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A Model of Evolutionary

What mutations sre most likely to be accepted?

Which aming acids are feast iikely to changs?

How doss the passage of tims affect the similarity of
reiated protein sequences?

Accepted Point Mutations

An accepted poini mutation is Bn exchange of one
amino acid for another, accepted by naturel selection. It is
the result of two distingt processes: the first is the
gccurrence of the mutation in the gene and the second is
ts scceptance by natural selection 28 en improvement. To
be accepted, the new amino scid side chain usually
functions in & simiiar way to the old one. This plausibla
conjecture is supported by the chemicel and physical
similarities between amino acids which are observed 1o
interchange frequently. Some examples are given in Chap-
tar 5.

Any complete discussion of the observed behavior of
amina acids in the evolutionary process must consider the
trequency of change of each amino acid to each other one
and the propensity of each to remain unchanged, This
necessarily implies 20x20 = 400 interactions. Ta collect &
wseful amount of information on thess, a great many
observations are necessary. A sufficient body of data is
now gvailable in all of the groups of closely related proteins
in this Atlas to approximate the true process

The mutation data which we use is from

Change in Proteins

would ba that the frequency of accurrence of an aming
acid in any large group of proteins under consideration is
relatively constant with time, with fluctuations at random,
In the era to which sur data applies (the last two billion
years), this seems to have been the case.

ACGH DBGH  ADIJ CBIJ

Figure &1, Simplified phylogenatic tree. Four “ob-
served” protains are snown 3t the 109, Inferred snces
‘tors sre svown 3t the nades, Amino acid exchanges are
indicated along the branches,

the phylogenetic trees and from a few related pairs of
sequences. In each tree the sequences of all of the nadal
COMmon ancestors are routinely gonerated. Conaider for
‘@xample the much simplified artificial phylogenetic tree of
Figura 4-1,

Figure 4-2 is the matrix of aceepted point mutations
made from this tree. We assume that the likelihood of
amino acid X replacing Y is the same as that of ¥ replacing
X and hence 1 is entered in box YX as wall as in box XY,
This. essumption seems ressonable, as this likelihood
would depend on the product of the ies of
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oecurrence of the two acids and en their chemical and
prysical similarity. A conseguence of this reversibility

Flgure 4-2. Mstrix of accepted point mutations derived from the
tree of Figure 4-1.

It is possible
to infer P(t)
from sequence data.
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What mutations sre most likely to be accepted? would ba that the frequency of occurrence of an amino
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amino acid for another, accepted by naturel selection. It is
the result of two distinct processes: the first is the
gccurrence of the mutation in the gene and the second is
ts scceptance by natural selection 28 en improvement. To B+ 0
be acceptad, the new amino acid side chain usually
functions in & simiiar way to the old one. This plausibla
conjecture is supported by the chemicel and physical
similarities between amino acids which are observed 1o
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interchange frequently. Some examples are given in Chap-
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iyriiorgly Many phylogenetic inference methods are based on Markov models of sequence evolution. These are usually expressed

occurrence of the t

St smta in terms of a matrix (Q) of instantancous rates of change but some models of amino acid replacement, most notably the
PAM model of Dayhoff and colleagues, were originally published only in terms of time-dependent probability matrices

(P(1)). Previously published methods for deriving O have used eigen-decomposition of an approximation to P(7). We
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“Matrix space”
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“Matrix space”
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Benner et al. found rate matrix elements
varied with observed divergence

They argued that the genetic code
influences the matrix strongly at early stages
of divergence, while physicochemical
properties are dominant at later stages
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Mitchison & Durbin found the accumulation

of amino acid replacements that could be
generated by a single nucleotide change
was inconsistent with a simple Markov
process

Propotion of single base changes
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So, how will we explain the
evidence of non-Markov behaviour? —
the aggregated Markov process (AMP):

. = X)) =CTT — X(tgpy)=CCT — ... Markov process
(codon evolution)

Deterministic
f function on states
"~ (genetic code)

Y({t) =1L ¥l ] =P ... Non-Markov process
(protein evolution)
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0 if 72 or j is a stop codon or requires > 1 nucleotide substitution
i if 7+ — j synonymous transversion

Gijiti = ik 1 7 — j synonymous transition

mjw  if 7 — j nonsynonymous transversion

mjkw 1f ¢ — j nonsynonymous transition

ry = 0.00001, 7, = 0.0001, rz=0.0001, rs=0.001,
Ts = 001, e — 0.1 T7 = 015, rs — 02,
ro = 0.3, rio = 0.5, rii = 2.0, r192 = 8.73889



Aggregated Markov processes are not Markov:
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Cross terms in log odds matrix

Cross terms in log odds matrix

Benner ef al.

this stud_y:
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Mitchison & Durbin evidence:
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BEBs, models appropriate
: ise evolution”?

PROCEED
WITH
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Things to remember from Nick's talk:

(Y evolution should look the same whether we study it
100MYA or TMYA or 1YA or today or tomorrow or ...

(Y published evidence of non-Markov protein
evolution can be explained by a time-independent
codon model-based AMP

() we may proceed with current approaches to
sequence evolution based on Markov models!

(Y possible consequences: non-Markov evolution of:
® protein sequences
® purine/pyrimidine (R/Y) encoded DNA
(nucleotide-based AMP)



