Parasite evolution in spatially structured
populations

Sébastien Lion

CEFE — CNRS, Montpellier
sebastien.lion@cefe.cnrs.fr

13 june 2016

MCEB 2016



Evolutionary epidemiology

Applying ecological and evolutionary thinking to infectious diseases.

Population dynamics
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Basic questions

How do epidemiological dynamics affect the evolution of parasite
life-history traits?

Specifically, how should a parasite allocate resources to
reproduction (transmission) vs. survival?

Transmission-virulence trade-off: (), a(x)

Transmission (/3)

0] Mortality (1 + a +7)




This talk

What is the impact of host and parasite dispersal on the
evolution of parasite life-history traits?



An epidemiological model
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Parasite dispersal
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Moment equations

Global dispersal (g = 1)
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Moment equations

Global dispersal (g = 1)

dl

Local dispersal (g = 0)

dl
= =Ppsi— (d+a+7)]

=Bqs;1 I — (d+a+y)I

psr is the density of Sl pairs.
The dynamics of pgy in turns depend on the dynamics of other
pair or triplet configurations...



Long-term evolution



From spatial dynamics to fitness

Dynamics of two parasite strains
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From spatial dynamics to fitness

Dynamics of two parasite strains
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Invasion analysis

Weak selection: selection gradient
A rare mutant parasite invades when

o' I[S|I']
= —+(1—- 0
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where
B/
v = FEpY (reproductive value)

¢ in a well-mixed population, selection acts to maximise the
reproductive value of the parasite



Invasion analysis

Weak selection: selection gradient
A rare mutant parasite invades when

o' I[S|I']
= 4(1—
S ” +(1—g) SI] >0
where
/ g ,
V= (reproductive value)

¢ in a well-mixed population, selection acts to maximise the
reproductive value of the parasite

e spatial structure generates an additional selective pressure:
local competition for susceptible hosts



Simulation results
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Graphical interpretation
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Kin competition

e As parasite dispersal becomes more local, parasites competing
for susceptible hosts tend to be related.

e Local competition depends on relatedness between parasites.



Kin competition

/
v

S = —+kin competition > 0
v

e As parasite dispersal becomes more local, parasites competing
for susceptible hosts tend to be related.

e Local competition depends on relatedness between parasites.



Epidemiological dynamics matter
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Epidemiological dynamics matter
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Summary so far...

o Interplay between spatial structuring and host heterogeneity
may have potentially complex evolutionary consequences.

e Invasion analyses allow us to understand how selective
pressures shape the long-term evolution of parasite
life-history traits.

e However, invasion analyses assume a separation of time
scales between epidemiology and evolution.
For many parasites (e.g. viruses), this is unlikely to hold true.



Rapid evolution in viruses
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Time scales

Adaptive dynamics

trait

e Long-term predictions

e rare mutations with small
phenotypic effects

Evolutionary epidemiology

density

treatment

e Short- and long-term
predictions

e genetic polymorphism



Another approach to theoretical evolutionary ecology

Ecological dynamics
Consider a population of N types. The dynamics of each type is

dn;
i ri(E) n; with E= (2)

dt

The dynamics of the total density is

dn
dt

=r(E)n



Another approach to theoretical evolutionary ecology

Ecological dynamics
Consider a population of N types. The dynamics of each type is

dni =ri(E) n; with E= (2)

dt

The dynamics of the total density is
dn
dt

Evolutionary dynamics

Change in frequency f; = n;/n

% = fi (Tz'(E) - @)

Change in mean trait z =), z; f;
dz

i cov;(zi, r;(E)) 4+ mutation

=r(E)n



Evolutionary epidemiology

Per-capita growth rate of hosts infected by strain



Evolutionary epidemiology

Per-capita growth rate of hosts infected by strain

Change in mean traits:
i () -¢(5) (5
dt \ Br S Br — B
wlection mutstion

G_ O.?coz 043
U?a Bﬁ
together with equations for epidemiologlcal densities:

dsS —
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where

Day & Gandon, 2006; 2007
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Per-capita growth rate of hosts infected by strain ¢

ri(E) = Bigs) — (d+ i +7)

Change in mean traits:
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where

Lion & Gandon, submitted
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S. Gandon

Per-capita growth rate of hosts infected by strain ¢

ri(E) = Bigs); — (d+ a; +7)

Change in mean traits:
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where

Lion & Gandon, submitted



Application to transient dynamcis

A simple example
Let us consider the invasion dynamics of two parasite strains:
e a wild-type strain
e a mutant strain (lower Ry but higher transmission and
virulence)

| will contrast two scenarios: global dispersal and local dispersal.
| will focus on the simpler SIS model (host fecundity — c0).
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Change in mean virulence

day

s = [QS/IU?g - U?a] + BISQS/[(O_qS —ay) —play —al)
—_——

trade-off spatial differentiation mutation bias



Global dispersal
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Local dispersal

Global dispersal
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Dynamics of spatial differentiation

dlars — ag - -
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Initial dynamics of spatial dynamics
Aim: understanding the build-up of spatial differentiation a;g — &y.

Starting from initial condition ayg — ay = 0, we can write the
initial dynamics (neglecting mutation bias) as:

d(ars — ay _
(dt) = 038 (bas)s1 — ds/1)
Epidemiological effect
= qr/r1
—o5 (o + ?qr/s1PS) + U?a—/l)
Genetic effect
where
> 2 i fij — @
p=="—"a0 (1)
O'I )
>i 2 @i fisj — arsiBrsr
pPs = af (2)
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Spatial differentiation at equilibrium

Scaling aerg — @y by population variance, we obtain at equilibrium

ﬂ o ac
qr/1 o = Org — 0O
L 2IS (¢ + $qp51ps) — (07§ — a7%)

qs/1 or o7

D= - - (3)
Brsqsr + as; THN—T



Back to invasion analyses

Weak selection limit:
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is a fast variable under weak selection.



Back to invasion analyses

Weak selection limit:

day oo | AB =
=1 _ - -1 D
il il B o qsr — 1+ Bras/r
where _ _
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D=""Ca

is a fast variable under weak selection.
Using a quasi-equilibrium approximation for D, we obtain:

dar . qar/1p d+ay dp
0 _ yoa (1 taroml g
dt 1+(IS/I 51 dOé a=aj
which is the result of Lion & Boots (2010) and Lion (in press).




Back to invasion analyses

Weak selection limit:

da; ., [dﬁ
U _ o

dt da

a=ag

qsyr — 1+ BIQS/ID]
where _ _
ars — oy
D = O-O[Oé
I

is a fast variable under weak selection.

Using a quasi-equilibrium approximation for D, we obtain:
dar . qar/1p d+ay dp
— =07 |1—- — — -1
dt 1+(IS/I 51 dOé a=aj

which is the result of Lion & Boots (2010) and Lion (in press).

Furthermore:

BJS%/IM ~ BO[S|I'] (kin competition term)
or



Model with host demography

We can also write equations for the dynamics of mean traits when
host fecundity is finite.

As in the SIS model, we can write under weak selection
day oo < QI/IP)
—_— = 1-——15
dt o1 K

where

S = {1 —w (qmp ~ Pas/s1+ QS/I)} : ;I&I %

and we also recover the result discussed in the first part.

a=qag



Take-home messages

Spatial moment equations can be used to model the long- and
short-term evolution of parasites.

Long-term evolution can be studied using an extension of
standard Adaptive Dynamics techniques.

An AD approach cannot capture some features of infectious
diseases biology (e.g. short-term dynamics, or
out-of-equilibrium dynamics). In such cases, it is helpful to
bridge the gap between QG and AD models.

A key insight of both AD and QG approaches is that selection
on parasite traits depends on measures of epidemiological
and genetic structure (relatedness).
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