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The coalescent 

Constant 
(Wright-Fisher) Exponential growth 

(Figure 1; Kühnert, Wu and Drummond, 2011) (Drummond et al. 2005) 

•  The coalescent is a model that describes how the coalescent times in a 
genealogical tree of a random sample of individuals are related to the 
size of the population from which they have come. 

•  The Kingman’s coalescent assumes an idealised Wright-Fisher model 
(Kingman, 1982). 

•  It has been generalized to any deterministically varying function for 
modelling the population trend (Griffiths and Tavare, 1994). 
•  Parametric models 
•  Skyline methods: direct estimation of the population trend. 

Skyline methods 



Skyline methods 

Classical skyline plot 
Pybus, Rambaut and Harvey (2000) 

Generalised skyline plot 
Strimmer and Pybus,(2001) 

Bayesian skyline plot 
Drummond et al. (2005) 

Bayesian skyride 
Minin, Bloomquist and Suchard  (2008) 

Bayesian skytrack 
Palacios and Minin(2013) 

Multiple-change-point model 
(Opgen-Rhein, Fahrmeir and Strimmer, 2005) 

Extended Bayesian skyline plot  
(Heled and Drummond, 2008) 

Bayesian skygrid  
(Gill et al., 2012) 

Multi-locus 

Estimates model complexity 
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None of these methods 
accommodate structured 

populations! 



Problems 

•  If the population is structured, the within deme population 
sizes produce coalescent patterns that are markedly different 
to those under the panmixia model  
•  Wakeley (1999)  

•  Pannell (2003) 

•  Beaumont (2004) 

•  Nielsen and Beaumont (2009) 

•  Peter, Wegmann and Excoffier (2010) 

•  The estimated demographic trend is sensitive to biased 
sampling. 



Problems 

•  Spurious population bottlenecks tended to be detected if the 
sampling scheme neglects some of the demes. 
•  Städler et al. (2009) 

•  Chikhi et al. (2010) 

•  Heller, Chikhi and Siegismund (2013). 

•  Even if samples have been collected from all demes, 
disproportionate collection of recent isolates taken from the 
same deme also leads to spurious bottleneck effect. 
•  Hall, Woolhouse and Rambaut (2015) 



What if … ? 

•  Use discrete trait analysis (Lemey et al. 2008) to take care of 
the migration process among subpopulations while using one 
of the Bayesian skyline methods a tree prior. 
•  The migration process is modelled by a continuous time Markov 

chain (CTMC) down the tree. 

•  The likelihood of this approach is independent of the 
coalescent process a priori. 
•  The demes are effectively an additional nucleotide site with a 

different set of CTMC parameters. 

•  The tree estimate is largely determined by the genetic data. 

•  The inference of the population trend is not aware of the population 
structure. 



Structured coalescent 

l  The structured coalescent 
extends Kingman's coalescent 
to handle geographically 
structured populations with a 
given underlying migration rate 
matrix. 

l  Given the genealogy tree and 
the migration history, one could 
estimate the effective 
population size as well as the 
migration rates.  

m1 

m2 



Structured coalescent 

l  The structured coalescent is described 
with the migration history known. 

l  The migration history can treated as 
unknown parameters when using the 
structured coalescent as a tree prior in 
a Bayesian inference. 

l  However co-estimating the tree, 
migration history and migration rates is 
computationally challenging. 



Structured coalescent 

•  Recently, more efficient methods have been proposed to 
overcome the computational hurdle that hampered 
Bayesian analysis under the structured coalescent. 
•  Multitype tree (Vaughan et al., 2014) 

•  BASTA (de Maio et al., 2015) 

•  However these methods assume that subpopulation sizes 
remain constant through time. 

•  It would be ideal to have a method that could estimate the 
demographic trend in a structured coalescent framework. 



Approximate structured coalescent 

l  More about BASTA … 

l  BASTA  (de Maio et al., 2015) is an approximation to 
the structured coalescent and computationally more 
efficient than the exact approach. 

l  Instead of evaluating the joint probability density of 
the genealogy and migration history, BASTA 
evaluates an approximation of probability density of 
the genealogy under the structured coalescent 
integrated overall migration histories. 

 



Approximate structured coalescent 

•  When integrating out the migration 
history, the exact probability density for 
an event interval (bounded by 
coalescent/sampling event at either 
ends) under the structured coalescent is 
give by 
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Approximate structured coalescent 

Approximations: 
l   P(dl = d, dl' = d|t) = P(dl = d|t)P(dl' = d|t) 

l  dl = the deme lineage l belongs to  
l   P(dl = d|t) is only evaluated at points 
 where there is a sampling or 
coalescent event. 
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New method 
•  We extend a BASTA to allow temporal variation of the effective population 

size in each deme. 

•  Definition: The relative size of a subpopulation d at coalescent interval k is 
the proportion 

 where  

θd,k = the effective population size of the subpopulation d at coalescent 
interval k. 

 D = a set of subpopulation 

 |D | = the number subpopulations  

•  Using that definition, the new methods can be classified into two categories 

•  Time-constant relative subpopulation size model 

•  Time-heterogeneous relative subpopulation size models 

 

  

θd ,k
θ1,k +θ2,k + ...+θ|D|,k



Relative subpopulation sizes 

Time-constant relative subpopulation sizes 
l  If we constrain the relative subpopulation size to be constant across time, in 

other words  
θd,k = θκpd. 

where  
 θκ = the total population size during event interval k 
 pd = the relative population size of subpopulation d for all coalescent 
intervals. 

o  The same trend is shared across all subpopulations  
 

Time-variable relative subpopulation sizes 
l  If allow the relative subpopulation size to vary through time, the 

o  The trend can vary across subpopulations . 

θd ,k
θ1,k +θ2,k + ...+θ|D|,k

≠
θd ,k '

θ1,k ' +θ2,k ' + ...+θ|D|,k '



Estimating population dynamics from 
structured populations 

Time-constant relative 
subpopulation sizes 

Time-variable relative 
subpopulation sizes 

Skyline approach 

Predefined parametric 
demography model 

Predefined parametric 
demography model 

Skyline approach 



Piecewise parametric demography models 

•  The effective population size of each subpopulation varies 
across time in a step-wise fashion according to a pre-
definition parametric function. 

•  The effective population size of a given coalescent interval is 
evaluated by calculating the value at the midpoint of the 
interval given a parametric function and its parameters. 

•  Parametric functions: 
•  Constant (= BASTA) 
•  Exponential growth 
•  Constant-Exponential 
•  Logistic 
•  Constant-Logistic 

 



Skyline approach 
•  The population trend of each subpopulation is modelled by a 

step-function that does not follow a predefined parametric 
function.  
•  Use Gaussian Markov random field (GMRF) prior 

δ1 δ2 δ3 δ4 δ5
γ0 γ1 γ2 γ3 γ4

β0 β1 β2 β3 β4 β5

γ5

γ0 ∼ Ν(0, δ0σ2)

γ1 ∼ Ν(γ0, δ1σ2)

γ2 ∼ Ν(γ1, δ2σ2) γ4 ∼ Ν(γ3, δ4σ2)

γ3 ∼ Ν(γ2, δ3σ2) γ5 ∼ Ν(γ4, δ5σ2)



Simulations 

•  Simulated 100 trees under the structured coalescent with two 
subpopulations and an exponential growth model. 

•  For each replicate, first randomly generate 
•  Exponential growth rate, rg ~ Uniform(0, 5) 

•  Current (total) effective population size, 

 N0 ~ Gamma(shape = 2, rate = 2) 
•  Symmetric migration rate, m ~ Gamma(shape = 10, rate = 10) 

•  For all replications the relative population sizes for both 
subpopulations are set to 0.5. 

•  The sampling ratio of the subpopulations is 8:2. 

•  Simulate the trees according to the randomly generated 
parameters above.  

 



Simulations 



Simulations 
Simulate 100 trees under the described 
demographic history, sampling scheme 
and each of the migration rate values 

•  Demographic history 
•  Two exponentially growing 

subpopulations 
•  Growth rates: 1 and 5 

•  Sampling scheme 
•  Samples from each subpopulation 

are selected in a clustered manner 
through time. 

•  The clustered samples alternative 
between the two subpopulations. 

•  100 samples from each 
subpopulations 

•  Migrations rates 
•  Symmetric 
•  0.3, 0.5, 0.7 and 1.0 

 



Simulations 

Method:  
Bayesian skygrid 
 
# grids = 10 



Simulations 

Estimates from 
Bayesian skygrid 
skyline 
 
Blue: overall EPS 
 
 
 
Estimates from the 
structured skyline 
 
Purple: EPS estimate 
of subpopulation 2 
 
Green: EPS estimate 
of subpopulation 2 



Avian influenza 

•  Data 
•  This data set was compiled in a study to determine the phylogenetic and 

phylogeographic origin of H7N3 avian influenza in Mexico (Lu, Lycett and 
Brown, 2014). 

•  Contains HA sequences from 133 isolates 

•  The sampling time period starts from June 2001 to June 2012. 
•  Host types: 

•  Anseriformes = 93 
•  Charadriiformes = 30 
•  Galliformes = 6 
•  Mexico outbreak = 2 
•  Passeriformes = 2 

 



Avian influenza 

•  Analysis 
•  Assume that each subpopulation follows an exponential growth 

model and has its own growth rate and current effective population 
size. 
•  fd(t) = θd,0exp(-rdt) 
•  θd ~ Exp(θ); θ ∼ Exp(1) 
•  rd ~ N(µ, σ2); µ ∼ N(mean = 0, variance = 100); σ-2 ∼ Exp(1) 

•   Symmetric migration rates 
•  mdd’ ~ Exp(θm); θm  ∼ Exp(1) 



Avian influenza 

•  Results 



Dengue virus 

•  Data 
•  Contains 170 genomic sequences of dengue type 1 isolates 

•  The sampling time period starts from February 2003 to  February 2008. 

•  Locations: 

•  Ho Chi Minh city = 85 

•  Outside Ho Chi Minh city = 85 

•  Analysis 
•  The population trends are estimated using piecewise constant functions 

(skyline approach) 



Dengue virus 



Summary 

•  Ignoring population structure, when it exists, can result in 
misleading inference of the population trends. 

•  We present a new method extending an efficient structured 
coalescent approximation (BASTA; de Maio et al., 2015) to 
allow inference of the subpopulation trends in structured 
populations.  
•  The new method allows the population size to vary according to a pre-

defined parametric function or directly estimated from the data. 

•  It also permits the trend of the population sizes to vary across different 
subpopulations. 
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