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Abstract

We describe the results of a large corpus study in which we studied if quantifier dis-
tribution (i.e., frequency of quantifier expressions) is influenced by the notion of semantic
complexity as defined by generalized quantifier theory –viz., the data complexity and the
expressive power of the relations (or higher order functions) that model their meaning. Re-
gression analysis shows that complexity has an statistically significant impact.

Quantifiers in natural languages such as English are multiword expressions, such as “all”,
”more than”, ”less than two-thirds” or “most”, used to express notions of quantity and number1.

Generalized quantifier theory, first proposed by Barwise and Cooper (1980) provides a math-
ematically elegant description of quantifier semantics grounded in (higher order) logic, in the
form of relations, constraints or higher order functions. A generalized quantifier Q can be de-
fined as a binary relation Q(A,B) over sets A and B. For instance in the sentence “all men are
equal”, the determiner “all” states that the set of men is contained in the set of equal beings;
More in general, “all” denotes the relation all = {A,B ⊆ ∆ | A ⊆ B}, where ∆ is the so-called
domain of discourse, or, equivalently, a second order function λA.λB.∀x(A(x)⇒ B(x)).

A question regarding quantifiers that has gained interest lately both in cognitive science and
cognitive linguistics is the complexity of quantification2. Generalized quantifier theory attempts
to answer this question via the computational data complexity and the expressiveness of the
logical expressions underpinning English quantifiers, a.k.a. semantic complexity (Szymanik,
2009). This yields a classification of quantifiers into tractable (PTime data complexity) and in-
tractable (NP-hard data complexity), and within tractable quantifiers, into so-called Aristotelian,
counting and proportional quantifiers (Szymanik and Zajenkowski, 2010).

While several authors have tried to empirically test semantic complexity theory using cogni-
tive experiments, this contribution pursues a different path by considering large corpora analy-
sis (Gries, 2010). By observing patterns of multiword expressions denoting Aristotelian, count-
ing and proportional quantifiers over a corpus of close to a billion English words –the WaCky
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1The results in this abstract have been published in a special issue of Language Sciences as joint work with J.
Szymanik (Szymanik and Thorne, 2017)

2One example is the picture verification task, in which people are asked to verify sentences with quantifiers
against pictures with balls of different colors, and both their accuracy and response time (Szymanik and Za-
jenkowski, 2011; MacLeod et al., 1978).
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Table 1: Right: Comparison of regression models. While all models significantly improve on the
baseline (Poisson mixed model), the negative binomial model with fixed effects shots the best AIC fit
score (highlighted in gray). Left: analysis of frequency deviance for the best model (BINOM). Class,
length and monotonicity of the quantifier’s right argument have an statistically (very strongly) significant
impact on frequency. Class (complexity) explains more than one quarter of deviance.

Feature Deviance p-value
Length (words) 47.06% 3.47 · e−10

Class 27.29% 5.25 · e−7

Type 0.02% 0.97
Right mon. 25.65% 1.15 · e−6

Model AIC p-value
POISSON-MIXED 1446287.3 (baseline)

POISSON 1446000.0 1.191 · e−10

BINOM-MIXED 426.7 < 2.2 · e−16

BINOM 409.3 < 2.2 · e−16

corpus, a semi-automatically curated English corpus extracted from a 2008 Wikipedia dump
by Baroni et al. (2009)–, we:

1. Check if their (frequency) distribution is skewed towards low complexity –Aristotelian–
quantifiers.

2. Investigate the impact of semantic complexity on frequency vis-à-vis other factors (mono-
tonicity, length in number of words, type –superlative, comparative–).

The main analysis technique we use are (a) generalized linear mixed regression models and (b)
an analysis of deviance3, appropriate for count and frequency data (Dobson and Barnett, 2008).

Table 1 summarizes our results. The best –negative binomial– model (a geometrically de-
creasing model) indicates a bias towards low complexity quantifiers. As the reader can see,
length (in number of words) explains by itself 47.06% of the deviance, followed by quanti-
fier class (27.29%) and (right) monotonicity (25.65%), and that together account for more than
52% of deviance. In all three cases, such influence is also statistically significant. The impact of
length is likely due to the fact that the likelihood of a multiword expression decreases the more
tokens it spans (Baroni, 2009). The impact of length (and monotonicity) on the other hand
indicate that when we focus on quantifier expression of similar length, semantically simpler
quantifiers outnumber more complex ones.

3Deviance is a measure analog to variance for linear models; the main difference is that rather than comparing
the distribution of standard errors across groups, we compare the goodness of fit of the reduced GLMs induced by
the groups (Dobson and Barnett, 2008).
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