Space of Gene/Species Trees Reconciliations and Probabilistic Models

Jean-Philippe Doyon1,2 Cedric Chauve3 Sylvie Hamel2

1- LIRMM, Université Montpellier 2 and CNRS
2- Département d'Informatique et de Recherche Opérationnelle, Université de Montréal
3- Department of Mathematics, Simon Fraser University

Integrative Post-Genomics
Lyon, November 2009
Gene Family Evolution

The evolution of a genome is determined by
Speciation (●), Duplication (■), and Loss (●).

Why it is important to study the evolution of homologous genes?

- Orthologous and paralogous genes
- Gene content of ancestral genomes
- Phylogenomic
The Problem

The Main Question

Define the evolution of the **Gene Tree** according to **Species Tree** in term of speciation, duplication, and loss events.
The Most Parsimonious Reconciliation \((\alpha_{\text{min}})\) maps a gene \(u\) (of \(G\)) the lowest possible in \(S\).
A more General Definition

A Reconciliation between G and S

- Each internal node is mapped either on the LCA or on an edge above.
- Descendance Relationships.
A more General Definition

A Reconciliation between G and S

- Each internal node is mapped either on the LCA or on an edge above.
- Descendance Relationships.
A more General Definition

A Reconciliation between G and S

- Each internal node is mapped either on the LCA or on an edge above.
- Descendance Relationships.
A more General Definition

A Reconciliation between G and S

- Each internal node is mapped either on the LCA or on an edge above.
- Descendance Relationships.
A more General Definition

A Reconciliation between G and S

- Each internal node is mapped either on the LCA or on an edge above.
- Descendence Relationships.
A more General Definition

Properties

- Does not ONLY induce the LCA reconciliation.
- The number of reconciliations is finite, but can be exponential.
This simple definition allows

- Count the number of reconciliations.
- Generate randomly and uniformly a reconciliation.
- Define operators used to explore the whole space.
- Exhaustively explore the space.
Counting and Randomization algorithms

Counting the Number of Reconciliations
- Dynamic programming algorithm in $O(|G||S|)$ time and space.

Randomly Generate a reconciliation
- Algorithm in $O(|G||S|)$ time and space.
- Uniform distribution over all reconciliations.
Nearest Mapping Change

Upward NMC
- Changes a speciation into a duplication.
- Moves a duplication upward.

Downward NMC
- Changes a duplication into a speciation.
- Moves a duplication downward.
Nearest Mapping Change

Upward NMC
- Changes a speciation into a duplication.
- Moves a duplication upward.

Downward NMC
- Changes a duplication into a speciation.
- Moves a duplication downward.
Nearest Mapping Change

Upward NMC
- Changes a speciation into a duplication.
- Moves a duplication upward.

Downward NMC
- Changes a duplication into a speciation.
- Moves a duplication downward.

Sufficient to explore the whole space of reconciliations.
Exhaustive Exploration

- Architecture rooted at α_{min};
- Exploration of the whole space of reconciliations in time $\Theta(\#rec)$.
Probabilistic framework

Input data
- A gene tree G and a species tree S.
- Branch lengths (in time) and duplication/loss rates along S.

Posterior Probability $P(\alpha|G)$

$P(G, \alpha)$ is the probability that the evolution of a gene along S generates
- the Gene Tree G;
- and the Reconciliation α.

$$P(\alpha|G) = \frac{P(G, \alpha)}{P(G)} = \frac{P(G, \alpha)}{\sum_{\alpha' \in T} P(G, \alpha')}$$
Experimental Results

Two expected observations....

Whole Probability Mass

is technically covered by a small set of reconciliations located close to α_{min}.

Approximation of the Most Probable Reconciliations

can easily and efficiently be computed.
Experimental Results

Input Data

- 12 fungal genomes and 1278 gene family trees.
- Branch lengths computed by a Bayesian Framework.
- Branch rates estimated by an Expectation Maximization approach.
1278 Fungal gene trees

- In 1276 cases, α_{min} is the Most Probable Reconciliation.
- α_{min} covers most of the Probability Mass.
- The more a reconciliation is located close to α_{min}, the more it is probable.
Experimental Results

Error Ratio \(= 1 - \frac{\text{approx}}{\text{exact}}\)
Conclusion

Main Observations

1. Small # of reconciliations are needed to approximate probabilities.
2. The neighborhood of α_{min} “covers” the probability mass.
3. Similar results for synthetic gene trees generated with higher rates.

Future Work

1. Higher rates along S.
2. Reconciliation spaces where α_{min} is located far from α^*?
3. Reconciliation spaces with more than one peaks?
4. Similar Bayesian Framework for dup./loss rates probabilistic analysis.