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“I have a dream for the Web [in which computers] become capable of analyzing all the data

on the Web – the content, links, and transactions between people and computers. A ”Semantic

Web”, which makes this possible, has yet to emerge, but when it does, the day-to-day mechanisms

of trade, bureaucracy and our daily lives will be handled by machines talking to machines. The

”intelligent agents” people have touted for ages will finally materialize”

Tim, Berners-Lee



Abstract

In this thesis we investigate several approaches that help users to find useful and trustful infor-

mation in the Web of Data using the Semantic Web technologies. In this purpose, we tackle two

research issues: Data Linkage in Linked Data and Trust in Semantic P2P Networks.

We model the problem of data linkage in Linked Data as a reasoning problem on possibly decen-

tralized data. We describe a novel Import-by-Query algorithm that alternates steps of sub-query

rewriting and of tailored querying the Linked Data cloud in order to import data as specific

as possible for inferring or contradicting given target same-as facts. Experiments conducted

on real-world datasets have demonstrated the feasibility of this approach and its usefulness in

practice for data linkage and disambiguation. Furthermore, we propose an adaptation of this

approach to take into account possibly uncertain data and knowledge, with a result, the infer-

ence of same-as and different-from links having some weights. In this adaptation we modeled

uncertainty as probability values. Our experiments have showed that our the adapted approach

scales to large data sets and produces meaningful probabilistic weights.

Concerning trust, we introduce a trust mechanism for guiding the query-answering process in

Semantic P2P Networks. Peers in Semantic P2P Networks organize their information using sep-

arate ontologies and rely on alignments between their ontologies for translating queries. Trust

is such a setting is subjective and estimates the probability that a peer will provide satisfactory

answers for specific queries in future interactions. In order to compute trust, the mechanism

exploits the information provided by alignments, along with the one that comes from peer’s ex-

periences. The calculated trust values are refined over time using Bayesian inference as more

queries are sent and answers received. For the evaluation of our mechanism, we build a semantic

P2P bookmarking system (TrustMe) in which we can vary different quantitative and qualitative

parameters. The results show the convergence of trust, and highlight the gain in the quality of

peers’ answers —measured with precision and recall— when the process of query answering is

guided by our trust mechanism.
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Chapter 1

Introduction

“What are the latest news in a particular country?”, “Which is the best store to buy a particular

stuff?”. These are examples of questions that may come in our minds and that very often we can-

not answer based on the information we know. In order to reach answers to these questions we

typically search for trustworthy sources of information and query them to complete our knowl-

edge. Then, we aggregate and process what we already know with the different information that

we obtained to conclude answers.

Searching for information over the Web: The World Wide Web has changed the way we share

and search for information by breaking the barriers to publish and access documents. It is an

open global information space of linked documents accessible and actively used by more than

40% 1 of the world population. It contains more than 41 billions of different documents [45]

that are linked together using Hypertext links. The contents of these documents form a mosaic

of information on plenty of topics. Internet users utilize keyword-based search engines (Google,

Bing, Yahoo, . . . ) to reach the web documents that are likely to contain the information they are

looking for.

Traditionally, data related to hypertext documents in the web are provided in different raw for-

mats (e.g. CSV, XML or HTML tables) that miss much of their structure or semantics. More-

over, the hyperlinks between documents are not expressive to link individual entities that appear

in these documents (e.g. expressing that two individuals are synonyms or homonyms). This

limits the ability of keyword-based search engines to provide all the correct documents and just

the correct documents that talk about a particular keyword. Also, the incredibly huge amount

of data that are available on the web reveals a growing desire to facilitate the direct access to

the data and not only to the documents they are related to. Up to now, keyword-based search

engines cannot provide a precise answer to a particular user query of the form: who is the author
1In 2014 according to statistic studies that are detailed in http://en.wikipedia.org/wiki/Global_

Internet_usage.

1

http://en.wikipedia.org/wiki/Global_Internet_usage
http://en.wikipedia.org/wiki/Global_Internet_usage
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of the film “Paris”? Instead, they may return millions of hypertext documents that are likely to

be related to keywords that appear in the query.

Semantic Web: At the turn of the century, the Semantic Web has been proposed as an extension

to the traditional web “in which information is given well-defined meaning, better enabling

computers and people to work in cooperation” [16]. The emphasis is now on the interoperability

across data sources both on the data (assertional) level the semantic (terminological) level as a

guarantee for the Web to be significantly improved. To achieve such interoperability Semantic

Web offers standard means for representing knowledge in a way that:

• Entities or resources are identified using URIs.

• The data about these entities are given in a standard machine readable format called RDF.

RDF data can be serialized using many formats (e.g. RDF/XML, Turtle, N-Triples . . . ).

• Data are attached with a schema (or ontology) that provides the meaning of the data in a

declarative way. The schema is defined using standard languages such as RDFS and the

OWL. Like other formal languages, all these languages have their own defined semantics.

Linked Data: The Semantic Web community has studied for many years the theoretical and

technical challenges regarding the diffusion and manipulation of structured data and their se-

mantics. The result is Linked Data: a set of best practices for publishing and connecting struc-

tured data using the infrastructure of the Web. Tim Berners-Lee outlined four principles of

Linked Data in [14]. They are paraphrased along the following lines:

• Use URIs to denote things.

• Use HTTP URIs so that these things can be referred to and looked up (“dereferenced”) by

people and user agents.

• Provide useful information about the thing when its URI is dereferenced, leveraging stan-

dards such as RDF, SPARQL.

• Include links to other related things (using their URIs) when publishing data on the Web.

The Linked data has successfully attracted various data publishers including companies (e.g.

BestBuy [37, 38]), organisations (e.g. BBC [43], and New York Times 2), governmental entities

(e.g. data.gov.uk, data.gov) or even crowd-sourced communities (e.g. DBpedia [19]). The result

is a Web of Data composed of more than 1014 connected data sets3.They contain more than 32

2http://data.nytimes.com/
3According to the “State of the LOD Cloud 2014 webpage” http://linkeddatacatalog.dws.

informatik.uni-mannheim.de/state/

http://data.nytimes.com/
http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/
http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/
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FIGURE 1.1: The Linked Open Data diagram. It shows datasets that have been published in
Linked Data format. It is based on metadata collected and curated by contributors to the Data
Hub as well as on metadata extracted from a crawl of the Linked Data web conducted in April

2014.
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billions of RDF triples on a veritable plethora of topics. Table 1.1 gives an overview of the

topical domains of the datasets that are available and accessible in the year of writing the thesis,

2014, while Figure 1.1 gives an overview of the linkage relationships between the datasets.

Topic Datasets %
Government 183 18.05%

Publications 96 9.74%

Life sciences 83 8.19%

User-generated content 48 4.73%

Cross-domain 41 4.04%

Media 22 2.17%

Geographic 21 2.07%

Social web 520 51.28%

Total 1014

TABLE 1.1: The number of datasets available in Linked Open Data grouped by topical domain.

Semantic Peer-to-Peer Networks: Peer-to-Peer (P2P) architectures are known for their scala-

bility, since the same data can be offered by many peers and thus the accessibility to these data is

increased. Also, the decentralization of theses architectures increases their reliability, as the data

can be replicated on many peers distributed all around the world. Semantic P2P Networks use

P2P as an underlying architecture for the Semantic Web. It has two main advantages compared

to other architectures like the client-server architecture. First, it provides the open environment

in which peers free to publish the information they want that conforms to a chosen ontology.

Second, it gives the ability to users to control their own data and ontology and to choose whom

can access to their information. This is clearly a huge advantage in terms of privacy on Semantic

Web.

1.1 Research problems addressed in this thesis

As we have shown before, many new technologies have been proposed to help users to publish

the information they want and to reach the exact information they are looking for using the

web infrastructure. However, as in many other occasions, the exercise has proven to be trickier

than thought at the outset. There are still many open research issues to be solved before reaching

such a real global open data and knowledge space in which it is easy to find precise and complete

answers to possible complex questions. In this thesis we consider two main research problems:

• Data linkage in Linked Data: Linked Data has offered the standards needed to publish

and access highly-interoperable data on the Web. However, the freedom it gives to the

data publishers may turn the web into islands of data. For instance, data publishers are

free to identify a real world object with any URI they want and to publish in Linked
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Data descriptions about this object based on the chosen URI. Thus, different datasets

may describe the same real world objects with entities that are identified with different

URIs which are not explicitly connected together. Although Linked Data has encouraged

publishers to express such links in a standard way using owl:sameAs, the huge size of

data available in the Web of Data makes the task of identifying and linking to all these

entities hard in practice. Entities with different URIs that describe the same real object

can also appear in the same dataset. This occurs frequently in datasets that are created as

collaborations of different data authors belonging to the same organizations.

In this thesis we address the problem of discovering links in linked data, i.e. data linkage

problem, and we answer the following questions:

– How to model the data linkage problem in the settings of Linked Data?

– How to identify the data, possibly distributed over the Web of Data, useful for com-

puting links between two entities without importing the whole published data?

– How to combine the data available in a particular dataset together with the data

imported from the Web of Data to compute a set of certain links inside this dataset?

– How to extend the proposed approach for data linkage to compute uncertain links

using uncertain knowledge?

– How to determine automatically among the calculated uncertain links the correct

ones?

• Modeling and computing trust in semantic P2P networks:

Semantic P2P networks provide a partial solution for the privacy problem while exchang-

ing data over them thanks to the underlying P2P architecture. The P2P decentralized

nature allows users to decide exactly with which peers they want to exchange data. How-

ever, the question is: how the users can choose among all available peers the ones on

which they trust to access and to share data with?

Answering the above question is mandatory in semantic P2P networks as information

returned by other peers can be untrue, incomplete or outdated. In this thesis we address

the following research questions about trust:

– How to benefit from the Semantic Web technology to model trust in semantic P2P

networks?

– How trust can be estimated for a particular peer and refined dynamically overtime

as more information about that peer is available?

– How can trust be used for improving the quality in semantic P2P networks?

– How can we measure the gain of using trust in a semantic P2P network?
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1.2 Contributions and Outline of the Thesis

The thesis is organized in two parts, each of them consisting of two chapters. A chapter of

general conclusions and future work is included, as well as a couple of appendices.

• Part 1 focuses on the problem of data linkage in Linked Data. It models it as a reasoning

problem on possibly decentralized data.

– Chapter 1 focuses on proposing an approach for data linkage adapted to the decen-

tralized nature of Linked Data. The approach allows to infer a set of certain same-as

and different-from links between homonymous entities in a particular data set using

the certain knowledge attached to the data. For this, it describes a novel import-by-

query algorithm that alternates steps of sub-query rewriting and of tailored querying

the Linked Data in order to import data as specific as possible for inferring or contra-

dicting given target same-as facts. It shows also the experiments that are conducted

on a real-world dataset. The experiments have demonstrated the feasibility of this

approach and its usefulness in practice for data linkage and disambiguation.

– Chapter 2 extends the approach presented in Chapter 1 to take into account pos-

sibly uncertain data and knowledge, with as a result, the inference of same-as and

different-from links having some probabilistic weights. It shows also how to inter-

pret the uncertainty values calculated for the inferred links and how to benefit from

logical inference to return the best results to the user.

• Part 2 focuses on the problem of modeling and calculating trust in semantic P2P net-

works.

– Chapter 3 introduces a mechanism of trust adapted to semantic P2P networks.

It presents the theoretical model of this mechanism as well as the way we used

Bayesian inference to compute trust in such a setting. We report also in this chapter

the experiments that we have performed to evaluate our trust mechanism.

– Chapter 4 shows TrustMe, a system built to demonstrate the trust mechanism pro-

posed in Chapter 3. Specifically, it demonstrates the trust mechanism in a case of a

semantic P2P bookmarking system where peers exchange URLs of articles about

topics they are interested in. We highlight the gain in the quality of peers’ an-

swers, measured with precision and recall, when the process of query answering is

guided by our trust mechanism. As a particular case, we show how trust overcomes

homonymy. Moreover, a trust-based ranking of articles allows to distinguish the

articles relevant to a category from the ones related to its homonymous categories.

• Appendix A provides the set of certain rules that were used during the experiments ex-

plained in Chapter 1. It gives also explanations of their meaning and origins.
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• Appendix B gives the set of uncertain rules that were used during the experiments ex-

plained in Chapter 2. It shows their rankings and their probabilistic weights. Descriptions

of the rules are provided as well.

1.3 Publications

The following publications have been derived from this thesis:

• Mustafa Al-Bakri, Manuel Atencia, Marie-Christine Rousset. Approche itérative à base

de règles Datalog pour inférer des liens “same-as” à l’aide du Web des données. presented

in the National Confirence of Advanced Data Bases (BDA) 2014

• Manuel Atencia, Mustafa Al-Bakri, Marie-Christine Rousset: Trust in networks of on-

tologies and alignments. International Journal on Knowledge and Information Systems

December 2013, [ISSN 0219-1377] [eISSN 0219-3116]

• Mustafa Al-Bakri, Manuel Atencia, Marie-Christine Rousset. TrustMe, I Got What You

Mean! Knowledge Engineering and Knowledge Management Lecture Notes in Computer

Science Volume 7603, 2012, pp 442-445

Under Submission Mustafa Al-Bakri, Manuel Atencia, Steffen Lalande, Marie-Christine

Rousset. Inferring same-as facts from Linked Data: An iterative import-by-query approach
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Chapter 2

Inferring same-as facts from Linked
Data: an iterative import-by-query
approach

2.1 Introduction

Linked Data promotes exposing, sharing and connecting data and knowledge on the Semantic

Web by using URIs, namespaces and RDF. URIs are used for referencing entities described by

RDF facts, but also for referencing namespaces providing access to existing vocabularies that

can be reused and shared across data sources. The adoption of the Linked Data principles has

led to a Web of data of several billions of RDF triples interlinked by several millions of RDF

links and connecting thousands of data sources on a wide range of domains.

Links between datasets take the form of RDF triples the subject of which is a URI reference

in the namespace of one dataset, while the predicate and/or object are URIs pointing into the

namespaces of other datasets. A particular case corresponds to same-as facts expressing that

two URIs refer to the same real-world object. In an open environment like the Web, different

information providers may publish data about URIs representing the same real-world entity.

Some datasets serve as linking hubs in the Web of Data, such as the DBpedia or GeoNames.

Linked data has become a global data space accessible through query endpoints using SPARQL

query language but it is not a global knowledge space yet. The reason is that, even though

several existing datasets incorporate ontological OWL or RDFS statements, most of times these

statements are just stored as RDF triples, but not fully exploited by automatic reasoning. To

9
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date, semantic web tools such as Jena, TopBraid Composer or OWLIM only support light-

weight inference, mainly implementing RDFS semantics.1 However, it is up to data owners who

publish their datasets on Linked Open Data to use these tools. At the moment, it is rarely the

case for existing data sources (such as DBPedia, GeoNames and many other popular datasets)

to offer ontology-based query answering when they are remotely queried using their SPARQL

endpoints.

It is possible, though, for a data owner to build his/her own knowledge base as a local RDF

dataset enriched with ontological constraints and rules on the target domain that he/she knows,

and to equip it with local reasoning capabilities using Semantic Web technologies. Reasoning on

schema constraints such as keys or functional properties can be useful for local data management

but also for data linkage with external datasets.

Data linkage is a crucial task in Linked Data. In particular, it is very important to correctly decide

whether two URIs refer to the same real-world entity. Most of the existing approaches consist

in defining or learning metrics to compare entities based on similarities between the values

of (some of) their properties (see [28] for a survey). The results returned by such numerical

techniques are weighted owl:sameAs links, among which most of the ones having high weights

are likely to be correct.

In contrast, like a few other works [40, 63], we propose a rule-based approach equipped with

full reasoning to infer all certain same-as facts that are logically entailed from a given set of

domain constraints and facts. Our approach is generic and declarative since we provide a (sound

and complete) inference algorithm that takes as input any set of Datalog-like rules (with built-

in arithmetic predicates) that enable to express in a uniform way several schema constraints

(such as the ones denoted in OWL by owl:HasKey and owl:FunctionalProperty), transitivity

and symmetry of owl:sameAs and domain-specific knowledge (e.g. to express composite or

conditional keys).

In the decentralized setting of Linked Data, the main problem is to identify the data, possibly

distributed over several datasets, useful for inferring owl:sameAs and owl:differentFrom facts.

Compared to the approach reported in [40] that relies on a global import obtained by a breadth-

first crawl of the Linked Data cloud, our approach performs a selective import while guarantee-

ing completeness for the inference of target owl:sameAs (and owl:differentFrom) facts.

Our contribution is twofold. First, we provide a novel Import-by-Query that alternates steps of

sub-query rewriting and of tailored querying the Linked Data cloud to import data as specific as

possible to infer owl:sameAs and owl:differentFrom facts. It is an extension of the well-known

query-subquery algorithm for answering Datalog queries over deductive databases. Second, we
1http://jena.apache.org, http://www.topquadrant.com, http://www.ontotext.com/

owlim.

http://jena.apache.org
http://www.topquadrant.com
http://www.ontotext.com/owlim
http://www.ontotext.com/owlim
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have shown the feasibility and usefulness of our approach for disambiguating person entities in

the INA dataset, a real dataset with millions of RDF facts describing content of videos of French

TV programs.

In section 2.2, we illustrate our approach by an example. In section 2.3, we discuss related work.

In section 2.4, we provide the necessary background to formally state the problem studied in this

chapter. The Import-by-Query is presented in Section 2.5. Experimental results are surveyed in

Section 2.6, and Section 2.7 concludes the chapter.

2.2 Illustrative Example

The French National Audiovisual Institute (Institut National de l’Audiovisuel or INA) is devoted

to maintain and update a repository of French radio and television audiovisual archives. INA

data is currently available in the form of RDF facts. Figure 2.1 shows a small sample of these

facts and an extract of the INA vocabulary.2

The first group of two RDF facts describes an entity ina:vid1 of the class ina:Video whose title

is “Le Petit Rapporteur”. The remainder three groups describe three person entities ina:per1,

ina:per2 and ina:per3 all named “Jacques Martin”. The problem is that we do not know whether

these entities represent the same or different persons. Some additional information is provided:

ina:per1 is known to be the presenter of a program recorded in the video ina:vid1, while ina:per2

and ina:per3 are known to have different dates of birth “1933-06-22” and “1921-09-25”, respec-

tively.

ina3:&ina:per1,&rdf:type,&ina:VideoPerson&
ina4:&ina:per1,&ina:name,&“Jacques&Martin”&
ina5:&ina:per1,&ina:presenter,&ina:vid1&

ina1:&ina:vid1,&rdf:type,&ina:Video&
ina2:&ina:vid1,&ina:title,&“Le&Petit&Rapporteur”&

ina:PhysicalPerson.

rdfs:Literal&

xsd:date& rdfs:Literal&

rdfs:subClassOf&

ina:birthDate&ina6:&ina:per2,&rdf:type,&ina:Person&
ina7:&ina:per2,&ina:name,&“Jacques&Martin”&
ina8:&ina:per2,&ina:birthdate,&“1933M06M22”&

ina9:&ina:per3,&rdf:type,&ina:Person&
ina10:&ina:per3,&ina:name,&“Jacques&Martin”&
ina11:&ina:per3,&ina:birthdate,&“1921M09M25”&

ina:Video.

ina:VideoPerson. ina:Person.

rdfs:subClassOf&

ina:name&ina:presenter&

ina:title&

FIGURE 2.1: A sample of the INA RDF facts and an extract of the INA vocabulary.

In order to disambiguate the INA entities ina:per1, ina:per2 and ina:per3, one can reason with

knowledge about INA properties. For instance, if we agree that the property ina:birthdate is

functional, it can be inferred that ina:per2 and ina:per3 are different because they have different

birthdates. Also, we can agree that two persons having the same name and date of birth must be

the same — or, in other words, that the properties ina:name and ina:birthdate form a key — and

that two persons who have the same name and who have presented programs recorded in videos
2We have made some modifications in the INA vocabulary — e.g. translating French terms into English terms —

for the sake of readability.
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with the same title must be the same. This knowledge could be useful for deciding whether

ina:per1 refers to the same person as ina:per2 or ina:per3, but some information is missing: the

birthdate of ina:per1 is not known, or whether ina:per2 or ina:per3 are presenters, and of which

programs.

The above missing information can be completed thanks to external data coming from DBpedia.

In Figure 2.2, we show DBpedia facts describing the DBpedia person entity db:per1, and a small

extract of the DBpedia vocabulary. An alignment between the INA and DBpedia vocabularies

— possibly computed by an ontology matching tool and validated by INA experts — also may

state that the properties ina:name and ina:birthdate are, respectively, equivalent to the properties

foaf:name and foaf:birthdate and that the composition of ina:presenter and ina:title is equivalent

to db:presenter. In this way, it can be inferred that db:per1 is the same as ina:per1 because they

have the same name and have presented a program with the same title; and also that db:per1 is

the same as ina:per2 because they have the same name and date of birth. Thus, by transitivity of

same-as, it can be inferred that ina:per1 is the same as ina:per2, and, since ina:per2 is different

from ina:per3, then ina:per1 is different from ina:per3 too.

db1:%db:per1,%rdf:type,%db:Person%
db2:%db:per1,%foaf:name,%“Jacques%Martin”%
db3:%db:per1,%db:presenter,%“Le%Petit%Rapporteur”%
db4:%db:per1,%foaf:birthdate,%“1933B06B22”%

db:Person*

rdfs:Literal%

rdfs:Literal%

rdfs:Literal%

foaf:name%

db:presenter%

foaf:birthdate%

FIGURE 2.2: DBpedia facts and an extract of the DBpedia vocabulary.

Local knowledge like the knowledge about the INA properties can be expressed as rules as

shown in Table 2.1. Additional knowledge like mappings between the INA and DBpedia vocab-

ularies, and transitivity of same-as (both essential for disambiguating the INA person entities)

can be translated into rules too (Table 2.1).

IF THEN
R1 〈?x1, ina:name, ?n〉, 〈?x2, ina:name, ?n〉, 〈?x1, ina:presenter, ?v1〉, 〈?x1, owl:sameAs, ?x2〉

〈?x2, ina:presenter, ?v2〉, 〈?v1, ina:title, ?t〉, 〈?v2, ina:title, ?t〉
R2 〈?x1, ina:name, ?n〉, 〈?x2, ina:name, ?n〉, 〈?x2, ina:birthdate, ?b〉, 〈?x1, owl:sameAs, ?x2〉

〈?x1, ina:birthdate, ?b〉
R3 〈?x1, ina:birthdate, ?b1〉, 〈?x2, ina:birthdate, ?b2〉, 〈?b1, notEqualTo, ?b2〉 〈?x1, owl:differentFrom, ?x2〉
R4 〈?x1, ina:name, ?n〉, 〈?x2, foaf:name, ?n〉, 〈?x1, ina:presenter, ?v〉, 〈?x1, owl:sameAs, ?x2〉

〈?v, ina:title, ?t〉, 〈?x2, db:presenter, ?t〉
R5 〈?x1, ina:name, ?n〉, 〈?x2, foaf:name, ?n〉, 〈?x1, ina:birthdate, ?b〉, 〈?x1, owl:sameAs, ?x2〉

〈?x2, foaf:birthdate, ?b〉
R6 〈?x1, owl:sameAs, ?x2〉, 〈?x2, owl:sameAs, ?x3〉 〈?x1, owl:sameAs, ?x3〉
R7 〈?x1, owl:sameAs, ?x2〉, 〈?x2, owl:differentFrom, ?x3〉 〈?x1, owl:differentFrom, ?x3〉

TABLE 2.1: R1-R3 are local rules about INA properties; R4-R5 are rules involving mappings
from the INA and DBpedia vocabularies; R6 translates transitivity of owl:sameAs, and R7

relates owl:sameAs and owl:differentFrom.
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FIGURE 2.3: The resulted external sub-queries submitted to DBpedia and their returned an-
swers

In order to avoid downloading the whole DBpedia, and, more generally, the whole Linked Open

Data (something impossible in practice), our import-by-query approach (described in detail fur-

ther) generates, for each target owl:sameAs fact, a sequence of external sub-queries as specific

as possible so as to obtain just the missing facts. In our example, the external sub-queries gen-

erated by our algorithm for the particular query 〈ina:per1, owl:sameAs, ina:per2〉 are shown in

Figure 2.3.

2.3 Related work

There exists a considerable number of systems that semi or automatically perform data interlink-

ing (see [28] for a survey). For most of these systems, whether to link two instances or not boils

down to comparing the values of the instances for all, or some of the properties they have, in

such a way that the closer these values are the more likely that the instances will be linked. The

quality of the results that they produce depends on the similatity and the aggregation functions

that they use, and also on the threshold upon which links are asserted. The point that distin-

guishes the most all these numerical approaches from ours is that they are not declarative, with

the inherent limitation to be difficult to extend or to adapt to new settings with new properties.

In fact, there are few existing declarative approaches, in which the comparison methods can be

specified by users in the form of (XML) specifications like in Silk [69], or of rules like in LN2R

[63] and Hogan et al. [40].

The Silk specifications can be seen as rules with built-in functions for both computing and

aggregating degrees of similarity between property values. However, these rules are not fully

exploited. In particular the possible chaining between rules is not handled by Silk, making it

possibly incomplete to discover all the same-as facts that can be logically inferred. Compared

to a complete forward reasoner, given a set of rules, Silk performs a single inference step and

returns the same-as facts that can be inferred without rule chaining. In particular, the same-as

transitivity rule, while being expressible in Silk, is not fully handled automatically: it is not
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iteratively applied until a fixpoint is reached. As a result, neither Silk nor LIMES [54] would

discover that ina:p1 is the same as ina:p2 in our illustrative scenario explained above. Closely

related to Silk, the LIMES framework is conceived to optimize the number of comparisons

between property values for linking two datasets. This optimization is based on estimating the

similarity between a pair of values based on the similarity between each of the two values and

an exemplar point in a metric space.

LN2R [63] and Hogan et al. [40] come with a complete forward-reasoner and thus guarantee

to infer all the same-as facts (and all the different-from facts for LN2R) that can be logically

entailed from the rules and facts that are given as input.

Contrarily to LN2R, Silk (and LIMES) and Hogan et al. consider the problem of using remote

data sources to discover links. However, in contrast with our approach, the external RDF facts

that are loaded to complete local data are obtained either by a global import (of a whole RDF

graph of reference dataset such as DBpedia) or as an incoming data stream produced by a Linked

Data crawler. This raises scalability issues that are bypassed either by light-weight incomplete

reasoning (like in Silk) or by using intensive computational resources requiring clusters of ma-

chines (like in [40]). Instead, our import-by-query algorithm builds iteratively SPARQL queries

for importing from external sources in Linked Data the necessary and sufficient data for resolv-

ing the link query.

A so-called import-by-query approach has been introduced in [34] for ontology reuse by speci-

fying the limited access authorized to a remote ontology through a query interface. The associ-

ated algorithm, in contrast with ours, does not build conjonctive queries but Abox satisfiability

queries used as oracles in Tableau-based reasoning.

2.4 Formal background and problem statement

We first recall the ingredients of Linked Data and we define what we call a deductive RDF

dataset to capture several ontological constraints and rules for reasoning on data semantics. We

end this section by formally stating the problem we consider.

2.4.1 URIs, URLs and namespaces

In Linked Data, anything (an individual, a class, a predicate, a dataset, a namespace) can be

identified by a uniform resource identifier (URI as a shortcut). URIs enable interaction over the

web using specific protocols such as http. URLs are URIs that, in addition to identifying web

resources, provide the address to access them.
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Namespaces provide a way to avoid term conflicts between several vocabularies used in dif-

ferent datasets. A name in a namespace is a string composed by a prefix, that is a URI of

the namespace, and a local name. e.g.the name ‘http://xmlns.com/foaf/0.1/knows’ refers

to the predicate having the local name ”knows” within the namespace providing at the URL

‘http://xmlns.com/foaf/0.1/’ an RDF vocabulary devoted to describe social networks. This vocabu-

lary can be reused in other datasets within Linked Data. A compact form is possible, for instance

”foaf:knows”, as soon as the prefix ”foaf” has been defined as a shortcut of the full URL by a

prefix declaration: @PREFIX foaf: <http://xmlns.com/foaf/0.1/>

2.4.2 RDF datasets in Linked Data

An RDF dataset in Linked Data is defined by a URL u and a set F of RDF facts that are

accessible as URL through a query endpoint. We will denote ds(u) the set F of RDF facts that

can be queried at the URL u.

An RDF fact is a triple t = 〈s, p, p〉 where the subject s is either a URI or a blank node, the

predicate p is a URI, and the object o may be either a URI, a blank node or a literal. We will

denote the vocabulary used in ds(u) by voc(u) , i.e, the names of predicates used to declare

triples in the dataset accessible at the URL u.

2.4.3 Queries over RDF datasets in Linked Data

Queries over Linked Data are SPARQL conjunctive queries entered through a given query

endpoint accessible at a given URL. In this chapter, we use a simplified notation for SPARQL

queries, and, without loss of generality, we consider that all variables are distinguished.

A query q(u) asked to an RDF dataset identified by (and accessible at) the URL u is a conjunc-

tion of triple patterns denoted by TP1(v1), . . . , TPk(vk) where each triple pattern TPi(vi) is

a triple 〈sv, pv, ov〉 in which the subject sv, the predicate pv, or the object ov can be variables:

vi is the set of variables appearing in the triple pattern. Variables are denoted by strings start-

ing by ’?’. TPi(vi) is a ground triple pattern if its set of variables vi is empty (denoted by

TPi()). A ground triple pattern corresponds to a RDF fact. A boolean query is a conjunction

of ground triple patterns. For instance, the first SPARQL query of Figure 2.3 in the previous

section become in this simplified notation:

q(http://dbpedia.fr):〈 dbpedia:per1, dbpedia:presenter, “Le Petit Rapporteur”〉.

The evaluation of a query q(u) : TP1(v1), . . . , TPk(vk) over the dataset ds(u) consists in find-

ing substitutions θ assigning the variables in
⋃
i∈[1..k] vi to constants (i.e., identifiers or literals)

such that TP1(θ.v1), . . . , TPk(θ.vk) are RDF facts in the dataset.

http://xmlns.com/foaf/0.1/knows
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The corresponding answer is equally defined as the tuple of constants assigned by θ to the vari-

ables or as the set of corresponding RDF facts TP1(θ.v1), . . . , TPk(θ.vk) that will be denoted

by θ.q(u). In the remainder of the chapter, we will adopt the latter definition. The answer set of

the query q(u) against the dataset ds(u) = F is thus defined as:

Answer(q(u), F ) =
⋃

{θ|θ.q(u)⊆F}

θ.q(u)

For a boolean query q(u), either the answer set is not empty and we will say that the query is

evaluated to true, or it is empty and we will say that it evaluated to false.

For a query q(u) to have a chance to get an answer when evaluated over the dataset ds(u), it

must be compatible with the vocabulary used in this dataset, i.e., (a) the predicates appearing in

the triple patterns of q(u) must belong to the set voc(u) of predicates known to occur in ds(u),

(b) the URIs appearing as constants in the triple patterns of q(u) must have u as prefix.

In accordance with SPARQL queries allowing different FROM clauses, a conjunctive query can

in fact specify several entry points u1, . . . , un of datasets over which to be evaluated. We will

denote such a query q(u1, . . . , un). The above definitions of answers and compatibility can be

generalized appropriately by replacing the dataset ds(u) by the union
⋃
i∈[1..n] ds(ui) of the

specified datasets.

2.4.4 Deductive RDF datasets

In order to capture in a uniform way semantic constraints that can be declared on top of a

given RDF dataset, but also possibly mappings between local predicates and external predicates

within the vocabulary of other datasets, and domain knowledge provided by domain experts, we

consider that RDF datasets can be enriched with Datalog rules of the form: Condr ⇒ Concr,

in which the condition Condr is a conjunction of triple patterns (i.e., a conjunctive query) and

the conclusion Concr is a triple pattern. We consider safe rules, i.e., such that all the variables

in the conclusion are also in the condition. Datalog rules on top of RDFS facts capture most

of the OWL constraints used in practice, while guaranteeing a polynomial data complexity for

reasoning and query answering.

A deductive RDF dataset dds(u) accessible at the URL u is thus a local knowledge base 〈F,R〉
made of a set of RDF facts F and a set R of rules. The application of rules enables to infer

new facts that are logically entailed from F ∪ R. A rule r can be applied to F if there exists a

substitution θ such that θ.Condr ⊆ F and the result of the rule application is F ∪ {θ.Concr}.
These new facts can in turn trigger rules and infer additional facts. The point is that from a finite



Chapter 2. Inferring same-as facts from Linked Data: an iterative import-by-query approach 17

set of facts F and a finite set of safe rules R, the set of facts that can be inferred is finite and can

be computed as the least fixed point of immediate consequence operator TR defined as follows:

TR(F ) = F ∪
⋃
r∈R
{θ.Concr|θ.Condr ⊆ F}

Let F0 = F , and for every i ≥ 0, let Fi+1 = TR(Fi). There exists a unique least fixed point Fn
(that will be denote by SAT (F,R)) such that for every k ≥ n Fk = TR(Fn), i.e., there exists a

step in the iterative application of the immediate consequence operator for which no new fact is

inferred.

The evaluation of a query q(u) : TP1(v1), . . . , TPk(vk) over a deductive dataset dds(u) consists

in finding substitutions θ such that the facts TP1(θ.v1), . . . , TPk(θ.vk) can be inferred from the

deductive dataset, or equivalently belong to the result

SAT (F,R) of the facts that can be inferred from F and R:

Answer(q(u), 〈F,R〉) = Answer(q(u), SAT (F,R))

Therefore, a boolean query q(u) is evaluated to true if and only if

q(u) ∈ SAT (F,R), i.e., if and only if 〈F,R〉 ` q(u), where the symbol ` is the standard

notation for logical inference.

Within the vocabulary of a deductive dataset, we distinguish the extensional predicates (EDB

predicates for short) that appear in the triplets of the dataset F , from the intentional predicates

(IDB predicates) that appear in conclusion of some rules in R. Like in deductive databases, and

without loss of generality (i.e., by possibly renaming predicates and adding rules), we suppose

that these two sets are disjoint. We will denote ODB predicates the external predicates (i.e.,

defined in a different namespace than the considered deductive dataset) that possibly appear in

the dataset or in the rules. These predicates are the core of Linked Data in which a good practice

is to re-use existing reference vocabularies. We suppose (again, without loss of generality) that

the set of ODB predicates is disjoint from the set of IDB predicates (but not necessarily from

the set of EDB predicates).

2.4.5 Problem statement

Given a deductive dataset dds(u) = 〈F,R〉, and a boolean query q(u) the local evaluation

of which gives an empty answer set (i.e., 〈F,R〉 6` q(u)), we aim to construct a set of external

queries q1(u1), . . . , qk(uk) for which we can guarantee that the subsets of external facts resulting
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from their evaluation over the (possibly huge) external datasets are sufficient to answer the initial

query, i.e., more formally:

< F ∪i∈[1..k] Answer(qi(ui), ds(ui)), R > ` q(u)

iff < F ∪i∈[1..k] ds(ui), R > ` q(u)

The more specific the external queries are, the less external facts have to be added and stored to

the local dataset and therefore the more interesting a proposed approach is to solve this problem.

2.5 The iterative Import-by-Query Algorithm

We now describe the general algorithm that we have designed and implemented for solving the

problem stated above.

Given an input boolean same-as query q, a deductive dataset 〈F,R〉, and a set ū of query entry

points to external datasets, Import-by-Query iteratively alternates steps of sub-query rewriting

based on backward chaining and of external query evaluation.

Each sub-query rewriting step is realized by an adaptation of the Query-Subquery algo-

rithm [3, 68] that is a backward chaining method used in deductive databases for evaluating

Datalog programs. We will describe in detail (see Section 2.5.1) this adaptation that we have

called Query-External-Subquery (QESQ for short). QESQ either succeeds in proving locally

the goal q (i.e., using F andR just like Query-Subquery) and then the process is stopped and the

result returned by Import-by-Query is true, or it produces a set {q1(ū1), . . . , qk(ūk)} of external

queries compatible with the vocabulary of the corresponding external datasets, the evaluation of

them is likely to bring missing facts to F for proving the goal q usingR. This set may be empty:

in this case, the process is stopped and the result returned by Import-by-Query is false.

Each evaluation step simply consists in choosing one of the external query qi(ūi) produced by

the sub-query rewriting step and to submit it to Linked Data through the specified query entry

points. The result is either an empty set (negative result) or a set of external facts (positive

result) that can be added to the current local dataset. In both case, the result is memorized in an

associated answer table for the sub-query qi(ūi) that will be thus marked as a already processed

subgoal for which the (positive or negative) result is known and can be directly exploited later on.

If the result is positive, a new iteration of Import-by-Query is started on the same input except

for the set of facts F that is enriched with the facts obtained as the result of the evaluation of the

external query qi(ūi). If the result is negative, another external query qj(ūj) in the set produced

by the current call to QESQ is evaluated. If the evaluation of all the external queries in the set
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returns ’false’, then the process is stopped and the result returned by Import-by-Query on q is

false.

We now focus on the algorithm QESQ that is the core of the sub-query rewriting step to explain

in more detail how it works.

2.5.1 The QESQ algorithm

QESQ is an adaptation of the Query-Subquery algorithm that is a set-oriented memoing back-

ward chaining method [39]. Besides being complete with a guaranteed termination even for

recursive sets of rules (in contrast with the method underlying Prolog), the memoing meth-

ods can also increase dramatically efficiency by reusing previously computed answers. For this

memoing purpose, QESQ handles two triple tables answerp and goalp (empty at the beginning)

for each ODB and IDB predicate p, for storing in goalp the different subgoals on predicate p

that are under process, and in answerp the answers that have been computed for any atomic

query involving p.

QESQ is a recursive algorithm that starts with an input boolean atomic query q : 〈s, p, o〉 and

treats it as the goal to solve using the input dataset F and the input set of rules R. For this,

if it is not trivially solved by a direct evaluation over the dataset F (i.e., if 〈s, p, o〉 6∈ F ),

it would try to rewrite the current goal into a list of subgoals obtained by unfolding a rule

r whose conclusion Concr can be matched with the current goal, i.e., if there exists a sub-

stitution θ such that θ.Concr = 〈s, p, o〉. The initial goal is then replaced by the list of sub-

goals θ.TP1(v1), . . . , θ.TPk(vk) composed of the partial instantiation by θ of the triple patterns

TP1(v1), . . . , TPk(vk) in the condition of r. If there is no such a rule, QESQ stops and returns

’false’. Otherwise, it is recursively called on the new list of subgoals.

A general recursive call of QESQ applies then to a list SG = [g1, . . . , gk]) where each subgoal

gi is a triple pattern〈svi , pi, ovi 〉. It differs in the treatment of each subgoal depending on whether

the predicate pi is an extensional (EDB) , external (ODB) or intentional (IDB) predicate. By a

slight abuse of notation, it will return as output either TRUE or FALSE (if it has enough local

information to infer a result to the input boolean query), or a non empty set of external queries

(compatible with the vocabulary of the given external datasets). A recursive call of QESQ can

be summarized as follows:

1. IF there exists gi = 〈svi , pi, ovi 〉 in the subgoals such that the predicate pi is an EDB predicate, or such that

gi has been handled before (i.e., gi can be matched to a triple in goalpi )

THEN evaluate the atomic query gi = 〈svi , pi, ovi 〉 over F , or over answerpi :

• IF there is no answer and pi is not an ODB predicate THEN return FALSE
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• ELSE for each answer, let θ be the corresponding substitution (it can be empty if the query gi is

boolean), i.e., such that θ.gi ∈ F , or θ.gi ∈ answerpi :

– Let NewSG be the list of new subgoals obtained from SG by removing gi and by replacing

the other subgoals gj by θ.gj .

– IF NewSG is empty THEN return TRUE

ELSE trigger a new recursive call of QESQ on NewSG.

2. IF there exist subgoals not seen before with ODB predicates THEN:

Let qext be their conjunction.

IF qext is compatible with the vocabulary of ū (the given entry points to external datasets) THEN:

• Let NewSG be the list of new subgoals obtained from SG by removing all subgoals in qext

• IF NewSG is empty THEN return qext ELSE

- for each subgoal 〈sv, p, ov〉 in qext, add it to the table goalp
- trigger a new recursive call of QESQ on NewSG:

– IF it does not return TRUE or FALSE THEN return Qext ∪ qext where Qext is the result of

QESQ(NewSG)

3. ELSE (all the subgoals have IDB predicates and they have not been seen before)

• let g = 〈sv, p, ov〉 be the first subgoal in SG and let Rg be the set of rules whose conclusion can be

matched with g

• IF Rg = ∅ THEN return FALSE

• ELSE:

– success← false ; SetOfQext ← ∅

– WHILE Rg 6= ∅ and ¬ success

∗ choose r in Rg and let θ the substitution s.t. θ.Concr = g,

∗ letNewSG be the list of new subgoals obtained from SG by replacing g with θ.TP1(v1), . . . , θ.TPk(vk)

where TP1(v1), . . . , TPk(vk) are the conditions of r, and by replacing the other subgoals

gj with θ.gj ,

∗ add g to the table goalp,

∗ remove r from Rg ,

∗ trigger a new recursive call of QESQ on NewSG,

∗ IF it returns TRUE THEN success← true

∗ ELSE IF it does not return FALSE THEN

SetOfQext ← SetOfQext ∪Qext where Qext is the result of QESQ (NewSG)

– IF success THEN return TRUE ELSE IF SetOfQext = ∅ THEN return FALSE ELSE return

SetOfQext

The termination is guaranteed by the same memoing technique as Query-Subquery (i.e.,in the

above algorithm, by handling the tables goalp and answerp for each ODB and IDB predicate).

If the result returned by QESQ is TRUE or FALSE, it did not pass through the case 2 and

behaved exactly like Query-Subquery. By the soundness and completeness of Query-Subquery

[68], if the output is TRUE, it means that the boolean input query is entailed by the local facts and

the rules, and if the output is FALSE, it means that all the rules likely to infer it are blocked by
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lack of local facts to instantiate the EDB predicates in rule conditions and thus no external fact

would help. If the result returned by QESQ is neither TRUE nor FALSE, it ends up with a non

empty set of external queries that correspond to all the possible branches of reasoning that have

not been blocked. Once an answer is returned for a particular external query, the corresponding

branch of reasoning will be ended (either by true or false) by the next call of QESQ that will

behave on this branch just like Query-Subquery. If it ends with TRUE, Query-by-Import stops

(with success), and if it ends with FALSE, Query-by-Import chooses another external query to

evaluate in the waiting list. It stops with failure (returning FALSE) when the list of external

queries is empty.

This shows that the Query-by-Import algorithm is sound and complete for solving the problem

stated in Section 2.4.5.

2.5.2 Combining forward and backward chaining

Like any backward chaining method, Import-by-Query (and its main component QESQ) re-

starts from scratch for each new goal it tries to solve, even if the facts and the rules remain

unchanged. The intermediate subgoals generated and handled by QESQ can be simplified if the

input rules are replaced by their (partial) instantiations obtained by the propagation of the facts

into (the conditions of) the rules.

Fact propagation is a forward chaining method used in inference engines such as RETE [29] for

rule-based systems. It avoids redundant evaluation of same conditions appearing in several rules

by memorizing, for each fact f , which condition it satisfies in which rule (possibly already par-

tially instantiated by facts previously propagated), and the corresponding variable substitution

that is then applied to all the remaining conditions of the rules.

In our setting, we perform fact propagation as a pre-processing step of the import-by-query

algorithm, by computing at the same time the set SAT (F,R) of facts that can be inferred locally,

and the set PI(F,R) of partial instantiations of the rules in R This forward reasoning step can

be summarized as follows, where SAT (F,R) is initialized as F and PI(F,R) is initialized as

R:

• FOR each f in SAT (F,R)

FOR each rule Condr ⇒ Concr in PI(F,R) having a condition c that can be matched with f ,

i.e., there exists θ such that θ.c = f

∗ IF c is the only condition in Condr THEN add θ.Concr to SAT (F,R)

∗ ELSE add to PI(F,R) the rule obtained from θ.Condr ⇒ θ.Concr by removing the

condition θ.c (that is satisfied by the fact f ).
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• Remove from PI(F,R) those rules whose condition contains EDB predicates that are not ODB predi-

cates (and thus cannot be satisfied by local facts).

• RETURN 〈SAT (F,R), P I(F,R)〉

Each partially instantiated rule ri returned in PI(F,R) is issued from an input rule r in which

some conditions have been matched to facts f1, ..., fk that have been inferred before (and added

to SAT (F,R)), and thus enables to infer the same conclusion as the input rule r on any set of

facts including f1, ..., fk.

The result SAT (F,R) ∪ PI(F,R) is then logically equivalent to the input deductive dataset

F ∪R for inferring facts on IDB predicates from the union of F and a set OF of external facts

(with ODB predicates), i.e. for every fact f an external set of facts OF :

〈F ∪OF,R〉 ` f iff 〈SAT (F,R) ∪OF,PI(F,R)〉 ` f

Therefore, it can be equivalently used for proving goals by checking whether they belong to

SAT (F,R), or for rewriting goals by applying QESQ to the PI(F,R) (instead of the original

R).

Compared to other forward chaining methods (such as semi-naive bottom-up evaluation in de-

ductive databases), fact propagation may require an additional cost (in time and space) that is

likely to be amortized very fast, either for answering boolean queries locally (by checking if

they belong to SAT (F,R)), or for rewriting those that cannot be answered locally, by applying

QESQ on PI(F,R). Note that since facts and rules are parameters, it is possible to propagate

only a subset local facts into the set of rules.

2.6 Experiments

We have conducted a series of experiments on a real deductive dataset composed of∼6 millions

of RDF facts from the INA dataset, and 35 rules. The facts describe videos of French TV

programs including information about their duration, title, subject and publishing date, and of

French personalities (actors, singers, presenters, etc.) including their name, and additional, but

maybe incomplete, information about their date of birth and nationality, and their roles in the

videos (producer, presenter, participant, etc.).

As hinted in our illustrative example of Section 2.2, the INA dataset contains many homonymous

persons, i.e. individuals of the class ina:PhysicalPerson that have the same value for the property

ina:name (see Figure 2.1 in Section 2.2). INA experts, however, do not know whether these en-

tities represent the same or different persons. There exist two subclasses of ina:PhysicalPerson,
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namely, ina:Person and ina:VideoPerson. The class ina:Person is devoted to representing French

personalities, whereas ina:VideoPerson is used for identifying entities of persons that play a role

for a video. Although ina:Person entities come with additional, but maybe not complete, infor-

mation, ina:VideoPerson entities just come with information about their names and videos in

which they play a role. INA experts are particularly interested in disambiguating individuals

within ina:Person, as well as linking these individuals to the ones of ina:VideoPerson.

Concerning the second component of the deductive dataset, the 35 rules, these rules capture

available knowledge in the domain (e.g. functional properties and keys declared as schema con-

straints, and domain-specific rules provided by INA experts), mappings between the INA and

DBpedia vocabularies, and general properties on the predicates owl:sameAs and owl:differentFrom.

One rule expresses the transitivity of owl:sameAs and another rule states the relation between

owl:sameAs and owl:differentFrom (the fact that if x1 is the same as x2 and x2 is different

from x3 then x1 is different from x3). Interestingly, these last two rules happen to be re-

cursive. 11 of the 35 rules enable to conclude different-from facts, some of them requiring

built-in predicates such as not-equal, less-or-equal, greater-or-equal, minus, sum, etc. In Sec-

tion 2.2, we showed 7 of the 35 rules (Table 2.1) but the complete set of rules can be found in

http://bit.ly/1slxLHj.

It is worth noting that the 35 rules could be extended or modified without changing the algorith-

mic machinery of our approach.

Built-in functions allow us to be tolerant to slight differences when comparing literal values.

For example, we can consider a rule like the one shown in Table 2.2 which states that two

persons with the same birthdate and deathdate, and “similar” names, must be the same person.

Whenever our algorithm encounters a ground triple that match 〈?n1, built-in:name-similar, ?n2〉,
it will replace it with a boolean value returned by a built-in function which checks whether the

similarity of the two names — for a specific similarity metric — is above a given threshold. In

our experiments we considered edit distance and 0.99 as threshold.

IF THEN
R8 〈?x1, ina:name, ?n1〉, 〈?x2, foaf:name, ?n2〉, 〈?n1, built-in:name-similar, ?n2〉, 〈?x1, owl:sameAs, ?x2〉

〈?x1, ina:birthdate, ?b〉, 〈?x2, foaf:birthdate, ?b〉

TABLE 2.2: A rule for dealing with similarities between names.

2.6.1 Experimental Goals and Set-Up

The goal of our experiments was threefold: (1) to demonstrate that external information avail-

able in Linked Open Data can be useful to infer owl:sameAs and owl:differentFrom facts within

INA referenced persons, and, thus, disambiguate local homonyms; (2) to assess the gain in

http://bit.ly/1slxLHj
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reduced imported facts of our import-by-query approach compared to approaches based on for-

ward reasoning only; and (3) to evaluate the runtime of our import-by-query algorithm and the

possible amortized gain when fact propagation is performed beforehand.

The external datasets from Linked Open Data with which the INA vocabulary shares terms are

DBpedia.org and DBpedia.fr. The baseline for evaluating our two first goals is a set of 0.5

million external facts obtained by downloading from DBpedia.org and DBpedia.fr (using their

SPARQL endpoints) all the facts about entities having the same name as one of the homonyms

in the INA dataset. We applied a preprocessing step on the original INA dataset to keep only

the facts on predicates appearing in the rules conditions. The resulting dataset contains almost

1,150 millions of RDF facts will be the INA dataset referred to henceforth.

Our algorithms have been implemented in SWI-Prolog. All the evaluations were done on a

machine with an Intel i7 Quad-core processor and 6 GB of memory.

2.6.2 Experimental Results

For evaluating our first experimental goal, we applied (using our forward reasoner) the set of 35

rules to (a) the INA dataset only, and (b) the union of the INA dataset with the baseline external

facts, and we compared the number of owl:sameAs and owl:differentFrom facts obtained on

INA homonyms that we obtained.

The rules applied to the INA dataset only allowed to infer 110 facts (2 owl:sameAs facts and

108 owl:differentFrom facts) compared to the 14,648 facts (4,884 owl:sameAs facts and 9,764

owl:differentFrom facts) inferred when the external facts were added to the process. This clearly

demonstrates the benefit of using external information coming from Linked Open Data for local

disambiguation.

The resulting 14,648 facts are guaranteed to be correct under the assumption that both the rules

and data are correct. Although the correctness of the rules was guaranteed by INA experts,

DBpedia and INA datasets may contain noisy data. Thus, we asked INA experts to evaluate a

random sample of 500 facts, and all of them resulted to be correct.3

It is worth noting that the rule expressing transitivity of owl:sameAs is crucial to infer all the

owl:sameAs facts that cannot be inferred locally, and more generally that full reasoning is impor-

tant to discover owl:sameAs and owl:differentFrom facts. To demonstrate this, we applied Silk

to the same two datasets (the INA dataset only, and the union of the INA dataset with the baseline

external facts). For doing so, we first translated our rules into the Silk specification language. It

is not possible, however, to translate into Silk our rules concluding on owl:differentFrom atoms.

Thus, we focused on the rules leading to owl:sameAs inference. Among the 4,884 owl:sameAs
3This sample size ensures with 95% confidence that the proportion of correct facts obtained is greater than 0.99.
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facts discovered by our full forward reasoner, Silk only discovered 88 of them, i.e. less than 3%

of the total.

For evaluating our second experimental goal, we took as reference boolean queries the above

sample of 500 owl:sameAs and owl:differentFrom facts, and we applied our import-by-query

algorithm to each of these boolean queries. The number of external facts imported by our al-

gorithm for all boolean queries was 6,417, which makes, on average, 13 imported facts per

boolean query. In contrast, the total number of baseline external facts needed to conclude the

boolean queries with the forward reasoner was much higher (500,000). This demonstrates that

our import-by-query algorithm reduces drastically the number of imported facts needed for dis-

ambiguating local data. The results of this experiment are summarized in Table 2.3.

Import-by-Query Forward Reasoner

Number of imported facts
6,417 facts
(13 facts on average per boolean query)

500,000 facts

TABLE 2.3: Gain in reduced imported facts.

Time to answer a boolean query after fact propagation 7 seconds
Time to answer a boolean query without fact propagation 186 seconds
Time to propagate facts (done once for all queries) 191 seconds
Gain of doing fact propagation beforehand for answering
the 500 reference queries using import-by-query

96%

TABLE 2.4: Gain in runtime.

We now report on the runtime evaluation. Our import-by-query algorithm requires 3 iterations

on average — it successively outputs and evaluates 3 external sub-queries (each of them being

produced by calling QESQ) — before termination. It takes on average 186 seconds per boolean

query when applied to the initial set of rules and the local dataset. This drops to 7 seconds when

it is applied to the partially instantiated rules obtained by fact propagation beforehand.

Concerning fact propagation, we propagated all facts involving properties of class ina:Person. It

took 191 seconds but this is done once for all. Its cost is thus amortized very fast, as shown in

Table 2.4 that reports the cumulative runtime required for applying the combined approach on

all the reference owl:sameAs and owl:differentFrom facts.

2.7 Conclusion

In this chapter, we have proposed a novel approach for data linkage based on reasoning that is

adapted to the decentralized nature of the Linked Data cloud. This approach builds on the formal

and algorithmic background of answering Datalog queries over deductive databases, that we

have extended to handle external rewriting when local answers cannot be obtained. In contrast

with existing rule-based approaches for data linkage [40, 63] based on forward reasoning to infer
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same-as facts, Import-by-Query is a backward chaining algorithm that imports on demand only

external facts useful to infer target same-as facts handled as boolean queries. Our experiments

have shown that this approach is feasible and reduces the number of facts needed to be imported.

Compared to the depth-first approach sketched in [2] for distributed Query-Subquery, our QESQ

algorithm generates external rewriting in a breadth-first way.

Performing fact propagation beforehand in order to apply Import-by-Query to a set of more

specific rules than the original ones is an optimization close to the ones proposed in QueryPIE

[67] for efficient backward reasoning on very large deductive datasets. One important difference,

though, is that in the QueryPIE setting, the problem of handling recursive rules can be fully

delegated to forward reasoning because all the facts are given and the recursive rules concern a

well identified subset of them (so called terminological facts). In the decentralized setting that

we consider, and also because we allow domain-specific rules with no restriction on the facts to

which they can apply, Import-by-Query has to handle recursive rules and the termination issues

they raise for backward reasoning. Another major difference is that while QueryPIE is designed

for answering queries only, Import-by-Query performs query rewriting if no local answer can

be obtained from the input deductive dataset.

Compared to the many recent works on ontology-based data access initiated by [24], in which

query rewriting is done independently of the data, we have designed an hybrid approach that

alternates (external) query rewriting and (local) query answering. To deal with possibly recur-

sive Datalog queries, we distinguish IDB predicates that can be locally rewritten, from ODB

predicates that can be externally rewritten. With this limitation, our approach is able to itera-

tively rewrite (boolean) Datalog queries on IDB predicates. We plan to look into this hybrid

approach further, and in particular to deal with ontological constraints expressible in Datalog+−
[23] allowing existential variables in conclusion.

The interest of our rule-based approach is that it is generic and declarative. New rules can be

added without changing the algorithmic machinery, for which not only we guarantee soundness

and completeness but we also have shown experimentally that it is feasible and useful in practice.

At the moment the rules that we consider are certain, as they express logical domain constraints

and equivalence mappings between classes and properties. As a result, the same-as facts that

they allow to infer are guaranteed to be correct (under the assumption that the input data does

not contain erroneous facts). This is crucial to get automatically same-as facts that are certain,

in particular when the goal of discovering same-as links is data fusion, i.e., replacement of two

URIs by a single one in all the relevant facts. Another added-value to get certain same-as and

different-from facts is to find noisy data thanks to contradictions. However, in many cases,

domain knowledge is not 100% sure such as pseudo-keys [11] and probabilistic mappings [65].

Data itself may be uncertain due to trust and reputation judgements towards data sources [10].

Handling uncertain domain knowledge (such as pseudo-keys or constraints with exceptions)
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should enable to discover more same-as facts that may be true even if they are inferred with

some uncertainty. They will just have to be validated by experts. In the following chapter, we

extend our rule-based approach to model any kind of data and rules uncertainty as probabilities

within the framework of Probabilistic Datalog [30].



Chapter 3

Reasoning With Uncertainty For Data
Linkage

3.1 Introduction

Considering only certain facts and rules for data linkage, as we did in the previous chapter,

limits the possible number of inferred links. It is due to the fact that only a limited amount

of certain facts and rules that are needed to infer these links are available. In practice, the

majority of datasets available in Linked Data contains inaccurate data [4, 71]: produced by

annotation extraction tools, outdated information or even wrong data resulted from malicious

behaviors (e.g. injected by data spammers [36]). Even though there exists efforts for data

cleansing [20, 44, 70], The huge amount of data available in Linked Data makes the task of

verifying and guaranteeing that all of them are certain is very hard in practice. Analogously,

rules often come with uncertainty weights produced by automatic rule generation tools. Even

the domain experts’ rules are frequently given in the form ”In many cases if . . . then . . . ”. It is

therefore inevitable to take uncertainty into account while solving the problem of data linkage.

In the same time, keeping a connection with the logical reasoning is useful for tracking the

derivation of the inferred facts. This allows the domain experts to determine easily the facts or

rules that lead to infer incorrect same-as or different-from facts and update the corresponding

uncertainty values if needed.

Our contribution in this chapter is twofold. First, we propose an extension of our rule-based

logical approach that accepts facts and rules attached with uncertainty values. This extension is

based on Probabilistic Datalog [31] which combines Datalog and probability theory together to

do uncertain inference. Second, we show how to interpret the uncertainty values calculated for

28



Chapter 3. Reasoning With Uncertainty For Data Linkage 29

the inferred facts and how to benefit from the logical inference to return the best results to the

user.

We start by explaining how to model uncertainty values for solving the problem of data linkage

in Section 3.3. In Section 3.4 we adapt the forward reasoning algorithms presented in Chapter

2 to deal with uncertainty. Then, a discussion about the complexity of the algorithm is pre-

sented in Section 3.5. The possible application of the produced uncertainty values to tune the

parameters of the reasoning algorithms is presented in Section 3.6. We experiment and evaluate

our approach in Section 3.7. Finally we restate the problem of the import by query studied in

Chapter 2 in this probabilistic settings in 3.8 and we present the probabilistic import-by-query

algorithm in Section 3.8.1.

3.2 Sources of Uncertainty

In this section we give examples of the possible different sources of uncertain knowledge that

exist in practice. These sources may provide uncertain facts or uncertain rules attached with

weights that can be used later in our approach:

• On the rule level:

– Pseudo-Key generator tools [12, 58]: These tools generate keys that may have some

exceptions in a given dataset. For example in a dataset that describe people 〈 name

, birthYear 〉 can be considered as a pseudo-key. Each generated pseudo-key is thus

attached with a weight calculated based on the number of the exceptions for that

pseudo-key in the dataset. These weights can be attached to the uncertain rules that

translate these pseudo-keys.

– Ontology alignment tools [25]: Most of the existing ontology alignment tools attach

weights to the alignments they generate. These weights can be used as the proba-

bilistic weights for the rules that translate these alignments.

– Domain experts: Domain experts may provide rules in the form (in many cases,

IF . . . THEN . . . ) with qualitative assignment. These qualitative assignment can

be translated into numerical assignments to obtain rules assigned with weights. An

example of this translation is given in our experiments in section 3.7.

• On the data level:

– Trust and reputation tools [41]: which may assign to different data sources trust

values. These values can be attached to the data imported from these source. For

example, a trust tool may attach to DBpedia the trust value 0.9, then all facts down-

loaded from DBpedia can be assigned with a probabilistic weight 0.9
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– String similarity tools [33]: Many linking rules disambiguate entities if they share

exactly the same values for certain properties (e.g. rules that translate keys, pseudo-

key). However, in practice the exact matching between the values is not always

guaranteed especially for string values (e.g. shortened names, names which may

differ because of the cases of the letters, the existence of some special characters

. . . ). Uncertain facts that unify these different but similar string values can be used

to overcome this problem, and the similarity value between the string values can be

used as a weight for these facts. An example of these uncertain facts is given in the

following illustrative example.

3.3 Modeling Uncertainty in Linked Data

Even-though we are aware that facts and rules may come with uncertainty weights from var-

ious sources in different natures, we took the decision to model uncertainty in linked data as

probabilistic weights and we extended our rule based approach presented so far in Chapter 2

to deal with these probabilistic weights using Probabilistic Datalog. In this section we start by

giving an illustrative example that introduces this model and extension then we give the formal

background for the new probabilistic setting.

3.3.1 Illustrative Example

Let us consider an extract of the INA and DBpedia datasets that is depicted in Figure 3.1. It de-

scribes two person homonyms from the INA dataset that share the same name “Jacques Martin”.

Only the birth year of ina:per1 is known and only the death year of ina:per2 is given. The figure

also describes a DBpedia entity with the name “Jacques Martin (homme politique)” for which

both the birth year and the death year are known. Similar to the illustrative example presented

before in Section 2.2, we are interested in disambiguating the two INA entities ina:per1 and

ina:per2 with the help of the external DBpedia entity db:per1.

FIGURE 3.1: A sample of certain facts from the INA and DBpedia datasets

To solve this problem, one may apply the set of rules in Table 3.1 over the set of facts. However,

the rule r1 which considers that two persons are the same if they share the same name and the
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same birth year is not 100% certain. For example, there exist in DBpedia two different athletes

with the name “Michael Jackson” that are both born in the same year 1969. We chose to model

the uncertainty of the rules by associating probabilistic weights to them (e.g. the probabilistic

weight 0.7 can be associated to the rule r1). These probabilistic weights are interpreted as

the probability that the conclusion of the corresponding rule is true if the condition is true (i.e.

instantiated by facts)

Rules r1, r2 and r3 in Table 3.1 cannot be applied directly over the set of facts to disambiguate

the entities. Although the name of the two INA homonyms is “similar” to the name of the

DBpedia entity, applying these rules, however, requires an exact string matching between the

two names. To insure this matching, the uncertain fact that attaches to the DBpedia entity

dbpedia:per1 the name “Jacques Martin” i.e.:

0.6 db4:〈dbpedia:per1, dbpedia:name “Jacques Martin”〉

can be added to the set of facts. Similarly to the uncertain rules, the uncertainty of this fact can be

modeled by attaching a probabilistic weight to it. It gives the probability that the corresponding

fact is true. The similarity value 0.6 between the two names:

sim(“Jacques Martin”,“Jacques Martin (homme politique)”), returned by the normalized edit

distance algorithm can be used as a weight for this uncertain fact.

Prob. Id IF THEN
Weights

0.7 r1 〈?x1, ina:name, ?n〉, 〈?x2, dbpedia:name, ?n〉, 〈?x1, owl:sameAs, ?x2〉
〈?x1, ina:birthYear, ?y〉, 〈?x2, dbpedia:birthYear, ?y〉

1.0 r2 〈?x1, ina:name, ?n〉, 〈?x2, dbpedia:name, ?n〉, 〈?x1, owl:differentFrom, ?x2〉
〈?x1, ina:deathYear, ?y1〉, 〈?x2, dbpedia:deathYear, ?y2〉
〈?y1, notEqual, ?y2〉

1.0 r3 〈?x1, owl:sameAs, ?x2〉, 〈?x2, owl:differentFrom, ?x3〉 〈?x1, owl:differentFrom, ?x3〉

TABLE 3.1: A set of rules. The rule r1 is uncertain while the other rules are certain

The certainty of the facts (ina1, ina2, db1, db2) and the rules (r2, r3) can be modeled in this

probabilistic setting by assigning the probabilistic weight 1 to them.

Applying the facts (ina1, ina2, db4, db2) and the rule (r1) leads to infer that the two person

ina:per1 and dbpedia:per1 are the same (i.e. 〈ina:per1 owl:sameAs dbpedia:per1〉) with a proba-

bility value. By supposing that the facts and rules are independent we can compute the probabil-

ity of the inferred sameAs link as the multiplication of the probabilities of the facts (ina1, ina2,

db4, db2) and the rule (r1) participated in the inference of this link (i.e. 1× 1× 0.6× 1× 0.7 =

0.42). In the same manner the link 〈ina:per2 owl:differentFrom dbpedia:per1〉 can be inferred

from the facts (ina3, ina4, db4, db2) and the rule r2 with a probability (1× 1× 0.6× 1 = 0.6).

These two examples of uncertain inferred links indicate that, the idea of combining the rule-

based reasoning with probabilities yields to very powerful link discovery methods. However,
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if we want to apply the probability theory consequently, then we soon run into difficulties.

Applying this simple multiplication of the probabilistic weights involved in the inference process

would give us for the link 〈ina:per1 owl:differentFrom ina:per2〉: ((0.6×0.7)× (0.6)) = 0.25).

This is not correct, since the probability (0.6) of the fact db4 is considered twice. Thus, the

proper result should be 0.42.

To overcome this problem we use the settings of the Probabilistic Datalog in which event keys

and event expressions are used to detect duplicates while combining the probabilistic weights

and thus avoid wrong calculations. Each ground fact and rule is attached with an event key.

Each event key attached to a fact or a rule is assigned with a probability equal to the probabilistic

weight of that fact or rule. For example, the event key edb4 is attached to the fact db4. The prob-

ability assigned to the event key is edb4 is 0.6. Then, the inferred facts are attached with an event

expression which is a boolean combination of the facts and rules participated in the inference of

this fact. For example, the event expression of the fact 〈ina:per1 owl:sameAs dbpedia:per1〉 is

(eina3 ∧ eina4 ∧ edb4 ∧ edb2). The event expressions of the other inferred links are depicted in

Table 3.2. The event expressions calculated for the inferred facts can be logically simplified so

that duplicates inside them can be removed by applying boolean operations as it is depicted in

Table 3.2.

Inferred Fact Event Expression Simplified Event Expression
〈ina:per1 owl:sameAs db:per1〉 (eina1 ∧ eina2 ∧ edb4 ∧ edb2 ∧ er1) (eina1 ∧ eina2 ∧ edb4 ∧ edb2 ∧ er1)
〈ina:per2 owl:differentFrom db:per1〉 (eina3 ∧ eina4 ∧ edb4 ∧ edb3 ∧ er2) (eina3 ∧ eina4 ∧ edb4 ∧ edb3 ∧ er2)
〈ina:per1 owl:differentFrom ina:per2〉 (eina1 ∧ eina2 ∧ edb4 ∧ edb2 ∧ er1∧ (eina1 ∧ eina2 ∧ edb4 ∧ edb2 ∧ er1∧

eina3 ∧ eina4 ∧ edb4 ∧ edb3 ∧ er2 ∧ er3) eina3 ∧ eina4 ∧ edb3 ∧ er2 ∧ er3)

TABLE 3.2: The event expression of the inferred facts and their simplified form.

The probabilistic weight of each inferred fact in the Datalog setting is equal to the probabilis-

tic weight of their simplified event expressions. For example, calculating the probabilistic

weight of the simplified event expression depicted in Table 3.2 attached to the inferred link

〈ina:per1 owl:differentFrom ina:per2〉 will give the correct probabilistic weight (1× 1× 0.6×
1× 0.7× 1× 1× 1× 1× 1 = 0.42) instead of 0.25.

In contrast to the case where only certain knowledge is used, the usage of uncertain facts and

rules may lead to uncertain facts, some of them are wrong. The standard way of filtering results

to be returned to the user is to return only the inferred facts with a probabilistic weight greater

than a given threshold. Such facts having a high probabilistic weights are likely to be correct. For

this, we have to set up a threshold that maximizes the number of inferred facts while minimizing

the number of wrong facts. In this illustrative example, if we accepted that the 3 inferred links

are correct in practice, then the value of the threshold should be lower than 0.42. In section 3.5.2

we show an automatic technique that may be used to set up the value of this threshold.
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3.3.2 Formal Background

In what follows we extend the formal background presented before in Section 2.4 to deal with

uncertain facts and rules. Our formalism is based on Probabilistic Datalog [31] and its underly-

ing semantics.

Probabilistic Deductive RDF Datasets

Probabilistic deductive RDF dataset pr dds(u) =< F,R, Pr > extends a deductive RDF

dataset dds(u) =< F,R >, defined in Section 2.4.4, with a function Pr that assigns to each fact

and rule a probabilistic weight using the mapping Pr. The intended meanings of these weights

are as follows:

• For a fact f : Pr(f) is the probability that the fact is correct.

• For a rule r: Pr(r) is the probability that the the conclusion of the rule r when it is

instantiated by any substitution θ, ie. θ.Concr, is correct if its instantiated condition

θ.Condr is correct.

The application of the rules enables to infer the set of facts SAT (F,R, Pr) with probabilistic

weights. These probabilistic weights are attached to the inferred facts using the mapping Pr.

Evaluating a query q(u) over a probabilistic RDF dataset pr dds(u) =< F,R, Pr > returns

the answers of evaluating the same query over the deductive dataset dds(u) =< F,R > accom-

panied with their probabilistic weights. i.e:

Answer(q(u), 〈F,R, Pr〉) =
⋃

{θ|θ.q(u)⊆F}

(θ.q(u) , Pr(θ.q(u))

The probabilistic weight of each answer is calculated based on the probabilistic weight of the

ground facts and rules needed to infer this answer.

The same can be applied to the case of a boolean query q(u) where the query is evaluated to

true attached with a probabilistic weight w = Pr(q(u)) if and only if q(u) ∈ SAT (F,R) and

in this case we write:

〈F,R, Pr〉 `w q(u)

. The query is evaluated to false with a probabilistic weight w = 1 if q(u) /∈ SAT (F,R).
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Event keys and event expressions

In probabilistic Datalog, each ground triple and rule is associated with a unique probabilistic

event key that may be either true if the corresponding fact or rule is correct or false otherwise.

We denote by ε the mapping that maps each ground fact or instantiated rule with an event key:

ε : F ∪R→ EK

where EK is deontes the set of event keys

The probability of these event keys is equal to the probability of the corresponding fact or rule.

Then, each derived fact f is assigned with an event expression EE(f) consisting of a boolean

combination of the event keys of the ground facts and rules involved in its derivation. More

formally, it has the form:

EE(f) = (e1 ∧ . . . ∧ em) ∨ . . . ∨ (e′1 ∧ . . . ∧ e′n)

s.t. e1, . . . , em, e′1, . . . e
′
n ∈ EK

where:

• The event keys of the ground facts and rules that are necessarily and sufficient to infer the

fact f , i.e one reasoning branch, form a conjunction. More formally, if (e1 ∧ . . . ∧ em) is

a conjunction in the event expression of the fact f and ε−1 is the inverse function of ε that

maps each event key with its corresponding ground fact or rule then:

{ε−1(e1), . . . , ε−1(em)} ` f

and

i = 1, . . . ,m{
{ε−1(e1), . . . , ε−1(em)} \ {ε−1(ei)}

}
6` f

• The event expressions of the different branches of reasoning that infer the fact f form a

disjunction.

These event expressions are simplified to remove duplicates and stored in their disjunctive nor-

mal form (DNF). This simplification can be done by applying boolean operations {∨,∧} to the

expressions. The probability of the simplified event expression of an inferred fact f is used as

the probabilistic weight of this fact f .
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To calculate the probability values of the event expressions assigned to the inferred facts, the

inclusion-exclusion formula [18], which computes the probability of a disjunction of events,

must be used. In the simple case where the event expression is a disjuction of only two event keys

(e1∨e2) the probability of this event expression is Pr(e1∨e2) = Pr(e1)+Pr(e2)−Pr(e1∧e2).

In the general case the probability of the expression (k1 ∨ . . . ∨ kn) where ki is a conjunction

of event keys can be computed as follows:

Pr(k1 ∨ . . . ∨ kn) =

n∑
i=1

(−1)(i−1)

 ∑
1<j1<. . .<ji≤n

Pr(kj1 ∧ . . . ∧ kji)

 (3.1)

To calculate the value of this probability we have two options:

• We suppose that the probability of all conjuncts formed in the inclusion-exclusion formula

is given.

• We assume the all the event keys are independent and thus the probability of any conjuct

of event keys can be calculated as follows:

Pr(k1 ∧ . . . ∧ kn) = Pr(k1)× . . .× Pr(kn)

It is clear that the assumption in the first option is very hard to fulfill in practice. Thus, We chose

to follow the second option.

3.4 ProbFR: The Probabilistic forward Reasoner

In this section we show our probabilistic forward reasoner algorithm, a fact propagation algo-

rithm that deal with probabilistic weights. It accepts probabilistic deductive RDF dataset as

input and computes not only the set of facts that can be inferred locally but also their probabilis-

tic weights. Since some facts can be inferred with low probabilistic weights, only the inferred

facts with probabilistic weights greater than or equal to a certain acceptance threshold λt given

as input is returned.

Fact propagation algorithms such as RETE [29] are used to apply a set of rules over a set of

facts and they are known for their efficiency thanks to their memorizing techniques. They avoid

redundant evaluation of same conditions appearing in different rules by memorizing the facts

that are confirmed to match these conditions and the corresponding variable substitutions. To

calculate the event expressions of the inferred facts our probabilistic forward reasoner algorithm

memorizes for each condition, in addition to the substitutions and facts, their corresponding

event keys and event expressions.
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At the end of the probabilistic forward reasoner the event expressions calculated for each in-

ferred fact are simplified and their probabilistic weights are computed using the functionCalculate Pr.

Then all inferred facts that have a probabilistic weight lower than the acceptance threshold are

eliminated from the output set of facts.

The ProbFr algorithm can be summarized as follow:

ProbFR
Input: a deductive RDF data pr dds(u) = 〈F,R, Pr〉
Input: an acceptance threshold λacceptance

Output: the set of inferred fact F ′ and their probabilistic weights attached using the mapping Pr′

Generate Event Keys(F, R, Pr, EE)

FOR each condition triple c that appears in the conditions of the rules in R

• add c to the set of conditions C if there is no condition c′ ∈ C that match with c

F ′ ← F

FOR each f in F ′ not seen before

• FOR each condition c ∈ C that can be matched with f , i.e., there exists θ such that θ.c = f

– IF θ is not in the set of already found substitutions Substitutionsc THEN

∗ add θ to Substitutionsc

∗ EE(θ.c)← EE(f)

– ELSE EE(θ.c)← EE(θ.c) ∨ EE(f)

– FOR each rule r : Condr ⇒ Concr that have a condition c′ ∈ Condr that match with c

∗ IF there exists for each condition ci ∈ {Condr \ c} a substitution θi ∈ Substitutionsci
and all these substitutions are compatible with each other and with θ

· consider θ′ as the union of these substitutions and ee′ the conjunction of the event

expressions of the corresponding facts θi.ci.

· θr ← θ ∪ θ′, eer ← ee′ ∧ EE(f)

· fnew ← θr.Concr

· add fnew to F ′

· EE(fnew)← EE(fnew) ∨ eer
FOR each f in F ′

• Simplify the event expressionEE(f) if possible by applying the boolean operations {∧,∨} and convert

it to the disjunctive normal form (DNF)

• Pr′(f)← Calculate Pr(EE(f))

• IF Pr′(f) < λacceptance THEN remove f from F ′

RETURN 〈F ′, P r′〉

The procedure Generate Event Keys generate randomly event keys for each input fact and rule

and give it a probability value equal to the probability of the corresponding fact or rule.
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Calculate Pr is a procedure that calculates the probabilistic weight of an event expression ee

giving the probability of each event key that appears in this event expression E:

Calculate Pr
Input: an event expression ee, an array Pr the contains probability of each event key in ee

Output: the probability of the input event expression as a float number n ∈ [0, 1]

• Initialize s to empty set

• For each conjunction conj in input event expression E

– temp← 1

– For each event key e in conj

∗ temp← temp ∗ Pr(e)

– s← concat(s, temp)

• return ( Inclusion-Exclusion(s) )

The Inclusion-Exclusion procedure accepts as input a set of probabilistic values and applies the
inclusion-exclusion formula 3.1 as described below:

Inclusion-Exclusion
Input: a set of probabilistic weights s

Output: a float number res ∈ [0, 1]

• For i = 1 to |s|

– sign← (−1)(i−1)

– For each possible subset ss with the size i that can be created from the input set s

∗ temp← 0

∗ For each k in ss

· temp← temp+ k

∗ res← res+ sign ∗ temp

• return res

Instead of implementing our ProbFR algorithm from scratch we decided to reuse the implemen-

tation of the RETE algorithm in the JENA framework. We injected inside this implementation:

• The generation of the event keys for the ground facts and rules at the beginning of the

algorithm.

• The memorization of the event keys and event expressions of the facts that match the

condition patterns.
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• The calculation of the probabilistic weights for the inferred facts once the set of inferred

facts is calculated.

• The elimination of the facts inferred with probability lower than the input acceptance

threshold at the end of the algorithm.

3.5 Data complexity and approximation techniques

In this section we show the data complexity of the probabilistic forward chaining algorithm. We

show that the maximum size of an event expression calculated for the inferred facts is polyno-

mial to the size of the dataset. However in practice, even if the size of the event expressions is

polynomial to the size of the dataset storing these expressions and dealing with them leads to

many difficulties. Thus, we also propose approximation techniques with the aim to avoid such

problems.

3.5.1 Maximum size of an event expression

Our goal is to study the maximum size of an event expression in terms of the size of the dataset.

We do not consider the number of rules into account while studying the complexity since the

number of rules in practice is very small compared to the size of the dataset.

The event keys of the facts and rules in each branch of reasoning appears in the event expression

as a conjunction. It is clear that the maximum size of each conjunction is the size of the dataset

N . It is the case where all facts in the dataset are needed to infer a particular fact (very rare in

practice).

The different branches of reasoning that lead to infer the same fact form a disjunction in the

event expressions. The maximum number of these branches is also the size of the dataset N .

It is the case where each fact in the dataset is enough to infer a particular fact (very rare in

practice).

Then, the maximum size of an event expression is in O(N2) in terms of the dataset size com-

plexity.

3.5.2 Approximating probabilistic weights

Although the size of an event expression is polynomial to the size of the dataset, dealing with

the full event expressions may lead to many difficulties in:
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• The needed memory to store these expressions.

• The time needed to estimate their probability values. The inclusion-exclusion algorithm

which calculates the probability of a disjunction of events generates the power set of the

set of these events. The worst time complexity to generate the power set is O(2N )

For these reasons we propose to use the following techniques to control the size of the event

expressions:

• For each event expression, remove all conjunctions that have a probability less than a

given threshold λε ∈ [0, 1]. λε can be set as a parameter.

• For each event expression, order the conjunctions by their probabilities and keep only the

first λmax ∈ N ones. λmax can be set a parameter.

3.6 Setting up the acceptance threshold

Tuning the acceptance threshold, used as a parameter for the probabilistic forward reasoner

presented in 3.4, enables the user to control the number of the inferred facts and their correctness.

While setting this parameter to a high value ∼ 1 leads the algorithm to return only the certain

inferred facts and ignore all other facts, choosing a low value ∼ 0 increases the size of the

resulted set of facts but increase also the number of wrongly inferred facts that may present in

the answer.

The goal is to have the maximum number of the returned correct facts. A straightforward tech-

nique to choose this threshold is to vary this parameter over many values in [0, 1], run the algo-

rithm over each value and ask the user to verify manually a sample of the returned results. Then,

the best candidate value for this parameter is the value that maximize the size of the results and

minimize the number of the facts that are confirmed by the user to be wrong. However, verifying

manually many samples is a hard tasks for the user. In what follows, we propose an automatic

way based on contradictory facts to set the acceptance threshold without a manual assistance.

We consider that two facts are contradictory if they link the same two entities with both owl:sameAs

and owl:differentFrom links. For example the following two facts are contradictory facts:

〈per1, owl:sameAs, per2〉

〈per1, owl:differentFrom, per2〉

One direct application of the contradictions is to discover errors in the dataset. It is clear that

one of the contradictory facts is wrong and can be determined thanks to the probabilistic weights

attached to the two facts.
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To find automatically the best acceptance threshold, we assume that minimizing the number of

contradictions in the results leads to minimize the number of the incorrect facts. Thus, finding

the acceptance threshold turns into a problem of minimizing the number of the contradictions in

the resulted set of facts and maximizing the size of the resulted set. Our experiments in section

3.7 validate this assumption experimentally.

3.7 Experiments

Our experiments were conducted over real data from both INA and DBpedia datasets and have

the following goals: (1) To show that an important increase in the number of the inferred same-

as and different-from links is obtained when uncertain facts and rules are taken into account (2)

To show that facts inferred with weights over a particular threshold, that has been setted up with

manual assistance from the user, are correct. (3) To show that this acceptance threshold can be

set up automatically without the manual assistance of the user using the weighted contradictory

facts.

3.7.1 Experimental Set-Up

To meet our experimental goal we need: (a) a deductive RDF dataset that contains set of certain

facts and rules 〈Fc, Rc〉. (b) a probabilistic RDF deductive dataset 〈Fc ∪ Fuc, Rc ∪ Ruc, P r〉
which contains the previous set of certain facts and rules enriched with a set of uncertain facts

Fuc and uncertain rules Ruc and their probabilistic weights.

Our set of certain facts Fc contains 30.7 million facts: 30 million RDF facts from the INA

dataset, used in our experiments of Chapter 2, and 0.7 million certain facts obtained by down-

loading from DBpedia.fr and DBpedia.org all the facts about entities having a name similar to

the name of one of the homonyms in the INA dataset up to a threshold 0.9. The total size of this

dataset in turtle format is 2 GB. For the set of certain rules Rc we use the 35 certain rules that

have been used before in the experiments of Chapter 2 that are listed in Annex A.

The set of uncertain rules Ruc contains 16 uncertain rules that enable to conclude sameAs

facts. They translates pseudo keys (e.g. name and birthYear or name and deathYear), mappings

and other domain knowledge provided by INA experts (e.g. a rule that conclude that two person

homonyms are the same if they are participated in the same video entity). We asked the INA

experts to rank the uncertain rules on a scale from 1, for rules that are less likely to be correct,

to 3, for rules that are most likely to be correct. Then, we attached the probabilistic weight 0.3

to the rules that are assigned with ranking 1 by experts, 0.6 for rules with ranking 2 and 0.9 for

rules with ranking 3. The full set of rules and their probabilistic weights are listed in Annex B.
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All the facts available in the INA dataset are considered as certain by the INA experts. Thus, we

generated a set of uncertain facts Fuc that contains 30, 400 RDF facts about DBpedia person

entities that have names similar to one of the homonyms in the INA dataset up to a threshold 0.9.

To generate these facts we create for each INA homonym name a query that returns DBpedia’s

entities which have a name similar to INA homonym name up to a threshold 0.9 and we applied

it over DBpedia. Then, we generate the facts that attach to each returned entity the INA name

using the property ina:altLabel. The normalized edit distance between the two names is used as

a probabilistic weight for the generated fact.

During the experiments we set the parameters λε, λmax to 0.1 , 10 accordingly.

For running the experiments we used a machine with intel i7 Quad-core processor, 32 GB of

memory and 500 GB sata 2 hard disk with 7200 rpm .

3.7.2 Experimental Results

For evaluating our first experimental goal, (a) we first run our forward reasoner over the de-

ductive RDF dataset 〈Fc, Rc〉. (b) Then, we run our probabilistic forward reasoner over the

probabilistic deductive RDF dataset 〈Fc ∪ Fuc, Rc ∪ Ruc, P r〉. We compared the number of

owl:sameAs and owl:differentFrom facts obtained on the INA homonyms in each case. We set

the acceptance threshold λacceptance for the probabilistic forward reasoner to 0.5.

Applying only the the set of certain rules over the set of certain facts allowed to infer 23, 689

facts (including 8, 238 owl:sameAs facts and 15, 451 owl:differentFrom facts) compared to the

147, 712 facts (130, 741 owl:sameAs facts and 16, 971 owl:differentFrom facts) inferred with

probabilistic weights greater than 0.5 when uncertain facts and rules are taken into account.

This clearly shows the importance increase (about 623%) in the number of inferred facts when

uncertain facts and rules are taken into account. We notice that most of the newly inferred

facts are owl:sameAs since all the uncertain rules that we used conclude owl:sameAs facts. The

147, 712 facts and their corresponding weights are inferred in 19 minutes and 41 seconds.

The probabilistic weights of the inferred facts are distributed over the range [0.5, 1.0] as it is

depicted in Figure 3.2. It is worth noting that the probabilistic weight attached to the certain facts

(i.e. the 23, 689 facts inferred when only certain facts and rules are used) when the probabilistic

forward reasoner is launched over the whole set of certain and uncertain facts and rules is equal

to 1.

To find manually the best acceptance threshold, we randomly took four samples s≥0.5, s≥0.6,

s≥0.7, s≥0.8. Each sample contains 200 facts randomly chosen from the inferred owl:sameAs
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FIGURE 3.2: The distribution of the number of the inferred facts over the range of the proba-
bilistic weights

and owl:differentFrom facts that have probabilistic weights bigger than 0.5 , 0.6, 0.7, 0.8, re-

spectively, and we asked INA experts to verify these samples manually. Table 3.3 shows the

number of facts confirmed to be correct in each sample by INA experts.

The results show that the higher the probabilistic weight attached to the fact is the lower its

probability to be wrong. This confirms the usefulness of the probabilistic weights returned by

our algorithms in practice. The results shows also that setting the acceptance threshold param-

eter of the probabilistic forward reasoning algorithm in this experimental setting to 0.7 leads

to get only correctly inferred owl:sameAs and owl:differentFrom facts. It is worth knowing

that: among the 147, 712 newly inferred sameAs and differentFrom facts, 81% of them have

probabilistic weights greater than 0.7. Thus, 81% of them are correct.

Sample Number of correct facts
s≥0.5 196

s≥0.6 199

s≥0.7 200

s≥0.8 200

TABLE 3.3: The number of inferred facts confirmed to be correct in each sample

In our third experiment we want to validate experimentally the automatic technique proposed in

Section 3.5.2 to choose the acceptance threshold by checking if applying this automatic tech-

nique leads to a threshold near 0.7 which has been found manually in our second experiment.

To do so:
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1. we created the set of the facts that are confirmed to be wrong by contradiction. i.e. each

fact f in this set contradicts with another fact f ′ that has higher probabilistic weight, i.e.

Pr(f ′) > Pr(f). It is clear that eliminating this set of facts from the resulted set of facts

solves the contradiction problem.

2. we studied the distribution of the probabilistic weight attached to these wrong facts.

Figure 3.3 shows that all these wrong facts have probabilistic weights lower than 0.84 and 99.5%

of them have probabilistic weights lower than 0.68. By knowing that 83% of the inferred facts

have probabilistic weight greater than 0.68% comparing to only 41% of them have probabilistic

weights higher than 0.84, we can say that the best value candidate for the acceptance threshold is

then 0.68. This conforms with our second experiments in which we found manually that the best

value for the acceptance threshold should be near 0.7 and thus validate this automatic technique

to find the acceptance threshold experimentally.
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FIGURE 3.3: The distribution of the facts that are confirmed to be wrong by contradiction over
the range of the probabilistic weights

3.8 Extending the import by query approach to uncertainty

In this section we want to revisit the import-by-query problem, studied before in Chapter 2, in

this probabilistic setting. Given a probabilistic deductive RDF dataset pr dds(u) = 〈F,R, Pr〉,
and a boolean query q(u) the local evaluation of which gives an empty answer set, our problem

statement in this probabilistic settings is to construct a set of external queries q1(u1), . . . , ql(uk)

for which we can guarantee that the subsets of external facts resulting from their evaluation over
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the (possibly huge) external datasets are sufficient to answer the initial query with a probabilistic

weight bigger than a certain threshold t.

< F ∪i∈[1..k] Answer(qi(ui), ds(ui)), R, Pr > `w q(u) and w ≥ t

iff < F ∪i∈[1..k] ds(ui), R, Pr > `w′ q(u) and w′ ≥ t

3.8.1 The Probabilistic Iterative Import-by-query

The Probabilistic Import-by-query algorithm is an extension of the Import-by-query explained

in Section 2.5 to deal with probabilistic weights. Similar to the original algorithm, it accepts as

input (1) a boolean same-as query q, (2) a probabilistic deductive RDF dataset 〈F,R, Pr〉 and

(3) set of ū of query entry points to external datasets in addition to (4) an acceptance threshold

t. It alternates steps of sub-query rewriting based on backward chaining and of external query

evaluation and returns as output not only a (true or false) answer as the original version but a

probabilistic weight greater than or equal to t.

Each query rewriting step is realized using the PQESQ (described is detail in section 3.8.2)

which is an adaptation of the Query-External-Subquery, described in Section 2.5.1, to deal with

probabilistic weights. PQESQ either succeeds in proving the query locally i.e. over 〈F,R, Pr〉
with a probabilistic weight greater than or equal to the given acceptance threshold t and then the

process is stopped and the result return by the Iterative Import-by-query algorithm is (true, w),

or it produces as the original QESQ a set of external queries but attached with probabilistic

weights i.e {(q1(ū1), w1), . . . , qk(ūk), wk)}. The weight of each external query qi(ū) is the

maximum probabilistic weight the input query can be inferred with if there is an answer to qi in

the external datasets. In the case of empty set the process stopped and the answer (false, 1) is

returned.

In Each Evaluation step the algorithm first verifies whether there is a chance to answer the

query q with a true answer attached with a probabilistic weight greater than t. To do this

verification, it calculates the maximum probabilistic weightwmax to answer the q with true: it is

the case when there is a certain answer for all the external queries. This maximum probabilistic

weight can be calculated by applying the inclusion-exclusion algorithm presented in section 3.4

on the set of the weights of the external queries. If wmax < t the process is stopped and the

algorithm return (false, 1). In the other cases the algorithm choose the external query qi(ūi) that

have the highest weight among the set of the external queries and continue exactly as the original

version. It submits qi(ūi) to the Linked Data through the specified entry points, memorizes the

results in the answer table and marks qi as an already processed query. In the case of positive

results, a new iteration of Iterative Import-by-query is started on the same input except of the set
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of facts F enriched with the facts obtained as the results of the evaluation of the external query

qi(ūi). If the result is negative, qi is removed from the set of external queries and evaluation step

is recalled over the new set of external queries. In the case of empty set of external queries the

answer (false, 1) is returned by the algorithm. The probability values attached to the imported

facts are equal to a trust values the user has to the external datasets from which these facts are

imported. These trust values are either given in the input for each specified SPARQL endpoint

or are assumed to be equal to one.

3.8.2 The PQESQ algorithm

The Probabilistic Query-External-Subquery, PQESQ, algorithm extends the QESQ recursive

algorithm presented in Section 2.5.1 to handle probabilistic weights. Similar to QESQ, the

PQESQ algorithm starts with an input boolean atomic query q: 〈s, p, o〉 and treats it as the goal to

solve using the input probabilistic deductive dataset 〈F,R, Pr〉. The answer of PQESQ is either

(true, w) or (false, 1) if the query can be evaluated locally with a probabilistic weightw greater

than a given threshold t or a non empty set of external queries compatible with vocabulary of

the given external datasets attached with probabilistic weights. Although PQESQ returns also

the event expressions of the calculated answer or external queries, they can be omitted in the

primary call of the algorithm. Theses event expression are useful when PQESQ is triggered

recursively.

At the beginning of the algorithm each ground fact and rule is attached with a randomly gener-

ated event key accessible through the function EE. Then, PQESQ follows the same reasoning

steps in QESQ to calculate the answer sets or the external queries. However, during these steps

it calculates the event expression composed of the event keys of the ground facts and rule par-

ticipated in calculating these answer sets or the external queries. When a true answer or an

external query is returned by the algorithm the probabilistic weight of the corresponding event

expression is calculated using the algorithm presented in section 3.4. False answers means that

it is impossible to evaluate the query to true with a probabilistic weight greater than t and no

external query can be calculated for it, thus they are always attached with a probabilistic weight

1.

In contrast to QESQ, PQESQ does not stop if an answer is found for the input goal. Instead

of that, it checks if the probabilistic weight of the event expression calculated while searching

for this answer is greater than the input threshold t. In the positive case the algorithms returns

true attached with this probabilistic weight while in the negative case the algorithm continues

exploiting the other possible reasoning branches to infer q and thus increasing it is probabilistic

weight.
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PQESQ
Input: a deductive RDF data pr dds(u) = 〈F,R, Pr〉
Input: an acceptance threshold λacceptance

Output: (True,w′, ee) or (False,1) if the query can be answered locally else a set of external queries, their

probabilistic weights and their event expressions{(q1(ū1), w1, ee1), . . . , qk(ūk), wk, eek)}.

ee← ∅

1. IF there exists gi = 〈svi , pi, ovi 〉 in the subgoals such that the predicate pi is an EDB predicate, or such

that gi has been handled before (i.e., gi can be matched to a triple in goalpi )

THEN evaluate the atomic query gi = 〈svi , pi, ovi 〉 over F , or over answerpi :

• IF there is no answer and pi is not an ODB predicate THEN return (FALSE, 1)

• ELSE for each answer, let θ be the corresponding substitution (it can be empty if the query gi is

boolean), i.e., such that θ.gi ∈ F , or θ.gi ∈ answerpi :

– LetNewSG be the list of new subgoals obtained from SG by removing gi and by replacing

the other subgoals gj by θ.gj .

– IF NewSG is empty THEN

∗ ee← ee ∨ EE(θ.gi)), w ← calculate pweight(ee)

∗ IF w > t THEN return (TRUE, w)

∗ ELSE trigger a new recursive call of QESQ on NewSG.

· IF it returns ( TRUE,w′, ee′) THEN success← true ; w ← calculate Pr(ee∨(ee′∧
EE(θ.gi))

· ELSE (not success and not returned false)

add each resulted external query qext with an event expression ee′ to SetOfQext

with probability w ← calculate Pr(ee ∨ (ee′ ∧ EE(θ.gi))

2. IF there exist subgoals not seen before with ODB predicates THEN:

Let qext be their conjunction.

IF qext is compatible with the vocabulary of ū (the given entry points to external datasets) THEN:

• Let NewSG be the list of new subgoals obtained from SG by removing all subgoals in qext

• IF NewSG is empty THEN w ← calculate pweight(EE) return (qext, w) ELSE

- for each subgoal 〈sv, p, ov〉 in qext, add it to the table goalp
- trigger a new recursive call of QESQ on NewSG and EE:

– IF it does not return TRUE or FALSE THEN

– consider (Qext, w) to be the result of PQESQ(NewSG,EE)

– return (Qext ∪ qext, w)

3. ELSE (all the subgoals have IDB predicates and they have not been seen before)

• let g = 〈sv, p, ov〉 be the first subgoal in SG and let Rg be the set of rules whose conclusion can

be matched with g

• IF Rg = ∅ THEN return (FALSE, 1)

• ELSE:
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– success← false ; w ← 0; SetOfQext ← ∅; ee← ∅

– WHILE Rg 6= ∅ and ¬ success

∗ choose r in Rg and let θ the substitution s.t. θ.Concr = g,

∗ let NewSG be the list of new subgoals obtained from SG by replacing g with

θ.TP1(v1), . . . , θ.TPk(vk) where TP1(v1), . . . , TPk(vk) are the conditions of r,

and by replacing the other subgoals gj with θ.gj ,

∗ add g to the table goalp,

∗ remove r from Rg ,

∗ trigger a new recursive call of PQESQ on NewSG,

∗ IF it returns ( TRUE,w′, ee′) THEN success← true ; w ← calculate Pr(ee ∨ (ee′ ∧
EE(Rg))

∗ ELSE IF it does not return FALSE THEN

· add each resulted external query qext with an event expression ee′ to SetOfQext

with

probability w ← calculate Pr(ee ∨ (ee′ ∧ EE(Rg))

IF success THEN return (TRUE, w),EE ELSE IF SetOfQext = ∅ THEN return (FALSE, 1) ELSE return

SetOfQext

3.9 Related Work and Conclusion

In this chapter we proposed an adaptation of our rule-based approach that deal with uncertain

facts and rules to solve the problem of data-linkage in Linked Data. This adaptation is based

on Probabilistic Datalog which has a solid theoretical background presented before in [31, 52].

Although that the problem of making decisions over uncertain knowledge has been studied

before in AI and many other domains (e.g. databases . . . ) since many years, We found the way

Probabilistic Datalog approach deal with uncertainty is very suitable and intuitive to extend our

rule-base approach for data-linkage: (a) it is built over Datalog settings (b) it deals with not only

certain facts as the approached captured by the provenance semirings [35] but also uncertain

rules (c) it attaches probabilistic point values to the inferred facts and not probabilistic ranges as

other works that are built also over Datalog settings like [53] (d) our experiments showed that

this approach can scale to large datasets. A detailed comparison between probabilistic Datalog

and other similar works can be found in [31].

Many instance matching tools has been introduced to produce uncertain links between pairs of

individuals in Linked-Data. Some tools do value matching: they match values of certain prop-

erties that describe the two individual to be compared (e.g. calculating the similarity between

strings) and then aggregating the results using weighted aggregation functions (e.g. weighted

average . . . ) [54]. Others exploit also the schema: PARIS [64] proposes a fully automated
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probabilistic approach that needs no tuning parameters to align instances, classes and relations.

It exploits the ontologies delivered with the data and generate instance alignments that cross-

fertilize with alignments at the schema level between. LN2R [63] combines logical inference on

the schema level (by exploiting functionality, inverse functionality . . . ) and a numerical method

based on equations that model the influences between similarities. Most of these approaches

fails in discovering sophisticated matching (e.g. dealing with structural heterogeneity: if one

entity is presenter of a title “Dimanche Martin” and other entity is presenter of a video that

belongs to a program ‘Dimanche Martin”).

Our proposed approach for Data-linkage is general enough to capture facts and rules attached

with weights that may come from many different sources. Thus, the sameAs facts produced

automatically using the existing instance matching tools and their weights can be given as an

input to our approach. This allows, by using the suitable rules, our approach to use these sameAs

facts to discover more facts that require knowledge that has not been handled by the matching

tools, e.g. domain expert rules that dealing with structural heterogeneity.

In our experiments, we showed that this approach works well even for a large scale datasets

and produce meaningful probabilistic weights. We showed also how to interpret the calculated

probabilistic weights to decide the correct facts among the inferred ones.
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Chapter 4

Trust in Networks of Ontologies and
Alignments

4.1 Introduction

Trust is meant to play a primary role in the realization of the semantic web [17]. As a conse-

quence, trust has gained a lot of attention from researchers of this community [9]. Trust aims at

assessing the quality of information contained in the semantic web, which can be considered un-

satisfactory, for example, because it is untrue, incomplete or outdated. Just as “one man’s meat

is another man’s poison”, trust is commonly agreed not to be objective, but rather subjective to

the point of view of every user/agent/peer.

Discrepancy between viewpoints may indeed be a reason for information to be considered un-

satisfactory. Moreover, unsatisfactory information can be caused intentionally as the result of

some sort of malicious behavior from a user/agent/peer when answering a query. There exists

another reason, mostly overlooked by current mechanisms of trust: unsatisfactory information

can be due to users/agents/peers’ incapacity to understand each other. Certainly, with the in-

creasing proliferation of ontologies in the semantic web, the target of a query may provide an

unsatisfactory answer simply because the query is specified in an ontology different from the

target’s ontology.

Today’s most widely followed approach to tackle ontology heterogeneity is ontology matching

[27]. Ontology matchers can find alignments, i.e. sets of correspondences between entities

(classes, properties or instances) of different ontologies. These correspondences can be used

later for query translation. However, computed alignments may be limited — unsound and/or

50
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incomplete — and yet generate flawed query translations. Our proposal is to profit from align-

ments in the beginning and then proceed `a la trust. Before going into details, we explain our

setting and the goal of our work, and we summarize our contribution.

4.1.1 Semantic P2P Networks

In line with Adjiman et al. [6], we will consider semantic peer-to-peer (P2P) networks, i.e.

fully decentralized overlay networks of people or machines (peers) sharing and searching for

resources (documents, videos, photos, data) based on their semantic annotations using ontolo-

gies. As an ontology language we have restricted ourselves to sets of classes equipped with

less-general-than and disjointness relations. In a semantic P2P network, every peer is free to or-

ganize its local resources as instances of classes of its own ontology serving as a query interface

for other peers. Then alignments between ontologies make it possible to reformulate queries

from one local peer vocabulary to another.

The answer to a query is a set of resources (e.g. documents) which are instances of classes

corresponding, typically via subsumption or equality, to the initial query posed to particular

peers. If the alignment correspondence used to translate a query is incorrect, though, the sender

peer might be returned with unsatisfactory instances, i.e. instances it does not consider to be

instances of its local class. Think of, for example, a network for exchanging bookmarks, in

which a peer Scott organizes his bookmarks according to two main categories: cinema and

music. Suppose that Scott is acquainted with Zelda who is interested in music and cities. Scott’s

and Zelda’s ontologies include the class Paris, but with different meanings: Scott’s Paris refers

to a film, whereas Zelda’s Paris refers to the capital of France. Also, imagine that the two

ontologies have been aligned by a matcher which has not been able to overcome this homonymy

problem, and has returned a correspondence stating that Scott’s Paris and Zelda’s Paris are

equivalent classes. Thus, if Scott wants to acquire bookmarks of the film “Paris” and queries

Zelda, then he will be presented with bookmarks related with the capital of France instead.

4.1.2 Trust in Semantic P2P Networks

Our goal is to design a mechanism of trust for guiding the query-answering process in semantic

P2P networks. We define the trust of a peer P1 towards another peer P2 with respect to a pair

〈C,D〉, where C and D are classes of P1’s and P2’s ontologies, resp. as the probability that an

arbitrary instance of D in P2’s ontology is considered satisfactory, i.e. an instance of C by P1.

Here the class C is meant to be queried by P1, and P2’s answer, after C is reformulated as D, is

the set of instances of D in P2’s ontology. Notice that trust is subject to classes and translations.

Going back to our example of bookmarks, imagine that Scott’s and Zelda’s ontologies include
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the class Gainsbourg with which Scott and Zelda both organize bookmarks about the French

songwriter Serge Gainsbourg. Although Scott should not trust Zelda with respect to Paris, he

should trust her concerning Gainsbourg.

4.1.3 Summary of our Contribution

This chapter extends preliminary theoretical and experimental results published in [13] and [7],

respectively.

The distinguishing point of our approach is to exploit knowledge provided by alignments (pos-

sibly unsound and/or incomplete) together with user feedback in order to compute and refine

trust over time. More precisely,

• The trust that a peer P1 has towards another peer P2 with respect to the query transla-

tion 〈C,D〉 is modeled as a random variable representing P1’s belief that instances of D

returned by P2 are satisfactory instances for its local class C.

• Alignments between peers’ ontologies are used to construct prior distributions of these

beliefs, from which initial values of trust are calculated.

• Bayesian inference is performed to build posterior distributions of peers’ beliefs from

their prior distributions and user feedback on the number of satisfactory and unsatisfactory

instances included in a sample of answers.

It is worth noting that in our approach we profit from ontologies for limiting the recourse to user

feedback by substituting manual assessment with logical inference when possible. This is the

case when some instances in the sample to be processed by a given peer for a given class C

already belong to its local populated ontology:

• If one of such instances belongs to C or to a subclass of C, it can be logically inferred

that it is a satisfactory instance for C.

• If one of such instances belongs to a class C ′ that is declared to be disjoint from C or from

one of its superclasses, it can be logically inferred that it is not a satisfactory instance for

C.

A by-product contribution of trust is the computation of probabilities for the new instances of a

class C to be satisfactory depending on the trusted peers from whom they were obtained. Such

instances are added to the populated ontology along with their associated probability values.
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These values are computed on the basis of provenance information and with the help of a func-

tion which aggregates the trust values towards the peers that provided these instances. Peers’

populated ontologies, thus, evolve over time so that each class C in peer Pi’s ontology includes

instances Pi is 100% sure of, and instances it believes they belong to C with some probabil-

ity degree p. In this way, the different instances of a class can be ranked with respect to their

associated degrees.

For the evaluation of our mechanism of trust, we have designed a scenario representative of the

novel topic of social networks and the semantic web [48]. Based on this scenario, we have built

a semantic P2P bookmarking system in which we can vary different quantitative and qualitative

parameters so as to measure their influence on (i) the convergence of trust, and (ii) the gain in

the quality of peer answers — measured with precision and recall — when query-answering is

guided by trust.

The remainder of this chapter is structured as follows. Section 4.2 includes the necessary pre-

liminaries to understand the theoretical model of trust introduced in Section 4.3. An evaluation

of this model is presented in Section 4.4. Section 4.5 concludes the chapter and summarizes the

related work

4.2 Preliminaries

The components of a semantic P2P network are presented below: ontologies and populated

ontologies, alignments and acquaintance graphs. We also describe the query answering process

that we consider in this setting.

4.2.1 Ontologies and Populated Ontologies

We draw a distinction between the ontological structure and the instances used to populate it. We

deal with lightweight ontologies: classes linked by means of less-general-than and disjointness

relations.

Definition 4.1. An ontology is a tuple O = 〈C,6,⊥〉 where C is a non-empty finite set of class

symbols; 6 is a reflexive, antisymmetric and transitive relation (a partial order) on C; ⊥ is an

irreflexive and symmetric relation on C; and for all c, c′, d, d′ ∈ C,

if c ⊥ d, c′ 6 c and d′ 6 d then c′ ⊥ d′

A populated ontology is the result of adding instances to an ontology in accordance to the in-

tended meaning of the two ontological relations.
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Definition 4.2. A populated ontologyO is a tuple 〈O,I, ext〉, whereO is an ontology, I is a set

of instances, and ext is a function that maps each class c of O with a subset ext(c) of I called

the extension of c, in such a way that the family of class extensions covers I, and for all classes

c, d the following hold:

1. if c 6 d then ext(c) ⊆ ext(d)

2. if c ⊥ d then ext(c) ∩ ext(d) = ∅

4.2.2 Alignments

In an open and dynamic environment such as a P2P network, the assumption that peers share the

same ontology is not realistic. Nonetheless, if peers fall back on different ontologies, there must

be a way to connect ontologies and translate queries so that their addressees are able to process

them. Typically this is done by means of alignments — collections of correspondences be-

tween semantically related ontological entities — and finding alignments is the aim of ontology

matching [27].

We consider correspondences between two classes c and c′ of two distinct ontologies O and O′

as tuples 〈c, c′, r〉 with r ∈ {=,6, <,>, >, G,⊥}, where c = c′ (more rigorously, 〈c, c′,=〉) is

read “c is equal to c′”, c 6 c′ (respectively c < c′) is read “c is (strictly) less general than c′”,

c > c′ (respectively c > c′) is read “c is (strictly) more general than c′”, and c ⊥ c′ is read

“c is disjoint from c′”. The non-standard symbol G expresses overlapping between classes the

extensions of which share instances but no one is equal to or contained into the other.

Definition 4.3. Let O and O′ be two ontologies, and let c and c′ be two classes of O and O′,

respectively. A correspondence between c and c′ is a tuple 〈c, c′, r〉 with r ∈ {=,6, <,>, >, G
,⊥}. An alignmentA betweenO andO′ is a non-empty set of correspondences between classes

of O and O′.

4.2.3 Peers and Acquaintance Graphs

We consider a finite set P = {Pi}Ni=1 of peers. In this work, Pi will be identified by i. We

assume that each peer Pi is associated with one populated ontology Oi = 〈Oi, Ii, exti〉 (where

1 ≤ i ≤ N ).

An acquaintance graph stands for peers’ acquaintances (or neighbors) in the network. As usual,

a link between two peers reflects the fact that they know the existence of each other. In addition,

we assume that there exists one alignment between their respective ontologies.
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Definition 4.4. An acquaintance graph is a labeled directed graph 〈P, ACQ〉whereP = {Pi}ni=1

is the set of vertices and any edge in ACQ is of the form 〈i, j〉 with i 6= j, and it is labeled with

an alignment Aij between ontologies Oi and Oj . Peer Pj is said to be an acquaintance of peer

Pi if 〈i, j〉 ∈ ACQ. The set of acquaintances of Pi is denoted by ACQ(Pi).

4.2.4 Queries and Query Translations

Peers pose queries in order to obtain information about other peers’ populated ontologies. We

deal with a simple query language, as peers can only query class instances: if peer Pj is an

acquaintance of peer Pi, it may be asked

Q = c(X)? (4.1)

by Pi with c ∈ Oi. Now, since we do not assume that all peers share the same ontology, queries

may require to be translated for their recipients to be able to process them. Query translations

are determined by correspondences of the alignments of the network. Specifically, if peer Pi
wants to send Q to Pj , it will first choose one correspondence 〈c, d, r〉 ∈ Aij (typically r is

equal to =, > or >) and then send to Pj the translation

Q′ = d(X)? (4.2)

The answer to (4.1) through its translation (4.2) is the set of instances of class d in Pj’s populated

ontology. Unlike queries, we assume that no translation of instances is ever required. Nonethe-

less, since alignments may be unsound and incomplete, this answer may contain unsatisfactory

instances, i.e. instances which are not considered instances of c by Pi.

A peer cannot foresee which of its acquainted peers will answer its query with satisfactory

instances. Furthermore, even if an answer is received, this might be too big to be manually pro-

cessed, so the peer is left to accept it with the risk of populating its ontology with unsatisfactory

instances. This uncertainty can be estimated with the help of a trust mechanism.

4.3 The Trust Mechanism

In this section we detail the trust mechanism that we have designed to assist peers to select the

peers in the network better suited for their queries, that is, the peers that will provide answers

with more satisfactory instances. For doing so, we adopt an approach based on Bayesian prob-

abilities. The whole trust-based query answering process that we have designed is not simple

and we have structured its presentation as follows. In Section 4.3.1, we present our probabilistic
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model of trust defined as beliefs on the quality of answers depending on the sources (classes

in peers’ populated ontologies) they come from. These beliefs are first modeled by prior dis-

tributions (built from the alignments) and then refined into posterior distributions when more

data become available, as explained in Section 4.3.2. As a result of trust refinement over time,

peers’ populated ontologies are updated. Section 4.3.3 sets the principles we have chosen to

filter the new instances that can be added by exploiting their provenances. Finally, we explain

in Section 4.3.4 our use of trust for guiding query answering in a P2P setting.

4.3.1 Definition and Estimation of Trust

We look at trust as a way to estimate each peer’s belief that answers returned by other peers in-

clude satisfactory instances for classes of its own ontology. The notion of a satisfactory instance

can be faithfully captured by means of reference populated ontologies which are not known in

practice but useful for the formal definition of our problem.

For each peer Pi, we denote by O∗i = 〈O∗i , I∗i , ext∗i 〉 its reference populated ontology with O∗i =

Oi. This corresponds to the ideal case in which peer Pi had access to all instances in the network

and classified them according to its ontology Oi. This allows to express that Pi considers an

arbitrary instancea as an instance of c ∈ Ci bya ∈ ext∗i (c).

Once an answer is received, it can be (partially) added or not to the extension of the queried

class. In order to capture the evolution of class extensions in the network, we consider a time

variable t ∈ N, and write Oti to denote peer Pi’s populated ontology at t (beginning with Oi):

Oi = O0
i ,O1

i , . . . ,Oti , . . . (4.3)

It is important to note that the time parameter t is local to each peer and is just a way to model

successive queries. It is assumed that the underlying ontology does not ever change: Oi = Oti

for every t ∈ N. In addition, peers join the network only with satisfactory instances: exti(c) =

ext0i (c) ⊆ ext∗i (c) for every c ∈ Ci. Later, though, peers may accidentally add unsatisfactory

instances to their populated ontologies due to inaccurate trust-based estimations. For this reason,

we make a distinction between the instances peers are 100% sure of from the rest. Specifically,

at any time t ∈ N, extti(c) is split into two disjoint sets:

extti(c) = ext
t
i(c) ] ẽxt

t
i(c) (4.4)

where extti(c) is the greatest subset of extti(c)∩ext∗i (c) known by Pi. The axioms of Definition

4.2 only hold for this kind of instances. The way these sets are built is explained in Section 4.3.2.

Certainly, at t = 0, we have that ext0i (c) = ext0i (c) = exti(c), or, equivalently, ẽxt
0
i (c) = ∅.
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With this new terminology, Pj’s answer to query (4.1) through its translation (4.2) at time t is

the extension exttj(d), and an arbitrary instancea ∈ exttj(d) is qualified as satisfactory as long

as a ∈ ext∗i (c). The proportion of satisfactory instances in exttj(d) is given by the conditional

probability p(ext∗i (c)|exttj(d)).1 Our standpoint is that the higher this value is, the more Pi
trusts Pj with respect to the translation 〈c, d〉.

Definition 4.5. Let us consider two peers Pi and Pj (i 6= j) and classes c and d of Oi and Oj ,

respectively. The trust that Pi has towards Pj with respect to the translation 〈c, d〉 at time t is

the conditional probability p(ext∗i (c)|exttj(d)) and it is denoted by trust t(Pi, Pj , 〈c, d〉).

This idea differs from all existing approaches to trust. In our setting unsatisfactory answers

are seen as the result of peers’ incapacity to understand each other. Also, trust depends on

translations: peers may be trustworthy with respect to some translations but not to others.

The exact value of trust is unknown and can only be estimated. More precisely, trust t(Pi, Pj , 〈c, d〉)
is the unknown parameter θ of the Bernouilli distribution of the binary random variable defined

on exttj(d) and assigning the value 1 to instances that are satisfactory instances of the class c in

Pi. The Bernoulli distribution is the simplest discrete distribution having two possible outcomes

labeled by 1 and 0 in which 1 (satisfactory) occurs with probability θ and 0 (failure) occurs with

probability 1− θ, where θ is called the parameter of the distribution.

Our approach consists in estimating this parameter by Bayesian inference. For this, we consider

a probability distribution T t(Pi, Pj , 〈c, d〉) which represents peer Pi’s belief about the parameter

θ = trust t(Pi, Pj , 〈c, d〉) = p(ext∗i (c)|exttj(d)). In this way, we can give the estimation

t̂rust
t
(Pi, Pj , 〈c, d〉) = E(T t(Pi, Pj , 〈c, d〉)) (4.5)

where E(·) denotes the expected value.

From here one, we focus on the construction of prior and posterior distributions of T t(Pi, Pj , 〈c, d〉).

4.3.2 Computation and Refinement of Trust Estimation

In case that Pi has no direct experience interacting with Pj , the alignment Aij is taken to con-

struct a prior distribution of T t(Pi, Pj , 〈c, d〉) from which a prior belief is computed (as its

expected value, according to Equation (4.5)). Pj’s later answers are used to compute posterior

distributions of T t(Pi, Pj , 〈c, d〉) and to revise beliefs. We use beta distributions Beta(α, β) as

they are typically used to estimate the parameter of a Bernouilli distribution. More precisely, it
1The probability space under consideration here is the triple (Ω,A, p(·)) where Ω is the set of instances of the

network (a finite set), the σ-algebra A is the power set of Ω, and p(·) is Laplace’s definition of probability.
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is known that if its prior distribution is a Beta distribution of parameters α and β, then its pos-

terior distribution, after n observations o1, . . . , on (each oi is either 1 or 0) of a random sample

of answers, is also a Beta distribution, whose parameters are α+ Σn
i=1oi and β + (n−Σn

i=1oi)

[21].

Thus, (4.5) can be replaced by

t̂rust
t
(Pi, Pj , 〈c, d〉) = E(Beta(α, β)) =

α

α+ β
(4.6)

We explain now how the parameters α and β are computed and updated.

No direct experience: alignment-based trust. If T t(Pi, Pj , 〈c, d〉) is not defined (e.g. when

t = 0), the alignment Aij is brought into play in order to set the beta distribution serving as a

prior distribution.

Figure 4.1 shows the density functions of the beta distributions associated with the different

alignment relations. The construction is based on the intended meaning of these relations. In

case Aij is sound, then

〈c, d,=〉 ∈ Aij iff ext∗i (c) = ext∗j (d)

〈c, d,>〉 ∈ Aij iff ext∗i (c) ⊃ ext∗j (d)

〈c, d,<〉 ∈ Aij iff ext∗i (c) ⊂ ext∗j (d)

〈c, d,⊥〉 ∈ Aij iff ext∗i (c) ∩ ext∗j (d) = ∅

〈c, d, G 〉 ∈ Aij iff none of the above holds

Hence, provided that exttj(d) ⊆ ext∗j (d), we have

if 〈c, d,=〉 or 〈c, d,>〉 ∈ Aij then p(ext∗i (c)|exttj(d)) = 1

if 〈c, d,⊥〉 ∈ Aij then p(ext∗i (c)|exttj(d)) = 0

if 〈c, d,<〉 or 〈c, d, G 〉 ∈ Aij then p(ext∗i (c)|exttj(d)) ∈ [0, 1]

For this reason, in the case of the relations =, > and ≥ we consider a beta distribution whose

mean is close to 1, and we take its symmetric for the case of⊥. For the relations< and G we take

the uniform distribution U [0, 1] = Beta(1, 1). Finally, in the case of ≤ we consider a mixture

between the two different distributions associated with = and <.

Direct experience: trust refinement. Imagine that Pi receives B = exttj(d) from Pj as an

answer to the query c(X)? (c ∈ Ci). Sampling with replacement is performed over the set B in
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FIGURE 4.1: Beta density functions for different alignment relations.

order to estimate the number of satisfactory instances in B. We assume that each peer can call

an oracle (typically the user) to find out whether an instance is satisfactory. More specifically,

givena ∈ B, Pi’s oracle is able to give a yes/no response to the question

a ∈ ext∗i (c)?

We can lighten the burden on Pi’s oracle by exploiting the information contained in Pi’s popu-

lated ontology. Indeed, the set B can be partitioned into three disjoint subsets:

B = B+
aut ]B

−
aut ]Baut (4.7)

where

• B+
aut = {a ∈ B : a ∈ extti(c)} = B ∩ extti(c)

• B−aut = {a ∈ B : there exists c′ ∈ Ci witha ∈ extti(c′) and c ⊥ c′}

• Baut = B \ (B+
aut ∪B

−
aut)

Thus, given a ∈ B, there is no need to call the oracle in case that a ∈ B+
aut or a ∈ B−aut since

a will be considered, respectively, satisfactory or unsatisfactory automatically. Notice that only

instances peers are 100% sure of are taken into account in the construction of B+
aut and B−aut.
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Algorithm 1 shows the process of sampling with replacement to estimate trust at time t. It is

assumed that only a maximum number N ≥ 0 of oracle calls is permitted (in practice, this

number is given by the user). The outputs of the algorithm are the numbers of satisfactory and

unsatisfactory instances included in the sample, r and s, respectively, and the sets of satisfactory

and unsatisfactory instances identified by the oracle, B+
ora and B−ora , respectively. Notice that

we impose the condition N < |Baut|. Indeed, if N ≥ |Baut| (this happens when, for instance,

Baut = ∅) the algorithm will not terminate. In this case, however, we do not need to do sampling,

as the whole answer can be evaluated with the help of the oracle. This process also results in

numbers r and s, and sets B+
ora and B−ora defined similarly as before.

Algorithm 1: Estimation of Trust: Sampling with Replacement
Input: N {maximum number of oracle calls}, N ≥ 0
Input: B = B+

aut ]B−aut ]Baut {answer}, N < |Baut|
r ← 0, s← 0, n← 0
B+

ora ← ∅, B−ora ← ∅
while n ≤ N do

select randomlya ∈ B
ifa ∈ B+

aut ora ∈ B+
ora then

r ← r + 1
else ifa ∈ B−aut ora ∈ B−ora then
s← s+ 1

else if oracle’s answer to “a ∈ ext∗i (c)?” is yes then
r ← r + 1, n← n+ 1
B+

ora ← B+
ora ∪ {a}

else if oracle’s answer to “a ∈ ext∗i (c)?” is no then
s← s+ 1, n← n+ 1
B−ora ← B−ora ∪ {a}

end if
end while

Output: r, s, B+
ora , B−ora

If T t(Pi, Pj , 〈c, d〉) = Beta(α, β) then we construct

T t+1(Pi, Pj , 〈c, d〉) = Beta(α+ r, β + s)

which represents Pi’s posterior belief about θ = p(ext∗i (c)|exttj(d)).

4.3.3 Update of Populated Ontologies

Going back to (4.7), the set Baut represents the actual new information peer Pi is interested in.

If B+
ora and B−ora are returned by Algorithm 1 then

Baut = B+
ora ]B−ora ]Bora

The setB−ora is just discarded, whereasB+
ora andBora can be added to extti(c) to form extt+1

i (c).

We define

ext
t+1
i (c) = ext

t
i(c) ∪B+

ora (4.8)
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The set Bora, in turn, represents the set of new instances Pi is not completely sure about.

Whether to add this set or not it depends on the new computed trust value:

ẽxt
t+1
i (c) =

{
ẽxt

t
i(c) ∪Bora if t̂rust

t+1
(Pi, Pj , 〈c, d〉) ≥ λtrust

ẽxt
t
i(c) otherwise

(4.9)

where λtrust ∈ [0, 1] is a threshold of trust (for instance, λtrust = 0.75).

In order for Ot+1
i to be a populated ontology, though, any instance added to the extension of c

must also be added to the extension of any superclass of c. If c′ ∈ Ci is such that c ≤ c′ then

ext
t+1
i (c′) = ext

t
i(c
′) ∪B+

ora

Notice that we proceed to this inference only for the instances that peer Pi are 100% sure of.

By construction, Ot+1
i turns out to be a populated ontology. This explains how the sequence

advanced in (4.3) is built.

Provenance-based trust aggregation. Some of the instances added to ẽxt
t
i(c) to form

ẽxt
t+1
i (c) may be later again received (or have already been received) by Pi as part of answers

to queries posed to other peers. These peers can be trusted by Pi in different levels. Keeping

the peer provenance of the instances that are not 100% sure to be satisfactory for the class c

in Pi allows us to combine the corresponding trust values to estimate the probability of these

instances to be satisfactory. The following definition of provenance takes into account that trust

values evolve over time, which may lead to discarding instances (as explained below).

Definition 4.6. Let a ∈ Iti be an instance included in Pi’s populated ontology Oti . The

provenance of a at time t according to Pi, denoted by provti(a), is a set of pairs 〈Pj , dj〉,
where dj is a class of Pj’s ontology, computed recursively as follows:

• IfPi receives extsj(dj) fromPj as an answer to a query anda ∈ extsj(dj) then provs+1
i (a) =

provsi (a)∪{〈Pj , dj〉} unless provsi (a) is not defined in which case provs+1
i (a) = {〈Pj , dj〉}.

• If Pi receives extsj(dj) from Pj as an answer to a query and a 6∈ extsj(d) but 〈Pj , dj〉 ∈
provsi (a) then provs+1

i (a) = provsi (a) \ {〈Pj , dj〉}.

The idea behind provenance is that, if

provti(a) = {〈Pj1 , d1〉, 〈Pj2 , d2〉, . . . , 〈Pjm , dm〉} (4.10)

then, as far as Pi is aware,a ∈ exttjk(djk) for each k = 1, . . . ,m.
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Now, if a ∈ ẽxtti(c), we can use (4.10) to estimate the probability of a to be satisfactory. The

idea is to aggregate the values

t̂rust
t
(Pi, Pj1 , 〈c, dj1〉), t̂rust

t
(Pi, Pj2 , 〈c, dj2〉), . . . , t̂rust

t
(Pi, Pjm , 〈c, djm〉)

One possibility is to consider the mean:

p =
1

m

m∑
k=1

t̂rust
t
(Pi, Pjk , 〈c, djk〉)

but other aggregation functions (e.g. the min or max) can be considered.

From here on, we will speak of satisfactory instances if we want to refer to instances of the

subset extti(c), whereas the instances of ẽxt
t
i(c) will be referred to as satisfactory instances with

degree p.

Discard of instances. Instances added to populated ontologies due to wrong trust decisions

might be later discarded when updating trust: if a is a satisfactory instance in ẽxt
t
i(c) with

degree p, and it happens that p is lower than a given threshold of discard λdiscard ∈ [0, 1] thena

is removed from ẽxt
t
i(c). This justifies the second bullet of Definition 4.6.

4.3.4 Use of Trust

We use trust for guiding query answering process as follows. Each time t peer Pi has to choose

among the set

P0 = {〈Pj , dj〉 : Pj ∈ ACQ(Pi) and dj ∈ Oj}

which acquaintance to query for getting new instances for its class c, Pi will opt for 〈Pj0 , dj0〉
such that

t̂rust
t
(Pi, Pj0 , 〈c, dj0〉) = max

〈Pj ,dj〉∈P0

{t̂rust
t
(Pi, Pj , 〈c, dj〉)} (4.11)

4.4 Experimentation and Evaluation

This section reports on an experimental campaign conducted with the aim at studying (i) the

convergence of trust, and (ii) the gain in the quality of peers’ answers — measured with precision

and recall — when query answering is guided by trust. Specifically, we were interested in

assessing the impact of parameters such that (a) number of peers, (b) quality of initial alignments

and (c) thresholds of trust. For this, we have designed a P2P semantic bookmarking system

representative of the convergence of the semantic web and social networks.
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In what follows we first explain the experimental design (Section 4.4.1) and then summarize and

analyze the results of the experimentation (Section 4.4.2).

4.4.1 Experimental Design

Some of the components of the semantic P2P bookmarking networks are generated automat-

ically. This is the case of the topologies of the underlying networks of peers (denoted by

〈P, ACQ〉 in our model of trust) once the number of peers is specified (Section 4.4.1). How-

ever, we have decided to build semi-automatically 5 ontologies of topics (Oi in the model) to be

used in any generated network (Section 4.4.1). The construction of these ontologies is based on

the choice of a list of homonyms, which are part of the leaves in the ontologies, as homonymy

is still a Gordian knot for ontology matchers. The rest of classes are extracted from the tax-

onomy of categories of Wikipedia. Each class is populated with all the URLs associated with

its correspondent Wikipedia category, and others returned by Google, to form the 5 reference

populated ontologies (O∗i ) (Section 4.4.1). When a P2P network is generated each peer is ran-

domly assigned one of the 5 ontologies, which is populated (Oi) by removing instances from its

corresponding reference populated ontology (Section 4.4.1). Even if two peers share the same

ontology, they will share few instances before the interaction begins. All the 5 ontologies have

been aligned by using state-of-the-art matchers (Section 4.4.1). The quality of the resulting

alignments (Aij) is measured on the basis of reference alignments computed manually. At the

end of the section we explain how we simulate query answering in the networks (Section 4.4.1).

Generation of P2P networks One of the parameters of our system is the number of peers.

Once it is set, a P2P network with the number of peers specified is generated. Social bookmark-

ing networks are a particular case of social networks, and, since social networks are well-known

to exhibit small-world characteristics [51], we only generate networks with small-world topolo-

gies. We do so by running Kleinberg’s algorithm included in the JUNG Java library.2 This

algorithm takes as an input an integer (whose square root is required to be an integer too) to be

the total number of peers in the network. In our experiments we set this parameter to k2 with

k = 5, 10, 15, 20, 30.

Construction of the ontologies As hinted before, we have built 5 ontologies of topics in a

semi-automatic manner. First, we selected a list of homonyms. For instance, “Paris” as the

capital of France, a film, the mythological figure, and a genius of flowering plants; or “Interpol”

as the police organization and an American indie rock band. Second, we looked up for the cat-

egories of these homonyms in the taxonomy of categories of Wikipedia and manually extracted
2http://jung.sourceforge.net

http://jung.sourceforge.net
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FIGURE 4.2: Ontology of cinema and music.
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FIGURE 4.3: Ontology of cities and music.

some of their super-categories to construct the ontologies in a natural way. The homonyms are,

thus, leaves (classes without proper sub-classes) of the ontologies. Two of the resulting ontolo-

gies are shown in Figure 4.2 and Figure 4.3. Any peer using the first one is interested in the

topics of cinema and music, while the second is used by peers interested in cities and music.

Notice that the classes Paris and Rome bring about homonymy between the two ontologies.

Construction of the reference populated ontologies Each class of the 5 ontologies has been

populated with URLs to form the reference populated ontologies. For this, we used the URLs

of the web pages associated to the Wikipedia category of each class, and also others returned by

Google. These were duplicated (but expressed in a way that they remain syntactically different)
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Matcher Precision Recall F-measure
TaxoMap 0.7 0.7 0.7

Falcon 0.6 0.7 0.6461
Aflood 0.5 0.9 0.6428
Aroma 0.3 0.8 0.4363

Random 0.03 0.2 0.0521

TABLE 4.1: Evaluation of the matchers’ alignments.

so as to ensure that the most specific classes (the leaves) have each one of them 50 instances at

least, as well as each ontology 1000 instances at least.

Construction and peer assignment of initial populated ontologies Once a network of peers

is generated, each peer is randomly assigned one of the 5 ontologies of topics. This is populated

by removing instances from its corresponding reference populated ontology. The proportion of

instances taken from each class is another parameter of our system. This process results in the

construction of the initial populated ontologies. The idea is that, even if two peers share the

same ontology of topics, they will share few instances before the interaction begins. In all our

experiments this parameter was set to 10%.

Construction of initial alignments For the generation of initial alignments, we have chosen 4

matchers that regularly participate in OAEI [26] and launched them with the ontologies of topics.

We have built reference alignments manually to evaluate the quality of the resulting alignments.

Remember that reference alignments are taken as the preferred alignments (in practice given by

domain experts) and that they are not known by peers. Table 4.1 shows the values of precision,

recall and F-measure, on average, of the matchers’ alignments with respect to the reference

alignments. All of them are unsound and incomplete, which justifies the need of trust. As an

example, Paris and Rome as cities happen to be identified with Paris and Rome as films,

respectively. The matcher used is a parameter of our system that can be set to TaxoMap, Falcon,

Aflood or Aroma. It can also be set to Random, which randomly assigns a class of one ontology

to each class of the other, and identifies them via equivalence. The Random matcher serves as a

baseline in our experiments.

Simulation of query answering For simulating query answering, we follow the discrete-

event simulation approach [61], in which each event occurs at an instant in time and marks a

change of state in the system. In our particular case, the state of the system is the list of all

trust values, and an event embodies the process of randomly choosing a peer Pi in the network

and a class c ∈ Ci of its ontology, querying its acquaintances about this class via reformulation,

and processing their answers and updating trust. Without loss of generality, we only select, for

both querying and query reformulation, the classes included in the correspondences returned by
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Parameter Description
Npeers ∈ N number of peers in the network
Nqueries ∈ N minimum number of queries per class and peer
Poracle ∈ [0, 1] maximum proportion of the sample about which the oracle can be called when

estimating trust
Pinitial ∈ [0, 1] proportion of instances of the reference populated ontologies included in the ini-

tial populated ontologies
λtrust ∈ [0, 1] threshold of trust
λdiscard ∈ [0, 1] threshold to discard instances
matcher matcher used to compute initial alignments

TABLE 4.2: Parameters of our simulations.

the ontology matchers. As a parameter of our system, we consider, instead of the number of

simulation steps, the minimum number of queries per class and peer. Once this parameter is set

to a value, each simulation is interrupted at the first time t in which this value is exceeded.

In order to evaluate the gain in the quality of peer answers when query answering is guided

by trust, we compare two different scenarios: a naive scenario in which each peer adds to its

populated ontology all the answers to its queries, and a trust-based scenario in which answers

are added on the basis of trust. More specifically,

• in the naive scenario, if Pi and c ∈ Ci are selected at time t, and Pj is an acquaintance of

Pi for whom there exists d ∈ Cj such that 〈c, d,=〉 or 〈c, d,>〉 is in Aij , then exttj(d) is

added to extti(c);

• while in the trust-based scenario, exttj(d) is added only if the estimation of trust is above

a threshold as explained in Section 4.3.2:

t̂rust
t
(Pi, Pj , 〈c, d〉) ≥ λtrust

The threshold of trust is another parameter of our simulations.

One of the key components of the estimation of trust is the user feedback or oracle calls. In

Algorithm 1 an oracle is supposed to give a yes/no response to the question “a ∈ ext∗i (c)?”

where a is in a sample taken from Pj’s answer exttj(d). In our simulations this is done by

simply looking into the reference populated ontology O∗i . As a parameter of our system, we

also consider the maximum number of oracle calls permitted. Table 4.2 summarises all the

parameters described so far and their abbreviations. The list is completed with the threshold to

discard instances λdiscard (see Section 4.3.3).
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4.4.2 Experimental Results

We have conducted an experimentation with the aim at studying first the convergence of trust,

and second the gain in the quality of peer answers when query answering is guided by trust.

Moreover, we have performed a number of experiments to measure the impact of parameters

such that the number of peers, the quality of initial alignments, and the thresholds of trust. In

Section 4.4.2 we show and explain the results concerning the convergence of trust, whereas in

Section 4.4.2 we present the results regarding the gain in query answering by using trust.

Convergence of trust In order to test the convergence of trust, we have to check that for each

Pi, Pj ∈ P such that 〈Pi, Pj〉 ∈ ACQ, and c ∈ Ci and d ∈ Cj for which there exists a relation

R with 〈c, d,R〉 ∈ Aij , the sequence

{t̂rust
t
(Pi, Pj , 〈c, d〉)}t∈N

is convergent. The natural limit is

trust∗(Pi, Pj , 〈c, d〉) =def p(ext
∗
i (c)|ext∗j (d)) =

|ext∗i (c) ∩ ext∗j (d)|
|ext∗j (d)|

Therefore, alternatively, we can check that the sequence {∆t(Pi, Pj , 〈c, d〉)}t∈N where

∆t(Pi, Pj , 〈c, d〉) = |t̂rust
t
(Pi, Pj , 〈c, d〉)− trust∗(Pi, Pj , 〈c, d〉)|

converges to 0.

We have checked convergence of trust experimentally. For this, we ran 50 simulations. Each

simulation stopped at t0 + 10 where t0 ∈ N was the first instant of time (number of queries) for

which ∆t(Pi, Pj , 〈c, d〉) < 0.001 for every t ∈ [t0, t0 + 10] and Pi, Pj and 〈c, d〉 as specified

above. The average t0 over the 50 simulations was t0 = 40. In all the simulations, matcher was

set to TaxoMap, which is the matcher with best F-measure value on the initial alignments (see

Table 4.1) and Npeers = 100, Poracle = 0.15, Pinitial = 0.1 and λtrust(= λdiscard ) = 0.5.

We have performed three experiments to evaluate the impact of number of peers (Exp. 1), thresh-

olds of trust (Exp. 2) and quality of initial alignments (Exp. 3) on the speed of convergence of

trust. Table 4.3 includes the values given to the parameters in each experiment. We ran 50 sim-

ulations with each parameter configuration. Notice that we let Npeers , λtrust(= λdiscard ) and

matcher vary, respectively, in Exp. 1, Exp. 2 and Exp. 3, whereas Nqueries = 30, Poracle = 0.15

and Pinitial = 0.1 in all the experiments. In Exp. 1 and Exp. 2, matcher was set to TaxoMap.

The thresholds of trust were set to 0.5 in Exp. 1 and Exp. 3, while the number of peers was

set to 100 in Exp. 2 and Exp. 3. The same parameter configurations were used in analogous
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Parameter Exps. 1 & 1’ Exps. 2 & 2’ Exps. 3 & 3’
Npeers 25, 100, 125,

400, 625, 900
100 100

Nqueries 30 30 30
Poracle 15% 15% 15%
Pinitial 10% 10% 10%
λtrust = λdiscard 0.5 0.2, 0.4, 0.6, 0.8 0.5
matcher TaxoMap TaxoMap Reference, Random,

Aroma, TaxoMap,
Falcon, Aflood

TABLE 4.3: Values of the parameters in the experiments of convergence of trust and gain in
query answering by using trust.

experiments Exp. 1’, Exp. 2’ and Exp. 3’ concerning the study of the gain in the quality of peer

answers when using trust (Section 4.4.2).

For each experiment, we recorded the average ∆t(Pi, Pj , 〈c, d〉) over the 50 simulations of each

parameter configuration. We focus on results concerning pairs of classes for which the speed of

convergence is slower since the impact of the parameters is more evident. This “worst case” is

represented by the homonymous classes Paris with five different meanings, as no matcher was

able to overcome this homonymy problem. Thus, we look at the average

∆t(Paris) =
1

|ACQParis|
∑

〈i,j〉∈ACQParis

∆t(Pi, Pj , 〈Paris,Paris〉)

where ACQParis = {〈i, j〉 ∈ ACQ : 〈Paris,Paris〉 ∈ Aij}.

Figure 4.4 shows the results of Exp. 1. We can see that the number of peers actually has no

significant impact on the speed of convergence. Further, note that only 10 queries are necessary

for ∆t(Paris) < 0.1. This may be explained by the underlying small-world topology of the

network.

Results of Exp. 2 are shown in Figure 4.5. We can see that the thresholds of trust have an

influence on the speed of convergence of trust: the lower they are, the slower convergence is.

The reason behind this is that with low thresholds of trust even trustworthy peers are likely to

accept unsatisfactory instances, which require time to be discarded, and until this happens trust

values diverge.

Results of Exp. 3 are presented in Figure 4.6. Recall that we concentrate on the homonymous

classes Paris. The initial alignments appear in the legend of Figure 4.6 in order of descending

F-measure according to Paris. We can see that this order is preserved for convergence of trust:

the higher the F-measure an initial alignment has, the faster convergence is. The extreme case is

that of the reference alignment with which convergence is reached from the very first query.

We also have performed experiments to assess the impact on convergence of trust of the pro-

portion of instances of peers’ reference populated ontologies included in their initial populated
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FIGURE 4.4: The number of peers has no significant impact on the speed of convergence.

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

$" %" &" '" (" )" *" +" ," $!"$$"$%"$&"$'"$("$)"$*"$+"$,"%!"%$"%%"%&"%'"%("%)"%*"%+"%,"&!"&$"&%"&&"&'"&("&)"

λtrust = λdiscard = 0.2

λtrust = λdiscard = 0.4

λtrust = λdiscard = 0.6

λtrust = λdiscard = 0.8

∆
t
(P

ar
is
)

t = number of queries

Impact of thresholds of trust on convergence of trust
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ontologies, and the maximum proportion of the samples of peers’ answers to be processed by

an oracle — denoted by Pinitial and Poracle in Table 4.2. The higher Pinitial or Poracle are, the

faster convergence of trust is. This is not surprising since, the higher Pinitial or Poracle are, the

more instances peers are 100% sure of, which allows to make better estimations of trust.

Gain in the quality of peer answers when using trust In order to assess the gain in the

quality of peer answers when query answering is guided by trust, we have compared a trust-

based scenario with a naive scenario (see Section 4.4.1). This gain is measured with standard

precision, recall and F-measure: if c is a class of Pi’s ontology then

precisionti(c) =
|extti(c) ∩ ext∗i (c)|

|extti(c)|
recall ti(c) =

|extti(c) ∩ ext∗i (c)|
|ext∗i (c)|
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FIGURE 4.6: The higher the F-measure an initial alignment has, the faster convergence is.

and F-measure is the harmonic mean of precision and recall.

We ran 50 simulations of the two scenarios and recorded in each of the cases precisionti(c) and

recall ti(c) for every class c of each peer Pi’s ontology. As in the case of convergence of trust,

in all the simulations matcher was TaxoMap and Npeers = 100, Poracle = 0.15, Pinitial = 0.1

and λtrust(= λdiscard ) = 0.5. The average precision and recall over all classes and peers in the

generated network in the trust-based scenario after 5 queries were, resp., 0.99 and 0.68 while in

the naive scenario were 0.80 and 0.75. We can confirm that precision is higher in the trust-based

scenario. Yet, precision is not low in the naive scenario. The reason is that TaxoMap only made

mistakes when matching homonymy classes.

We have also performed experiments with the aim to evaluate the impact of number of peers

(Exp. 1’), thresholds of trust (Exp. 2’), together with the quality of initial alignments (Exp. 3’),

on the quality of peer answers when using trust. We ran 50 simulations of the trust-based sce-

nario with each parameter configuration as specified in Table 4.3. Regarding the experimental

results, we focus on the class Paris which, as argued before, is the “worst case” in our set-

ting. Specifically, we show the average of precision, recall and F-measure over all peers whose

ontologies contain the class Paris. For instance, in the case of precision we compute

precisiont(Paris) =
1

|PParis|
∑

i∈PParis

precisionti(Paris)

where PParis = {i ∈ P : Paris ∈ Oi}.
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FIGURE 4.7: The number of peers has no significant impact on F t(Paris).

Figure 4.7 shows the F-measure values in Exp. 1’. Again, we can see that the number of peers

have no impact on the gain in query answering.

Figures 4.8 and 4.9 show, resp., precision and recall in Exp. 2’. We can see that low thresholds

of trust ensure high recall but a high number of queries is needed to obtain high precision. On

the contrary, high precision is guaranteed with high thresholds of trust at the expense of low

recall. The extreme case is λtrust = λdiscard = 1 with which peers do not accept any answer.

Since our approach is based on bayesian inference, trust might be very close but never equal to

1. In practice, high and low thresholds of trust can be used to model peers with restrictive and

open behavioral, respectively.

Figure 4.10 shows the F-measure values in Exp. 3’. As in the case of trust convergence, the

higher the F-measure an initial alignment has, the higher F t(Paris) is.

To conclude this section, we also have performed experiments to assess the impact on the quality

of peers’ answers of the proportion Pinitial of instances of peers’ reference populated ontologies

included in their initial populated ontologies, and the maximum proportion Poracle of the sam-

ples of answers to be processed by an oracle. As expected, the higher Pinitial or Poracle are, the

higher F t(Paris) is.

4.5 Conclusions and Related Work

In the most general form, trust is seen as a “method for dealing with uncertainty” [56]. In this

chapter, we have presented a novel approach to trust in the context of networks of ontologies
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FIGURE 4.8: The higher thresholds of trust are, the higher precisiont(Paris) is.
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FIGURE 4.9: The lower thresholds of trust are, the higher recall t(Paris) is.

and alignments. Since ontology matchers may fail in computing sound and complete alignments

between peers’ ontologies, query translation based on alignments may lead to answers which are

uncertain to be satisfactory. Our mechanism of trust can be used by peers to find the peers in the

network that are better suited to answer their queries

This work falls into the intersection of two active research areas in the context of the semantic

web, namely, trust and ontology matching. Below we summarize related work in both areas.
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FIGURE 4.10: The higher the F-measure an initial alignment has, the higher F t(Paris) is.

4.5.1 Trust

Trust decisions need to be made in many different scenarios of computer science, e.g. concern-

ing the reliability of a computer network, the fulfillment of an e-commerce transaction, or the

accuracy of some information on the web. According to Artz and Gil [9], though, there is a

unifying theme: “trust is only worth modeling when there is a possibility of deception, that is,

when there is a chance of a different outcome than what is expected or has been agreed upon”.

In the context of the semantic web, trust is taken as a necessary condition to assimilate knowl-

edge coming from ontologies, rules and proofs [15]. The semantic web, just as the web, is an

open environment without norms where the quality of the information a source may offer is

not guaranteed. Trust mechanisms are aimed at assisting agents to choose services or informa-

tion sources when performing a task, and automated reasoners to discriminate between different

information sources when answering query. In this section we report, in the presence of com-

prehensive surveys such that [9, 41, 59, 62], a number of these mechanisms and relate them with

our approach.

Most research on trust and reputation focuses on decentralized solutions where individuals,

peers, agents are empowered to take trust decisions rather than relying on a centralized pro-

cess. Furthermore, trust is commonly agreed to be subjective, so that trust towards a particular

entity may differ from one entity to another. In line with this, Richardson et al. [60] have

proposed a generalization of the algorithm PageRank [22] to the semantic web. The aim is to

establish degrees of belief in statements asserted by one or more sources, and the assumption is

that a user’s belief in a statement depends on her trust in the sources providing it. The authors
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conceive a web of trust in which each user provides personal trust values for a small number of

other users. The proposed algorithm finds paths from a user and every user with a personal belief

in the statement in question. Then, it concatenates the trust values along each path to obtain rec-

ommended believes in the statement. All these resulting values are aggregated to obtain a final

degree of belief of the statement. Richardson et al. do not go into detail about what statements

and trust values represent. In our approach, we specifically address the problem of semantic

heterogeneity. Statements are of the form “an instance a is satisfactory”, and trust values es-

timate the quality of query translations modeled as conditional probabilities. Concatenation of

trust values cannot be applied as transitivity does not hold for probabilistic subsumptions. For

this reason, only paths of length 1 are considered. Our aggregation function, though, resembles

that of Richardson et al. Moreover, we also consider the possibility of using different functions

(maximum, minimum, mean).

Some existing approaches to trust take into account the context in which trust judgements are

to be made. This is the case of Abdul-Rahman and Hailes’ approach [1], in which trustwor-

thiness of agents is determined on the basis of agents’ collected statistics on direct experiences

(direct trust), as well as recommendations from other agents (recommender trust). Both direct

and recommender trusts are given within a certain context. Using the example given by the

authors, Alice may trust a specific agent Bob the Mechanic in the specific context of servic-

ing her car but not in the context of babysitting her children. Abdul-Rahman and Hailes models

context as an unstructured set. Alice’s two trust judgements, e.g. can be represented by the pred-

icates t(Bob the Mechanic,Car Repairing, t) and t(Bob the Mechanic,Babysitting, u) in

which t and u stand for ‘trustworthy’ and ‘untrustworthy’, respectively. In our case, context de-

pendency is realized in terms of query translations. For example, in the setting of the presented

experimentation, it may happen that trust t(Pi, Pj , Interpol) is above the threshold of trust while

trust t(Pi, Pj ,Paris) is below the threshold.

There exist many approaches that resort to probability theory to model trust and that propose

Bayesian inference for estimating trust values. One of the earliest is Mui et al.’s approach [50].

In this model, trust is defined as a subjective expectation an agent has about another’s future

behavior based on the history of their encounters, which are of a dyadic nature (either cooper-

ative or not). In mathematical terms, trust is defined as the expected value of the proportion of

encounters which are cooperative, modeled as a Beta distribution, and updated whenever new

encounters occur. In Mui et al.’s work, as in most of the Bayesian models of trust, the lack of pre-

vious encounters is modeled with a uniform distribution, which typically represents ignorance

of prior probabilities. However, in our approach the lack of direct experience is compensated

with the information provided by alignments, as we build informative prior distributions based

on the correspondences of the alignments between peers’ ontologies.
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Provenance refers to the origins of something. For the W3C Provenance Working Group, prove-

nance records “contain descriptions of the entities and activities involved in producing and de-

livering or otherwise influencing a given object”.3 Golbeck has proposed an approach that uses

provenance and trust for filtering semantic web content in social networks [32]. First, an al-

gorithm infers trust relationships between individuals. This algorithm uses provenance of trust

annotations to compute more accurate trust values based on the idea of transitivity of trust.

Then, trust values are used in conjunction with provenance of statements to filter content to

users. In our approach the provenance of an instance is not global, but it depends on each peer,

and represents a peer’s knowledge about the instance belonging to which other peers’ populated

ontologies. Provenance allows us to compute the probability of instances to be satisfactory.

4.5.2 Ontology and Schema Matching

There exists a considerable number of ontology and schema matching systems available to-

day [27, 42]. In what follows, we review systems which share with us some features, specif-

ically, systems which return probabilistic mappings, systems which exploit user feedback, and

instance-based matching systems.

User involvement is a feature in many matching systems. A user, or a community of users,

can participate in the process of matching in different ways, for instance, by specifying system

parameters, by providing an initial alignment — which can just be a set of expected correspon-

dences — or by validating and enhancing output alignments. In Pereira et al.’s approach users

are asked to identify incorrect correspondences at a final step of the matching process [57]. The

confidence of these correspondences is then set to 0.0. This information is taken as true and can

be used in future matching operations. In this sense, users are always trusted. McCann et al.

have proposed an approach that benefits from users feedback during the matching process [47].

Users are asked simple questions with the aim at improving matching accuracy (e.g. a positive

answer to the question “is monthly-fee-rate of type DATE?” suggests the use of a specialized

date matcher for this particular attribute). Three types of questions are considered: (i) questions

to verify intermediate predictions, (ii) questions to learn domain constraints and (iii) questions

to verify final matching predictions. Unlike in Pachêco et al.’s approach, users are classified

into trusted and untrusted. To figure out whether a user is trustworthy or not, a set of evaluation

questions (from which the answers are known) is given to users. In our approach, user feedback

is used for estimating trust on peers. Users act as oracles that give a yes/no answer to ques-

tions of the form “is a an instance of class c?”. Users are trusted and their answers are always

considered to be true.
3http://www.w3.org/2011/prov/wiki/.
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Different probabilistic approaches have been applied to ontology and schema matching, such

as Bayesian networks [49], Markov networks [8], or Markov logic networks [55]. Mitra et al.

has proposed the use of Bayesian networks to derive new correspondences from a set of initial

correspondences (typically given by an expert or an automatic tool) [49]. A Bayesian network is

built with the help of meta-rules which express how initial correspondences affect other corre-

spondences. These meta-rules are based on the semantics of the languages of the ontologies to

be aligned. An example of a meta-rule is “if two properties and their domains match, then, with

some certainty degree, their ranges also match”. Initial correspondences are translated into prior

probability distributions which, along with meta-rules, allow to infer probability distributions

for other correspondences. Rather than Bayesian networks, we follow a Bayesian approach to

statistical inference in order to estimate trust. Like Mitra et al. we translate correspondences

of initial alignments into prior probability distributions, which are later refined when processing

instances included in peers’ answers. For this, we profit not only from user feedback, but also

from local ontology reasoning for limiting the recourse to user feedback. Therefore, any instance

added to an ontology as a consequence of an estimation of trust affects later trust estimations

even concerning new queries since this instance will have an impact on the local ontological

reasoning carried out for these estimations.

ProbaMap is an example of an instance-based matching system [66]. This system implements

an algorithm which automatically discovers probabilistic inclusion mappings between classes

of two populated taxonomies. In order to estimate probabilities of mappings, the authors follow

a Bayesian approach to statistics which exploits content descriptions of instances categorized in

each of the taxonomies under consideration. This comes down to determining how the instances

of a class are classified in another class on the basis of their content descriptions. For this pur-

pose, different classifiers (like Naive Bayes or decision trees) can be employed. The algorithm

then returns mappings whose probability is greater than a given threshold. Monotonicity of

the probability function is critical to avoid probability estimation of as many mappings as possi-

ble. The authors consider two different instance-based ways of modeling probabilistic mappings

which guarantee monotonicity. One modelization is based on conditional probabilities, which

is the one that we also have chosen to follow. Our approach is more adapted to a peer-to-peer

setting than ProbaMap or classical instance-based matching systems. These systems very much

depend on the availability of instances to compute sound and complete alignments. Neverthe-

less, in a semantic P2P network, data is distributed among peers, and instances are gradually

acquired by peers as a result of a query-answering process. Therefore, when peers start interact-

ing initial matcher-computed alignments may be unsound and incomplete, and query-translation

based on these alignments may lead peers to populate their ontologies with unsatisfactory in-

stances. Moreover, unsatisfactory instances may be due to some sort of malicious behavior by

peers. Our approach helps to identify and discard these instances by computing their proba-

bility to be satisfactory on the basis of the trust towards the peers that provide them. In this



Chapter 4. Trust in Networks of Ontologies and Alignments 77

computation we profit from provenance information.

In general, in a highly decentralized and dynamic environment such as a peer-to-peer network,

where data is distributed among peers, and peers can join and leave the network at their will, it

is more adequate to concentrate on ontology fragments involved in queries peers are interested

in, and to identify the peers that better answer these queries — and classify them as trustworthy

peers — for future interactions, in a dynamic approach to ontology matching `a la trust. In

this way, we reduce the costly operation of matching complete ontologies whenever new data is

exchanged or new peers appear.



Chapter 5

Demo: TrustMe I got what you mean

5.1 Introduction

Virtual online communities (social networks, wikis. . . ) are becoming the major usage of the

web. The freedom they give to publish and access information is attracting many web users.

However, this freedom is filling up the web with varied information and viewpoints. This raises

important issues that concern privacy and trust. Due to their decentralised nature peer-to-peer

(P2P) systems provide a partial solution for the privacy problem: each user (peer) can keep

control on her own data by storing it locally and by deciding the access they want to give to other

peers. We focus on semantic P2P systems in which peers annotate their resources (documents,

videos, photos, services) using ontologies.

Indexing resources using the terms of an ontology enables more accurate information retrieval

and query answering than indexing by keywords of a textual annotation. In particular, it is a

way to overcome the problems raised by homonymy in classical keyword search engines. As an

example, the word “Paris” corresponds to (at least) four meanings: a city, a film, a mythological

figure, and a genus of flowering plants. Classical keyword search engines such as Google or

Yahoo! returns to a keyword query “Paris” a mixture of web pages referring to its different

meanings. In contrast, using as query interface an ontology in which a class named “Paris” is a

subclass of a class named “Capitals” would remove the ambiguity on the interest of a user if she

clicked on that particular class.

In semantic P2P systems, every peer is autonomous and free to organise her local resources as

instances of classes of her own ontology serving as a query interface for other peers. Align-

ments between ontologies are required to reformulate queries from one local peer’s vocabulary

to another. Currently there exists a considerable amount of matchers available for computing

78
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alignments automatically. Nonetheless, automatic matchers may fail to compute sound and com-

plete semantic alignments, and thus making query reformulation not fully reliable. Still a trust

mechanism can help peers to find the most reliable sources of information within the network.

This demo builds on the trust mechanism presented before in Chapter 4. Specifically, this mech-

anism allows to estimate the probability that a peer will provide a satisfactory answer to a query

posed by another peer. This probability is taken as the trust that the addressing peer has towards

the addressed peer, and it is subject to the posed query. Unlike other existing approaches to trust,

unsatisfactory answers are seen as the result of peers’ incapacity to understand each other. Trust

values are refined over time as more queries are sent and answers received in a Bayesian learn-

ing process in which alignments are used to build initial prior distributions. As a by-product

this trust mechanism provides the means to rank, in the scope of a particular class of a peer’s

ontology, the set of received instances according to their probability to be satisfactory. For this,

a function aggregates the trust values of all the peers that returned these instances.

5.2 Goals of the Demo

TrustMe demonstrates the use of our trust mechanism, presented in Chapter 4, for guiding query

answering in semantic P2P social communities. Our view is that semantic P2P social commu-

nities illustrate the evolution of the semantic web towards a social web. We have decided to

reproduce this vision via a semantic P2P bookmarking network in which peers exchange URLs

of articles (web pages) about the topics they are interested in. Unlike current bookmarking

systems (e.g. Delicious), in this ideal P2P bookmarking network, information is no longer cen-

tralised, and peers need to query other peers to gather new articles. Each peer uses her own

taxonomy of categories for tagging articles. These taxonomies can be seen as ontologies so that

each category C in a peer P ’s taxonomy is a class whose instances are URLs of articles initially

indexed by C or by a subcategory (subclass) of C in the taxonomy. Then the set of instances of

C can be gradually enriched by adding instances of classes D that belong to the taxonomies of

P ’s acquainted peers and that happen to be aligned with C.

In this demo we highlight the gain in the quality of peers’ answers —measured with precision

and recall—when the process of query answering is guided by out trust mechanism presented

in Chapter 4. In particular, we show how trust overcomes the problem of homonymy, still

a constant battle for ontology matchers. Further, a trust-based ranking of instances allows to

distinguish those that are relevant to a class from those related to its homonymous classes.
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5.3 Setting Up the P2P Bookmarking Scenario

Below we explain the generation of the taxonomies we have used for the semantic P2P book-

marking scenario, the alignments between these taxonomies, and the topology of the network.

Taxonomy Generation. First, we selected a number of homonyms (e.g. “Paris” and “Rome”)

in different topics (e.g. cinema and cities). These homonyms are the names of some of the most

specific classes (the leaves) of the peers’ taxonomies. We built up the rest of the taxonomies

manually by looking up for Wikipedia categories organised in super-category and sub-category

relations. In total, 5 taxonomies were generated. For example, one of the taxonomies is used by

peers interested in cinema and music, and contains a category “Paris” which corresponds to a

film. Another taxonomy is used by peers interested in cities and music, and contains a category

“Paris” corresponding to the capital of France.

Alignment Generation. For generating alignments, we chose four matchers that regularly

participate in OAEI [26] and launched them with the peers’ taxonomies. From the resulting

alignments, we selected the ones with best F-measure values according to manually computed

reference alignments.

The selected alignments happened to be both unsound and incomplete. In particular, matchers

did not get over the homonymy of the taxonomies. For instance, the class Paris corresponding

to a film was aligned with the class

Network Generation. Social networks are well-known to exhibit small-world characteristics.

In the demo we generate small-world topologies that contain up to 1000 peers. Each peer is

randomly associated with one taxonomy to reproduce the fact that acquainted peers may or not

share the same topics of interest.

Taxonomy Population. For each category/class of each taxonomy we first built a reference

set made up of the URLs of all the category’s associated articles in Wikipedia, and other related

articles returned by Google that are manually checked to be relevant. Then, we populate each

peer’s “copy” of the category by selecting randomly an initial set that contains 10% of the

reference URLs. URLs in this initial set are the only URLs that are known for the peer while

the reference set is not known for the peer and it is used only for evaluating the results and to

simulate the user feedback. In order to ensure that every leaf had 50 articles at least, we had to

duplicate the web pages of the starting set (although they were identified with different URLs).

This also guaranteed that each peer’s taxonomy had at least 1000 articles.
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FIGURE 5.1: A snapshot of the Main screen of TrustMe

5.4 TrustMe

In TrustMe we compare two scenarios: a naive scenario in which peers query all their acquain-

tances through query reformulation based on alignments, and a trust-based scenario in which

peers compute trust values using our trust mechanism, presented in Chapter 4, and only accept

answers from their trustworthy acquaintances. More specifically, if a peer Pi is interested in

gathering new articles about a topic specified by the category C in her taxonomy at time t,

• in the naive scenario, if the correspondence 〈C,D,=〉 is in the alignment between Pi’s

and Pj’s taxonomies, Pi will send the query Q = D(X)? to Pj , and Pj’s answer will be

added to Pi’s taxonomy, but

• in the trust-based scenario, Pj’s answer will not be added unless the trust that Pi has

towards Pj w.r.t the translation 〈C,D〉 at t, is greater than a given trust threshold.

To compare the two scenarios we use precision and recall. Moreover, we evaluate the probability

of articles to be relevant to the categories they belong to. This provides the means for ranking

articles within categories.

When TrustMe is lunched the main screen depicted in Figure 5.1 appears to the user. Using

this screen the user can set up the values of several parameters: number of peers, trust threshold
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FIGURE 5.2: Snapshot showing the topology of a generated network with 16 peers.

and the size of the samples used when performing Bayesian learning in our trust mechanism,

presented in Chapter 4, and the minimum number of generated queries during the simulation per

class and peer.

After setting-up the required parameters the user should press the ”Generate Network” button

to generate the semantic P2P network. TrustMe shows the topology of the generated network to

the user as depicted in Figure 5.2 if the number of peers is less than 50.

Pressing the play button runs the demo until the correspondences of all the alignments in the

network are randomly selected a desired number of times set by the user in the “NB. Queries

per Class” field. Figure 5.3 shows a snapshot of TrustMe when the user chose one peer from

the network after running the demo. It shows the returned ranked results of querying the peer’s

neighbours about a category. More specifically, it presents the added articles to Paris, the capital

of France, in the taxonomy of the chosen peer in both scenarios (trust based scenario’s results

are in the upper left while the naive scenario’s results are in the lower left). We clicked on one

of the trust based results and one of the naive ones. The former resulted in the Wikipedia article

of Paris, and the latter in the Wikipedia article of the film “Paris”. Also, the demo shows the

trust values over time peer has towards her neighbours in the upper right graphics. The graphics

shows 2 trustworthy neighbours against 3 untrustworthy ones. In the lower right of the screen

the demo shows the precision and recall for that particular peer in both naive and trust-based

scenario.
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FIGURE 5.3: Snapshot showing the added articles in Paris city class of one peer’s taxonomy.

Table 5.1 presents the average values of precision and recall for classes about four meanings of

Paris in the two scenarios. These means were computed over the set of all peers sharing each

of the meanings. To compute them we used the values: number of peers = 100, threshold =

0.7, size of the samples=15%. We ran until the correspondences of all the alignments in the

network were selected randomly 5 times. The results show that our trust mechanism, presented

in Chapter 4, guarantees high precision. On the other hand, as one could expect, recall is higher

in the naive scenario.

Trust Scenario Naive Scenario
category/class Precision Recall Precision Recall

Paris (city) 88% 64% 48% 96%
Paris (film) 85% 80% 27% 100%
Paris (mythology) 100% 66% 14% 98%
Paris (plant) 80% 97% 16% 100%

TABLE 5.1: Comparing Precision and recall averaged values for Paris homonyms.
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Chapter 6

Conclusion and Future Works

In this thesis we have addressed two main research problems in the Semantic Web: the data

linkage problem in the setting of Linked Data and the problem of modeling and computing trust

in Semantic P2P Networks. In this chapter we give a summary of the primary contributions of

in each of these research problems and expected future works. Figure 6.1 gives an overview of

these contributions.

FIGURE 6.1: Summary of the contributions
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6.1 Data Linkage

Data linkage is a crucial task in Linked Data. In particular, it is very important to correctly decide

whether two URIs refer to the same real-world entity or not. These two URIs may appear in two

different datasets in the Linked Data cloud or in the same dataset.

In this thesis, we have modeled the data linkage problem in Linked Data as a reasoning problem

over possibly decentralized data. This reasoning is done using logical rules that capture in a

uniform way different certain knowledge that may be available about the data. In particular,

they capture ontological constraints (e.g. functional properties, keys, . . . ), ontology alignments

and rules on the target domain.

We have described a novel import-by-query algorithm that alternates steps of sub-query rewrit-

ing and of tailored querying the Linked Data cloud in order to import data as specific as possible

for inferring or contradicting given target same-as facts. Contrarily to other existing approaches,

our approach do not do a global import (of a whole RDF graph of reference dataset in Linked

Data such as DBpedia) to complete the local data. Such full data enrichment is not feasible in

practice, as it may be very costly in terms of memory space and processing.

Experiments conducted on a real-world dataset have demonstrated the feasibility of this ap-

proach and its usefulness in practice for data linkage and disambiguation.

Furthermore, We have proposed an adaptation of our rule-based approach for data linkage to

deal with uncertain facts and rules. In this adaptation we modeled uncertainty of facts and rules

as probability values. We have proposed a fact propagation algorithm (ProbFR) that computes

not only the set of facts that can be inferred from a given set of facts and set of rules but also

their probabilistic weights. Our experiments have showed that our algorithm scales to large data

sets and produces meaningful probabilistic weights.

In addition, we have proposed an extension of our import-by-query algorithm that deals with un-

certainty called probabilistic import-by-query algorithm. It alternates steps of sub-query rewrit-

ing based on backward chaining and of external query evaluation. It returns as output not only

a (true or false) answer as its predecessor but a probabilistic weight greater than or equal to a

given threshold.

Future Works

As future works we plan to do more comprehensive experiments of our import-by-query and

probabilistic import-by-query algorithms using referenced datasets in addition to the INA dataset,

DBpedia.fr and DBpedia.org used so far (e.g. MusicBrainz, IMDB, . . . ).

Also, we plan to investigate the possible heuristics that can be used by our import-by-query and

their impact on the number of imported facts per input user’s query. In particular, the heuristic
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that is used to rank the queries produced as output by the sub-query rewriting step to submit it

to Linked Data. The heuristic we used in our experiments is based on the number of triples in

an external query. Many possible factors can be used for other heuristics (e.g. statistics about

the external datasets, the available number of facts about properties appear in the external query,

. . . ).

Furthermore, we plan to benefit from the weighted contradictory facts discovered by our prob-

abilistic algorithms to adapt the probabilistic weights attached to the uncertain facts and rules.

More precisely, it may happen the probabilistic algorithms infer two contradictory facts about

the same two entities. The first fact describes that these two entities are the same while the

other describes that these two entities are different. This means that one or several uncertain

facts or uncertain rules that lead to infer these contradictory facts are wrong. In such a case we

can suppose that the fact that has the lowest probabilistic weight among the two contradictory

facts is the wrong one. Then, we apply a “punishment” method that reduces all the probabilistic

weights of the uncertain facts and rules that lead to infer this fact.

Another future work we plan to explore is how to use our Rule-based approach for Data Fusion.

Once sameAs links are computed between URIs in a particular dataset and the entities identified

by these URIs are confirmed to represent the same real-world object, the question is how to

fusion the information attached to these entities and attach it to one representative entity in

a consistent, accurate, and useful manner. In particular, any data fusion technique available

in such a setting must be able to deal with conflicts that may appear in the descriptions of

these entities, caused by outdated information, inaccurate information or errors. The rule-based

approach can be used to solve the Data Fusion problem. An example of rules that can be used

to solve this problem is: ( IF (1) two person entities pernew, perold are identified to be the same

using owl:sameAs, (2) pernew has a particular occupation occ1 and perold has another different

occupation occ2 and (3) the fact that describes the occupation of pernew is created after the fact

that describes the occupation of perold THEN the entity efusion that merges e1 and e1 must

have the occupation occ1.

6.2 Trust in Semantic P2P Networks

We have proposed an approach for trust that is adapted to a Semantic P2P Network setting. It

exploits knowledge provided by alignments (possibly unsound and/or incomplete) together with

user feedback in order to compute and refine trust over time. In our approach trust that a peer

P1 has towards another peer P2 is subjective and depends on a specific query. It is modeled as a

random variable representing P1’s belief that answers returned by P2 are satisfactory.
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We have proposed a trust mechanism that uses alignments between peers’ ontologies to construct

prior distributions of these beliefs, from which initial values of trust are calculated. Then, it

performs Bayesian inference to build posterior distributions of peers’ beliefs from their prior

distributions and user feedback on a sample of answers.

For the evaluation of our mechanism of trust, we have designed a scenario representative of the

novel topic of social networks and the semantic web. Based on this scenario, we have built a

semantic P2P bookmarking system (TrustMe) in which we can vary different quantitative and

qualitative parameters so as to measure their influence on (i) the convergence of trust, and (ii)

the gain in the quality of peer answers — measured with precision and recall — when query-

answering is guided by trust.

Experimental results showed that trust values converge as more queries are sent and answers

received. Furthermore, the use of trust improves quality of answers in both precision and recall.

We plan to extend our model of trust in different ways. In the current version of the model, peers’

queries are not propagated. Even so, as our experimental results confirmed (see Section 4.4.2),

trust ensures reasonable high recall values. Indeed, among the instances that a peer Pi receives

from one of its trustworthy acquaintances Pj , and that Pi adds to its populated ontology, there

might be instances that Pj received from one trustworthy acquaintance Pk, also trustworthy

for Pi but not acquainted with it, and that Pj added to its populated ontology before. This,

however, would not happen if Pi considered Pj to be untrustworthy, as Pi would not accept Pj’s

instances. Thus, query propagation seems to be necessary to ensure total recall. In the case of

answers coming from propagated queries, we plan to use composition of alignments to build

prior beliefs of trust [25].

The ontologies considered in our approach are taxonomies of classes with disjointness relation-

ships, and the query language studied only allows peers to request instances of classes. We plan

to extend our model in order to deal with more expressive ontology and query languages.

In our model of trust, instances peers are not 100% sure of are attached a probability to be

satisfactory which is computed on the basis of provenance information. The provenance of

an instance a at time t with respect to a peer Pi is the set of peers that, in the light of Pi’s

past experience at time t, have a in their populated ontologies. Modeling provenance as a set

already allows us to estimate the probability of instances to be satisfactory. Specifically, the

probability of the instance a to be satisfactory is estimated with the mean of the trust values of

the peers included in its provenance set, i.e. the trust values of the peers that provided a to Pi
and that, as far as Pi is aware, have not discarded it. Using the mean to aggregate trust values is

a first solution but other possible aggregation functions can be studied (e.g. min or max values).

Moreover, provenance can be modeled in a sequential way so that it captures the “history” of
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instances (e.g. which peer provided an instance first). This may allow to identify unsatisfactory

instances more efficiently.

One of the sources of information often used to compute trust is the so-called witness informa-

tion, also known as transitivity of trust [46]. It can be summarized as follows: if Pi trusts Pj , and

Pj trusts Pk, then Pi trusts Pk. Transitivity of trust cannot be applied directly in our framework

since transitivity of logical subsumptions does not hold when these are modeled as conditional

probabilities [5]. Nonetheless, there exist alternative inference rules which could be applied in

our case. For these, it seems that Pj should act as a “witness” by providing information about

the instances she received from Pk. With the metaphor of trust, we look at semantic interoper-

ability as the result of some sort of “social” computing. Our claim is that ontology matching

is a starting point towards semantic interoperability that can be complemented with dynamic

techniques which exploit collaboration between users/agents/peers.



Appendix A

The set of rules used in the experiments

In this appendix we present certain rules that we used during our experiments.

The first set of rules depicted in Table A.1 are used to distinguish homonymous person entities

inside the INA dataset. A name of a person entity in INA dataset is expressed as a value of

the property skos:altLabel or the property skos:prefLabel. Thus, the rules r1, r2, r3

are used to identify the homonymous persons by linking them together with the property ina:

sameName. The slight differences between the two names (including difference caused by

special characters or letter cases) are tolerated using the built-in function Similar. The key

<name, birthYear, deathYear> is expressed using the rule r4 while the rules r5 and r6 express

that both birthYear and deathYear are functional properties. Our goal is to disambiguate only the

person entities that share the same name. Thus, the entities that can be disambiguated through

the rules r5, r6 are required to be homonymous.

Table A.2 are used to link using the property ina:sameNameDBp the homonymous persons in

the INA dataset to the corresponding persons in DBpedia that have similar names. The following

alignments between the INA properties and DBpedia properties are expressed in these rules:

IF THEN
r1 〈?x1,skos:altLabel , ?name1〉 , 〈?x2, skos:altLabel , ?name2〉, 〈?x1, ina:sameName , ?x2〉

Similar(?name1, ?name2, 0.99)
r2 〈?x1,skos:prefLabel , ?name1〉 , 〈?x2, skos:prefLabel , ?name2〉, 〈?x1, ina:sameName , ?x2〉

Similar(?name1, ?name2, 0.99)
r3 〈?x1,skos:altLabel , ?name1〉 , 〈?x2, skos:prefLabel , ?name2〉, 〈?x1, ina:sameName , ?x2〉

Similar(?name1, ?name2, 0.99)
r4 〈?x1, ina:sameName , ?x2〉 , 〈?x1, ina:sameAs , ?x2〉

〈?x1, ina:birthYear , ?Y 1〉 , 〈?x2, ina:birthYear , ?Y 1〉
〈?x1, ina:deathYear , ?Y 2〉 , 〈?x2, ina:deathYear , ?Y 2〉

r5 〈?x1, ina:sameName , ?x2〉 , 〈?x1, ina:differentFrom , ?x2〉
〈?x1, ina:birthYear , ?Y 1〉 , 〈?x2, ina:birthYear , ?Y 2〉
notEqual(Y 1, Y 2)

r6 〈?x1, ina:sameName , ?x2〉 , 〈?x2, ina:differentFrom , ?x2〉
〈?x1, ina:deathYear , ?Y 1〉 , 〈?x2, ina:deathYear , ?Y 2〉
notEqual(Y 1, Y 2)

TABLE A.1: The set of rules that disambiguate homonymous person inside the INA dataset
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skos:altLabel
skos:prefLabel
ina:sameName
ina:sameName
ina:sameNameDBp
skos:altLabel
skos:altLabel
ina:sameName
skos:prefLabel
skos:prefLabel
ina:sameName
skos:altLabel
skos:prefLabel
ina:sameName
ina:sameName
ina:sameAs
ina:birthYear
ina:birthYear
ina:deathYear
ina:deathYear
ina:sameName
ina:differentFrom
ina:birthYear
ina:birthYear
ina:sameName
ina:differentFrom
ina:deathYear
ina:deathYear
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IF THEN
r7 〈?x1,foaf:name , ?name1〉 , 〈?x2, skos:altLabel , ?name2〉, 〈?x1, ina:sameNameDBp , ?x2〉

Similar(?name1, ?name2, 0.99)
r8 〈?x1,foaf:name , ?name1〉 , 〈?x2, skos:prefLabel , ?name2〉, 〈?x1, ina:sameNameDBp , ?x2〉

Similar(?name1, ?name2, 0.99)
r9 〈?x1,rdfs:label , ?name1〉 , 〈?x2, skos:prefLabel , ?name2〉, 〈?x1, ina:sameNameDBp , ?x2〉

Similar(?name1, ?name2, 0.99)
r10 〈?x1,rdfs:label , ?name1〉 , 〈?x2, skos:altLabel , ?name2〉, 〈?x1, ina:sameNameDBp , ?x2〉

Similar(?name1, ?name2, 0.99)
r11 〈?x1,prop-fr:nom , ?name1〉 , 〈?x2, skos:prefLabel , ?name2〉, 〈?x1, ina:sameNameDBp , ?x2〉

Similar(?name1, ?name2, 0.99)
r12 〈?x1,prop-fr:nom , ?name1〉 , 〈?x2, skos:altLabel , ?name2〉, 〈?x1, ina:sameNameDBp , ?x2〉

Similar(?name1, ?name2, 0.99)

TABLE A.2: The set of rules that disambiguate homonymous person inside the INA dataset

IF THEN
r13 〈?x1, ina:sameNameDBp , ?x2〉 , 〈?x1, ina:sameAs , ?x2〉

〈?x1, dbpedia:birthYear , ?Y 1〉 , 〈?x2, ina:birthYear , ?Y 1〉
〈?x1, dbpedia:deathYear , ?Y 2〉 , 〈?x2, ina:deathYear , ?Y 2〉

r14 〈?x1, ina:sameNameDBp , ?x2〉 , 〈?x1, ina:differentFrom , ?x2〉
〈?x1, dbpedia:birthYear , ?Y 1〉 , 〈?x2, ina:birthYear , ?Y 2〉
notEqual(Y 1, Y 2)

r15 〈?x1, ina:sameNameDBp , ?x2〉 , 〈?x1, ina:differentFrom , ?x2〉
〈?x1, dbpedia:deathYear , ?Y 1〉 , 〈?x2, ina:deathYear , ?Y 2〉
notEqual(Y 1, Y 2)

TABLE A.3: The set of rules that disambiguate homonymous person inside the INA dataset

〈skos:altLabel, foaf:name, =〉, 〈skos:prefLabel, foaf:name,= 〉, 〈skos:altLabel, rdfs:Label, =〉,
〈skos:prefLabel, rdfs:Label, =〉, 〈skos:altLabel, prop-fr:nom, =〉, 〈skos:prefLabel, prop-fr:nom,

=〉. Similar to the rules in Table A.1 the slight differences between names are tolerated using the

built-in function Similar.

Rules that conclude the owl:sameAs and owl:differentFrom links between the entities of type

ina:PhyisicalPerson from the INA dataset and entities from DBpedia dataset are depicted in

figure Table A.3. These rules are obtained by propagating the alignments 〈ina:birthYear, dbpe-

dia:birthYear, =〉, 〈ina:deathYear, dbpedia:deathYear,= 〉 in the rules r4, r5, r6.

Inferring the owl:sameAs and owl:differentFrom links between the entities of type ina:VideoPerson

from the INA dataset and entities from DBpedia dataset is done by applying the rules depicted

in Table A.4. These rules are provided by the INA experts. They express that two homonymous

persons are the same if they played an important role (presenter, director . . . ) in the same Tv

program. In DBpedia, persons are linked to program in which they played an important role

using the property dbpedia:wikiPageWikiLink. Their particular role are rarely speci-

fied. For example, in DBpedia.fr the animator Jacques Martin appears only as the presenter of

the program ”le petit rapporteur” although he presented many other programs (e.g. ”Dimanche

Martin”, ”Ainsi font, font, font”, ”Midi-Magazine”, . . . ). For this reason, these rules do not

specify the role of the dbpedia entities in the programs.

As we explained before in Section 2.4.4, renaming technique is done for properties that are both

EDB (appears in the set of ground facts) and IDB (appears in the conclusion of the ground rules)

foaf:name
skos:altLabel
ina:sameNameDBp
foaf:name
skos:prefLabel
ina:sameNameDBp
rdfs:label
skos:prefLabel
ina:sameNameDBp
rdfs:label
skos:altLabel
ina:sameNameDBp
prop-fr:nom
skos:prefLabel
ina:sameNameDBp
prop-fr:nom
skos:altLabel
ina:sameNameDBp
ina:sameNameDBp
ina:sameAs
dbpedia:birthYear
ina:birthYear
dbpedia:deathYear
ina:deathYear
ina:sameNameDBp
ina:differentFrom
dbpedia:birthYear
ina:birthYear
ina:sameNameDBp
ina:differentFrom
dbpedia:deathYear
ina:deathYear
dbpedia:wikiPageWikiLink
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IF THEN
r16 〈?x1, ina:sameNameDBp , ?x2〉 , 〈?x1, ina:sameAs , ?x2〉

〈?v, ina:aPourPresentateur , ?x2〉 , 〈?v, ina:aPourTitreCollection , ?titre〉
〈?x1, dbpedia:wikiPageWikiLink , ?link〉 , 〈?link, rdfs:label , ?titre〉

r17 〈?x1, ina:sameNameDBp , ?x2〉 , 〈?x1, ina:sameAs , ?x2〉
〈?v, ina:aPourRealisateur , ?x2〉 , 〈?v, ina:aPourTitreCollection , ?titre〉
〈?x1, dbpedia:wikiPageWikiLink , ?link〉 , 〈?link, rdfs:label , ?titre〉

r18 〈?x1, ina:sameNameDBp , ?x2〉 , 〈?x1, ina:sameAs , ?x2〉
〈?v, ina:aPourProducteur , ?x2〉 , 〈?v, ina:aPourTitreCollection , ?titre〉
〈?x1, dbpedia:wikiPageWikiLink , ?link〉 , 〈?link, rdfs:label , ?titre〉

r19 〈?x1, ina:sameNameDBp , ?x2〉 , 〈?x1, ina:sameAs , ?x2〉
〈?v, ina:aPourChefOrchestre , ?x2〉 , 〈?v, ina:aPourTitreCollection , ?titre〉
〈?x1, dbpedia:wikiPageWikiLink , ?link〉 , 〈?link, rdfs:label , ?titre〉

r20 〈?x1, ina:sameNameDBp , ?x2〉 , 〈?x1, ina:sameAs , ?x2〉
〈?v, ina:aPourCommentateur , ?x2〉 , 〈?v, ina:aPourTitreCollection , ?titre〉
〈?x1, dbpedia:wikiPageWikiLink , ?link〉 , 〈?link, rdfs:label , ?titre〉

r21 〈?x1, ina:sameNameDBp , ?x2〉 , 〈?x1, ina:sameAs , ?x2〉
〈?v, ina:aPourAssistantRealisation , ?x2〉 ,
〈?v, ina:aPourTitreCollection , ?titre〉
〈?x1, dbpedia:wikiPageWikiLink , ?link〉 , 〈?link, rdfs:label , ?titre〉

r22 〈?x1, ina:sameNameDBp , ?x2〉 , 〈?x1, ina:sameAs , ?x2〉
〈?v, ina:aPourAuteurOeuvreOriginalTele , ?x2〉 ,
〈?v, ina:aPourTitreCollection , ?titre〉
〈?x1, dbpedia:wikiPageWikiLink , ?link〉 , 〈?link, rdfs:label , ?titre〉

r23 〈?x1, ina:sameNameDBp , ?x2〉 , 〈?x1, ina:sameAs , ?x2〉
〈?v, ina:aPourPresentateur , ?x2〉 , 〈?v, ina:aPourTitreHorraire , ?titre〉
〈?x1, dbpedia:wikiPageWikiLink , ?link〉 , 〈?link, rdfs:label , ?titre〉

r24 〈?x1, ina:sameNameDBp , ?x2〉 , 〈?x1, ina:sameAs , ?x2〉
〈?v, ina:aPourRealisateur , ?x2〉 , 〈?v, ina:aPourTitreHorraire , ?titre〉
〈?x1, dbpedia:wikiPageWikiLink , ?link〉 , 〈?link, rdfs:label , ?titre〉

r25 〈?x1, ina:sameNameDBp , ?x2〉 , 〈?x1, ina:sameAs , ?x2〉
〈?v, ina:aPourProducteur , ?x2〉 , 〈?v, ina:aPourTitreHorraire , ?titre〉
〈?x1, dbpedia:wikiPageWikiLink , ?link〉 , 〈?link, rdfs:label , ?titre〉

r26 〈?x1, ina:sameNameDBp , ?x2〉 , 〈?x1, ina:sameAs , ?x2〉
〈?v, ina:aPourChefOrchestre , ?x2〉 , 〈?v, ina:aPourTitreHorraire , ?titre〉
〈?x1, dbpedia:wikiPageWikiLink , ?link〉 , 〈?link, rdfs:label , ?titre〉

r27 〈?x1, ina:sameNameDBp , ?x2〉 , 〈?x1, ina:sameAs , ?x2〉
〈?v, ina:aPourCommentateur , ?x2〉 , 〈?v, ina:aPourTitreHorraire , ?titre〉
〈?x1, dbpedia:wikiPageWikiLink , ?link〉 , 〈?link, rdfs:label , ?titre〉

r28 〈?x1, ina:sameNameDBp , ?x2〉 , 〈?x1, ina:sameAs , ?x2〉
〈?v, ina:aPourAssistantRealisation , ?x2〉 ,
〈?v, ina:aPourTitreHorraire , ?titre〉
〈?x1, dbpedia:wikiPageWikiLink , ?link〉 , 〈?link, rdfs:label , ?titre〉

r29 〈?x1, ina:sameNameDBp , ?x2〉 , 〈?x1, ina:sameAs , ?x2〉
〈?v, ina:aPourAuteurOeuvreOriginalTele , ?x2〉 ,
〈?v, ina:aPourTitreHorraire , ?titre〉
〈?x1, dbpedia:wikiPageWikiLink , ?link〉 , 〈?link, rdfs:label , ?titre〉

TABLE A.4: Rules that disambiguate homonyms person based on their roles in a video

IF THEN
r30 〈?x1,owl:sameAs , ?x2〉 〈?x1, ina:sameAs , ?x2〉
r31 〈?x1,owl:differentFrom , ?x2〉 〈?x1, ina:differentFrom , ?x2〉

TABLE A.5: Rules that used in the renaming techniques for the ground sameAs and different-
From facts

ina:sameNameDBp
ina:sameAs
ina:aPourPresentateur
ina:aPourTitreCollection
dbpedia:wikiPageWikiLink
rdfs:label
ina:sameNameDBp
ina:sameAs
ina:aPourRealisateur
ina:aPourTitreCollection
dbpedia:wikiPageWikiLink
rdfs:label
ina:sameNameDBp
ina:sameAs
ina:aPourProducteur
ina:aPourTitreCollection
dbpedia:wikiPageWikiLink
rdfs:label
ina:sameNameDBp
ina:sameAs
ina:aPourChefOrchestre
ina:aPourTitreCollection
dbpedia:wikiPageWikiLink
rdfs:label
ina:sameNameDBp
ina:sameAs
ina:aPourCommentateur
ina:aPourTitreCollection
dbpedia:wikiPageWikiLink
rdfs:label
ina:sameNameDBp
ina:sameAs
ina:aPourAssistantRealisation
ina:aPourTitreCollection
dbpedia:wikiPageWikiLink
rdfs:label
ina:sameNameDBp
ina:sameAs
ina:aPourAuteurOeuvreOriginalTele
ina:aPourTitreCollection
dbpedia:wikiPageWikiLink
rdfs:label
ina:sameNameDBp
ina:sameAs
ina:aPourPresentateur
ina:aPourTitreHorraire
dbpedia:wikiPageWikiLink
rdfs:label
ina:sameNameDBp
ina:sameAs
ina:aPourRealisateur
ina:aPourTitreHorraire
dbpedia:wikiPageWikiLink
rdfs:label
ina:sameNameDBp
ina:sameAs
ina:aPourProducteur
ina:aPourTitreHorraire
dbpedia:wikiPageWikiLink
rdfs:label
ina:sameNameDBp
ina:sameAs
ina:aPourChefOrchestre
ina:aPourTitreHorraire
dbpedia:wikiPageWikiLink
rdfs:label
ina:sameNameDBp
ina:sameAs
ina:aPourCommentateur
ina:aPourTitreHorraire
dbpedia:wikiPageWikiLink
rdfs:label
ina:sameNameDBp
ina:sameAs
ina:aPourAssistantRealisation
ina:aPourTitreHorraire
dbpedia:wikiPageWikiLink
rdfs:label
ina:sameNameDBp
ina:sameAs
ina:aPourAuteurOeuvreOriginalTele
ina:aPourTitreHorraire
dbpedia:wikiPageWikiLink
rdfs:label
owl:sameAs
ina:sameAs
owl:differentFrom
ina:differentFrom
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IF THEN
r32 〈?x1,ina:sameAs , ?x2〉 〈?x2, ina:sameAs , ?x1〉
r33 〈?x1,ina:sameAs , ?x2〉, 〈?x2,ina:sameAs , ?x3〉 〈?x1, ina:sameAs , ?x3〉
r34 〈?x1,ina:differentFrom , ?x2〉 〈?x2, ina:differentFrom , ?x1〉
r35 〈?x1,ina:sameAs , ?x2〉, 〈?x2,ina:differentFrom

, ?x3〉
〈?x1, ina:differentFrom , ?x3〉

TABLE A.6: Rules that express the semantics of owl:sameAs and owl:differentFrom

in the same time, which is the case of owl:sameAs owl:differentFrom. These properties are re-

named in the ground facts to the EDB properties ina:sameAs and ina:differentFrom accordingly.

Then, the rule r30 is used to express the ina:sameAs and owl:sameAs are equivalent and the rule

r31 is used to express the ina:differentFrom and owl:differentFrom are equivalent.

Rules that express the semantics of owl:sameAs and owl:differentFrom are depicted in Ta-

ble A.6.

ina:sameAs
ina:sameAs
ina:sameAs
ina:sameAs
ina:sameAs
ina:differentFrom
ina:differentFrom
ina:sameAs
ina:differentFrom
ina:differentFrom


Appendix B

The set of uncertain rules used in the
experiments

In this section we list: the set of uncertain rules that are used during our experiments in Chap-

ter 2, their ranking over a scale from 1 to 3 assigned to them by domain experts and their

probabilistic weights.

Rules r1, r2 in Table B.1 are used to link two INA homonymous person with a sameAs link if

they share the same birthYear or the same deathYear, while rules r3, r4 are used to link a person

from the INA dataset with another person from DBpedia and they are obtained by propagating

the two alignments 〈ina:birthYear, dbpedia:birthYear, =〉, 〈ina:deathYear, dbpedia:deathYear,= 〉
inside r1, r2.

IF THEN Rank Prob.
Weight

r1 〈?x1, ina:sameName , ?x2〉, 〈?x1, ina:sameAs , ?x2〉 1 0.3
〈?x1,ina:birthYear , ?year〉 ,
〈?x2, ina:birthYear , ?year〉

r2 〈?x1, ina:sameName , ?x2〉, 〈?x1, ina:sameAs , ?x2〉 1 0.3
〈?x1,ina:deathYear , ?year〉 ,
〈?x2, ina:deathYear , ?year〉

r3 〈?x1, ina:sameNameDBp , ?x2〉, 〈?x1, ina:sameAs , ?x2〉 1 0.3
〈?x1,dbpedia:birthYear , ?year〉 ,
〈?x2, ina:birthYear , ?year〉

r4 〈?x1, ina:sameNameDBp , ?x2〉, 〈?x1, ina:sameAs , ?x2〉 1 0.3
〈?x1,dbpedia:deathYear , ?year〉 ,
〈?x2, ina:deathYear , ?year〉

TABLE B.1: Rules that disambiguate homonyms person based on birthYear and deathYear

The property ina:hasOccupation is used in the INA dataset to describe the professions (or the

situations in general) of a person entity. Thus, rule r5 links two INA homonymous person with

a sameAs link if they have two professions with similar labels up to a threshold 0.9. The rule r6

propagates the alignment 〈ina:hasOccupation, dbpedia:hasOccupation, =〉 inside the rule r5.
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IF THEN Rank Prob.
Weight

r5 〈?x1, ina:sameName , ?x2〉, 〈?x1, ina:sameAs , ?x2〉 2 0.6
〈?x1,ina:hasOccupation , ?occ11〉 ,
〈?x2, ina:hasOccuptation , ?occ2〉
〈?occ1,rdfs:label , ?label1〉 , 〈?occ2, rdfs:label , ?label2〉
Similar(?label1, ?label2, 0.9)

r6 〈?x1, ina:sameNameDBp , ?x2〉, 〈?x1, ina:sameAs , ?x2〉 2 0.6
〈?x1,dbpedia:occupation , ?occ11〉 ,
〈?x2, ina:hasOccuptation , ?occ2〉
〈?occ1,rdfs:label , ?label1〉 , 〈?occ2, rdfs:label , ?label2〉
Similar(?label1, ?label2, 0.9)

TABLE B.2: Rules that disambiguate homonyms person based on their occuptations

Rules in Table B.3 are used to link two homonymous person: one from the INA dataset and the

other person from DBpedia if the INA’s person have a particular role in a video and this video

has a title similar to one of the objects linked to the DBpedia’s person. Roles that are used in

these rules are less important than the ones used before in the certain rules in Table A.4)

Rules r17 is used to link two homonymous persons if they are linked to the same video entity

whatever their roles are inside this video.

ina:sameName
ina:sameAs
ina:hasOccupation
ina:hasOccuptation
rdfs:label
rdfs:label
ina:sameNameDBp
ina:sameAs
dbpedia:occupation
ina:hasOccuptation
rdfs:label
rdfs:label
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IF THEN Rank Prob.
Weight

r7 〈?x1, ina:sameNameDBp , ?x2〉 , 〈?x1, ina:sameAs , ?x2〉 2 0.6
〈?v, ina:aPourJRI , ?x2〉 ,
〈?v, ina:aPourTitreCollection , ?titre〉
〈?x1, dbpedia:wikiPageWikiLink , ?link〉 ,
〈?link, rdfs:label , ?titre〉

r8 〈?x1, ina:sameNameDBp , ?x2〉 , 〈?x1, ina:sameAs , ?x2〉 2 0.6
〈?v, ina:aPourInterprete , ?x2〉 ,
〈?v, ina:aPourTitreCollection , ?titre〉
〈?x1, dbpedia:wikiPageWikiLink , ?link〉 ,
〈?link, rdfs:label , ?titre〉

r9 〈?x1, ina:sameNameDBp , ?x2〉 , 〈?x1, ina:sameAs , ?x2〉 2 0.6
〈?v, ina:aPourParticipant , ?x2〉 ,
〈?v, ina:aPourTitreCollection , ?titre〉
〈?x1, dbpedia:wikiPageWikiLink , ?link〉 ,
〈?link, rdfs:label , ?titre〉

r10 〈?x1, ina:sameNameDBp , ?x2〉 , 〈?x1, ina:sameAs , ?x2〉 2 0.6
〈?v, ina:aPourMetteurEnSceneTheatre , ?x2〉 ,
〈?v, ina:aPourTitreCollection , ?titre〉
〈?x1, dbpedia:wikiPageWikiLink , ?link〉 ,
〈?link, rdfs:label , ?titre〉

r11 〈?x1, ina:sameNameDBp , ?x2〉 , 〈?x1, ina:sameAs , ?x2〉 2 0.6
〈?v, ina:aPourMembreOrchetre , ?x2〉 ,
〈?v, ina:aPourTitreCollection , ?titre〉
〈?x1, dbpedia:wikiPageWikiLink , ?link〉 ,
〈?link, rdfs:label , ?titre〉

r12 〈?x1, ina:sameNameDBp , ?x2〉 , 〈?x1, ina:sameAs , ?x2〉 2 0.6
〈?v, ina:aPourJRI , ?x2〉 ,
〈?v, ina:aPourTitreHorraire , ?titre〉
〈?x1, dbpedia:wikiPageWikiLink , ?link〉 ,
〈?link, rdfs:label , ?titre〉

r13 〈?x1, ina:sameNameDBp , ?x2〉 , 〈?x1, ina:sameAs , ?x2〉 2 0.6
〈?v, ina:aPourInterprete , ?x2〉 ,
〈?v, ina:aPourTitreHorraire , ?titre〉
〈?x1, dbpedia:wikiPageWikiLink , ?link〉 ,
〈?link, rdfs:label , ?titre〉

r14 〈?x1, ina:sameNameDBp , ?x2〉 , 〈?x1, ina:sameAs , ?x2〉 2 0.6
〈?v, ina:aPourParticipant , ?x2〉 ,
〈?v, ina:aPourTitreHorraire , ?titre〉
〈?x1, dbpedia:wikiPageWikiLink , ?link〉 ,
〈?link, rdfs:label , ?titre〉

r15 〈?x1, ina:sameNameDBp , ?x2〉 , 〈?x1, ina:sameAs , ?x2〉 2 0.6
〈?v, ina:aPourMetteurEnSceneTheatre , ?x2〉,
〈?v, ina:aPourTitreHorraire , ?titre〉
〈?x1, dbpedia:wikiPageWikiLink , ?link〉 ,
〈?link, rdfs:label , ?titre〉

r16 〈?x1, ina:sameNameDBp , ?x2〉 , 〈?x1, ina:sameAs , ?x2〉 2 0.6
〈?v, ina:aPourMembreOrchetre , ?x2〉 ,
〈?v, ina:aPourTitreHorraire , ?titre〉
〈?x1, dbpedia:wikiPageWikiLink , ?link〉 ,
〈?link, rdfs:label , ?titre〉

TABLE B.3: Rules that disambiguate homonyms person based on their roles in a video

IF THEN Rank Prob.
Weight

r17 〈?x1, ina:sameName , ?x2〉, 〈?x1, ina:sameAs , ?x2〉 3 0.9
〈?v,rdf:type , ina:video 〉,
〈?v, ?p1, ?x1〉 , 〈?v, ?p2, ?x2〉,

TABLE B.4: Rules that disambiguate homonyms person if they are related to the same video

ina:sameNameDBp
ina:sameAs
ina:aPourJRI
ina:aPourTitreCollection
dbpedia:wikiPageWikiLink
rdfs:label
ina:sameNameDBp
ina:sameAs
ina:aPourInterprete
ina:aPourTitreCollection
dbpedia:wikiPageWikiLink
rdfs:label
ina:sameNameDBp
ina:sameAs
ina:aPourParticipant
ina:aPourTitreCollection
dbpedia:wikiPageWikiLink
rdfs:label
ina:sameNameDBp
ina:sameAs
ina:aPourMetteurEnSceneTheatre
ina:aPourTitreCollection
dbpedia:wikiPageWikiLink
rdfs:label
ina:sameNameDBp
ina:sameAs
ina:aPourMembreOrchetre
ina:aPourTitreCollection
dbpedia:wikiPageWikiLink
rdfs:label
ina:sameNameDBp
ina:sameAs
ina:aPourJRI
ina:aPourTitreHorraire
dbpedia:wikiPageWikiLink
rdfs:label
ina:sameNameDBp
ina:sameAs
ina:aPourInterprete
ina:aPourTitreHorraire
dbpedia:wikiPageWikiLink
rdfs:label
ina:sameNameDBp
ina:sameAs
ina:aPourParticipant
ina:aPourTitreHorraire
dbpedia:wikiPageWikiLink
rdfs:label
ina:sameNameDBp
ina:sameAs
ina:aPourMetteurEnSceneTheatre
ina:aPourTitreHorraire
dbpedia:wikiPageWikiLink
rdfs:label
ina:sameNameDBp
ina:sameAs
ina:aPourMembreOrchetre
ina:aPourTitreHorraire
dbpedia:wikiPageWikiLink
rdfs:label
ina:sameName
ina:sameAs
rdf:type
ina:video
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[26] Jérôme Euzenat, Christian Meilicke, Heiner Stuckenschmidt, Pavel Shvaiko, and Cássia
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