G1, G2:

locus
genotype L1 L2

G1 n11 n12
G2 n21 n22

Sufficient but not necessary condition for recombination:
nij > 0, ∀i , j .

Andreas Futschik Shrinkage Estimators in Population Genetics



Composite Likelihood Approach

Summarize: Dij =

(
n11 n12
n21 n22

)
Composite likelihood: ∏

i<j

p(Dij)

Maximum composite likelihood estimate of Hudson (2001)
Software implementations (incuding generalizations &
improvements):

LDhelmet (Chan, Jenkins, Song), 2012)
LDhat (McVean and Auton, 2007)
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Does shrinkage also work for recombination?

Problem: No explicit formulas for bias and variance
available in recombination context.
Estimate relationship by using regression

Bias(ρ̂) = a1 + b1ρ

Var(ρ̂) = a2 + b2ρ+ b3ρ
2

(Gärtner & F 2016)
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Gain compared to LDhelmet
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Dependence of Optimum Shrinkage Constants on
Model Parameters
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Dependence of the optimal modifying constant (color coded) on
the parameters θ (0.005/bp - 0.023/bp), n (7 - 22) and l
(3001 bp - 17501 bp); calculation of MSE from 47 independent
simulations per value of ρ.
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Summary

Even nowadays, frequently used estimators are sometimes
inadmissible!
Good news: improvement is possible and fairly
straightforward.
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