
Polarized Rewriting and Tableaux in B Set
Theory

Olivier Hermant

MINES ParisTech, PSL University, France
olivier.hermant@mines-paristech.fr

Abstract. We propose and extension of the tableau-based first-order
automated theorem prover Zenon Modulo to polarized rewriting. We
introduce the framework and explain the potential benefits. The first
target is an industrial benchmark composed of B Set Theory problems.

1 Introduction

The B Method set theory [1] has been extensively used for 20 years by the
railway industry in France to develop certified correct-by-construction software.
Recently, the BWare [18] project has tackled the issue of automatically proving
the thousands of proof obligations generated by the development process.

Zenon Modulo [11] is one of the tools developed to this aim. Originally a
tableau-based prover, Zenon [4] is used for instance by TLA+ [10] and FoCaLiZe
[14]. To help manage the axioms of set theory, but also the uncountable derived
constructs definitions (e.g. inclusion, union, functions), we deemed useful to not
let nonlogical axioms wander as formulas: a prover would easily get lost by
decomposing one or another axiom in an unorganized fashion.

We replaced them with rewrite rules, turning Zenon into an implementation
of Deduction Modulo Theory [3,5,13], which allows rewriting on terms and for-
mulas. Additionally, we equipped it with ML polymorphic types and arithmetic
[8]. On the BWare benchmark, the success rate was raised from 2.5% to 95%.

We propose to extend Zenon Modulo with polarized rewriting, a more permis-
sive rewrite relation. We first introduce the framework, then we discuss examples
and the pros and cons of the approach. There is currently no implementation,
essentially because this is a perfect match for an intern or a PhD student.

2 Polarized Tableaux Modulo Theory

We assume familiarity with first-order logic and at least one deduction system.
Tableaux calculus is a refutational calculus, thus, to show F under the assump-
tions Γ , we refute Γ,¬F . The first-order tableaux rules are recalled in Figure 1,
see textbooks [16] for details. The rules have the following characteristics:

– as customary, they are presented in a top-down fashion.
– Formulas are not in negation normal form, rules are duplicated.



– A branch may be closed, denoted �, if we find on it (including internal nodes)
an occurrence of some F and its negation, or an explicit contradiction. A
tableau is a proof iff each branch is closed.

– α-rules are for non-branching connectives rules and β-rules for branching
ones, δ-rules are for quantifier rules introducing a fresh constant c and γ-
rules for those introducing any term.

⊥ �⊥�
F,¬F

��
¬> �¬>�

¬¬F α¬¬
F

F ∧G α∧
F,G

¬(F ∨G)
α¬∨¬F,¬G

¬(F ⇒ G)
α¬⇒

F,¬G

F ∨G β∨
F | G

¬(F ∧G)
β¬∧¬F | ¬G

F ⇒ G β⇒¬F | G

∃x F (x)
δ∃

F (c)

¬∀x F (x)
δ¬∀¬F (c)

∀x F (x)
γ∀

F (t)

¬∃x F (x)
γ¬∃

¬F (t)

Fig. 1: Tableaux Rules

Tableaux Modulo Theory [3] extends tableaux with a set of rewrite rules R.
A rewrite rule is a pair of terms, l→ r, where the variables of r appear in l. Given
a set R, a term t rewrites into u, denoted t→ u, if there is a rule l→ r ∈ R and
a substitution σ, such that there is an occurrence of lσ in t, and u is t where that
occurrence has been replaced with rσ. In other words, → is the closure of R by
substitution and the subterm relation. The transitive closure of→ is denoted �
and its further reflexive-symmetric closure is ≡, which is a congruence.

Deduction Modulo Theory also allows rewrite rules on formulas, provided
the left member P of such a rule P → F is atomic. The relations →,�,≡ on
formulas embed their counterparts on the subterms of the formulas.

Tableaux can be extended to rewriting with the addition of a rule allowing
to convert any formula with ≡, as in Figure 2a. When rewriting is confluent, we
can orient this rule as in Figure 2b. In practice, Deduction Modulo Theory-based
automated theorem provers [6] implement this last rule, which is a way to decide
≡ when confluence holds. Other presentations exist [3,5,8].

The calculus of Zenon Modulo [8] enjoys meta-variables, Hilbert’s ε operator,
reasoning over reflexive/transitive/symmetric relations, an equality predicate,
ML-polymorphic types, and, of course, rewriting. The simpler case of Figure 1
is sufficient here, as we focus on rewriting, that we now extend to polarity.



F ≡ , if F ≡ G
G

(a) General Case

F � , if F � G
G

(b) Confluent Case

Fig. 2: The Additional Rule of Tableaux Modulo Theory

Definition 1 (Polarity of an Occurrence). The occurrence of a formula F
in a formula G is positive (resp. negative) iff

– G is F ,
– G is G1 ∧G2, G1 ∨G2, ∀xG1, ∀xG1 or H ⇒ G1 and the occurence of F in
G1 or G2 is positive (resp. negative),

– G is ¬G1 or G1 ⇒ H and the occurrence of F in G1 is negative (resp.
positive).

Now, we consider two (proposition) rewrite systems R+ ∪R−.

Definition 2 (Polarized Rewrite Relation). Let F and G be two formulas.
F →+ G iff F → G with a term rewrite rule or there exists a positive (resp.
negative) occurrence H in F , a substitution σ, and a rule l → r ∈ R+ (resp.
R−), such that H = lσ and G is F where H has been replaced with rσ.

F →− G iff ¬F →+ ¬G, that is to say we exchange R+ and R− above.

We denote by �+ and �− the reflexive-transitive closures of →+ and →−,
respectively. Defining ≡+ and ≡− is more delicate and unlikely to be useful
practice. Polarized Tableaux combine the rules of Figure 1 and Figure 3.

F �+ , if F �+ G
G

Fig. 3: The Additional Rule of Polarized Tableaux Modulo Theory

3 Implementation

Zenon Modulo rewrites only literals, in a forward fashion. This is a further
restriction of Figure 2b and it relies on termination of term rewriting and on
confluence of the whole rewriting. Otherwise, completeness of the proof search
fails. The heuristic is, each time we meet a literal, to:

1. normalize the terms it contains;



2. rewrite the literal itself (if there is an applicable rewrite rule) on one step;
3. if the formula is in normal form or compound, stop, otherwise repeat.

To get polarized rewriting it suffices to modify the second step into “rewrite
positively if the literal is positive, negatively otherwise”. The expected gain does
not lie here, but in an optimized preprocessing for rules. Indeed [12], a polarized
rule P →+ F ∈ R+ represents/can be represented as an axiom ∀(P ⇒ F ) (∀ is
the universal closure over the free variables). Similarly, a negative rewrite rule
P �− F ∈ R− is equivalent to the axiom ∀(F ⇒ P ). In contrast, Deduction
Modulo Theory’s rewrite rules P → F are equivalent to ∀((P ⇔ F ) [13]. Re-
mind that we are discussing propositional rewrite rules, so P has to be atomic.
Consequently, polarization offers the following improvements:

– more axioms correspond to rewrite rules, and this improves proof search [11].
Axioms of the form ∀x(P ⇒ A) and ∀x(A ⇒ P ), with P atomic, become
rules of R+ and R−, respectively. In classical logic, when P is a negated
atom, we also get rewrite rules in R− and R+, respectively.

– We can Skolemize rewrite rules. This has two benefits: first, less inference
rules are necessary in the tableaux, and second, the Skolem term is uniform,
while multiple applications of δ∃ or δ¬∀ introduce different fresh symbols at
each time. This also holds in the presence of meta-variables.

Skolemizing the rules is impossible in vanilla Deduction Modulo Theory, as
rewriting applies at positive and negative occurrences. Therefore, we do not
know in advance which quantifiers are positive and negative. To illustrate the
difference, consider axioms of the type ∀x(P ⇒ A) and ∀x(A⇒ P ).

– In ∀x(P ⇒ A), we can replace all the positive existential and negative uni-
versal quantifiers of A by a Skolem function symbol.

– Similarly, in ∀x(A ⇒ P ), we can replace all the positive universal and neg-
ative existential quantifiers of A by a Skolem function symbol.

The very same principle applies to polarized rewrite rules. We leave the
study and the choice of the strategies for Skolemization [17] for a later stage.
Both improvements can be applied to heuristics turning assumptions (of a given
problem) into rewrite rules, and to hand-tuning of the rewrite rules of a specific
theory, for instance B Method set theory.

4 Example

Let us consider the classical example of proving a ⊆ a with the standard axiom
of inclusion ∀x∀y x ⊆ y ⇔ (∀z z ∈ x ⇒ z ∈ y). A usual tableau proof involves
the succession of rules γ∀ (twice), α∧, β⇒, δ¬∀ and α¬⇒ on the axiom. Deduction
Modulo Theory turns it into the rewrite rule x ⊆ y → (∀z z ∈ x⇒ z ∈ y), and
yields the 3-rules axiomless proof of Figure 4a.

If we switch to Polarized Deduction Modulo Theory, we get the pair R+ =
{x ⊆ y → (∀zz ∈ x ⇒ z ∈ y)} and R− = {x ⊆ y → (f(x, y) ∈ x ⇒ f(x, y) ∈
y)}. The proof of a ⊆ a is one more step smaller, as shown in Figure 4b.



¬(a ⊆ a)
�
¬(∀z z ∈ a⇒ z ∈ a)

α¬∀
¬(c ∈ a⇒ c ∈ a)

α¬⇒
¬(c ∈ a), c ∈ a

� �

(a) Pristine Tableaux

¬(a ⊆ a)
�

¬(f(a, a) ∈ a⇒ f(a, a) ∈ a)
α¬⇒

¬(f(a, a) ∈ a), f(a, a) ∈ a
��

(b) Polarized Tableaux

Fig. 4: Proof of a ⊆ a in Deduction Modulo Theory

5 Conclusion

We expect the polarized approach to give at least as efficient as Zenon Modulo
itself. The proof-search algorithm needs only few changes, mostly in the rule
pre-processing. The obtained rules contain less quantifiers, allowing for fewer
rules in proof-search and potential earlier unification and branch closure, since
using a rewrite rule several times now involves the same Skolem symbol.

On the risk side, implicational axioms can now be turned into rewrite rules.
This might be a threat to termination or confluence. A study of the theoretical
framework, including models, is required.

Automated theorem provers are aggressively optimized tools, naturally lend-
ing themselves to bugs. This is why independent double checking facilities are
important. Zenon Modulo is able to produce proof-terms or proof certificates,
though it provides no rewrite steps explicitly, following Poincaré’s Principle:
computations (rewriting) in proofs give no insight, they can be quickly recon-
structed (by the checker) at will and are to be left implicit. Such a clerk/expert
distinction has for instance been studied in the Foundational Proof Certificate
project [15], at the proof level, with the help of focusing [9].

On the BWare benchmark, all statements proved by Zenon Modulo [8], that
do not involve arithmetic, are actually declared well-typed by Dedukti [2], a
type checker based on an extension of Deduction Modulo Theory to dependent
types. Dedukti’s rewriting ability made extremely smooth the reconstruction of
rewriting : there is essentially nothing to do but to declare the rules.

The challenge is to keep this skeptical double-checking approach viable. We
may need a depolarization of the proofs, perhaps following [7], or an substantial
extension of Dedukti and its foundations to polarized rewriting, perhaps with
the help of subtyping.

References

1. Abrial, J.R.: The B-book: Assigning Programs to Meanings. Cambridge University
Press, New York, NY, USA (1996)



2. Boespflug, M., Carbonneaux, Q., Hermant, O.: The λΠ-calculus modulo as a uni-
versal proof language. In: PxTP 2012, Proceedings. vol. 878, pp. 28–43. CEUR-
WS.org (2012)

3. Bonichon, R.: TaMeD : A tableau method for deduction modulo. IJCAR 2004
(2004)

4. Bonichon, R., Delahaye, D., Doligez, D.: Zenon : An extensible automated theorem
prover producing checkable proofs. In: Dershowitz, N., Voronkov, A. (eds.) Logic
for Programming, Artificial Intelligence, and Reasoning, 14th International Con-
ference, LPAR 2007, Yerevan, Armenia, October 15-19, 2007, Proceedings. Lecture
Notes in Computer Science, vol. 4790, pp. 151–165. Springer (2007)

5. Bonichon, R., Hermant, O.: A semantic completeness proof for tableaux modulo.
In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS, vol. 4246, pp. 167–181.
Springer-Verlag, Phom Penh, Cambodia (2006)

6. Burel, G.: Embedding deduction modulo into a prover. In: Dawar, A., Veith, H.
(eds.) CSL. LNCS, vol. 6247, pp. 155–169. Springer (2010)

7. Burel, G., Kirchner, C.: Regaining cut admissibility in deduction modulo using
abstract completion. Information and Computation 208(2), 140–164 (2010)

8. Bury, G., Delahaye, D., Doligez, D., Halmagrand, P., Hermant, O.: Automated
deduction in the B set theory using typed proof search and deduction modulo.
In: Fehnker, A., McIver, A., Sutcliffe, G., Voronkov, A. (eds.) LPAR 2015 – Short
presentations, Suva, Fiji. EPiC Series in Computing, vol. 35, pp. 42–58. EasyChair
(2015)

9. Chihani, Z., Miller, D., Renaud, F.: A semantic framework for proof evidence. J.
Autom. Reasoning 59(3), 287–330 (2017)

10. Cousineau, D., Doligez, D., Lamport, L., Merz, S., Ricketts, D., Vanzetto, H.: TLA
+ proofs. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012, Paris, France. LNCS,
vol. 7436, pp. 147–154. Springer (2012)

11. Delahaye, D., Doligez, D., Gilbert, F., Halmagrand, P., Hermant, O.: Zenon mod-
ulo: When achilles outruns the tortoise using deduction modulo. In: McMillan, K.,
Middledorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS ARCoSS, vol. 8312, pp.
274–290. Springer (2013)

12. Dowek, G.: Polarized deduction modulo. In: IFIP Theoretical Computer Science
(2010)

13. Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. Journal of Auto-
mated Reasoning 31, 33–72 (2003)

14. Dubois, C., Rioboo, R.: Verified functional iterators using the focalize environment.
In: Giannakopoulou, D., Salaün, G. (eds.) SEFM 2014, Grenoble, France. Lecture
Notes in Computer Science, vol. 8702, pp. 317–331. Springer (2014)

15. Miller, D.: Foundational proof certificates. In: Delahaye, D., Woltzenlogel Paleo,
B. (eds.) All about Proofs, Proofs for All, Studies in Logic, Mathematical Logic
and Foundations, vol. 55, chap. 8, pp. 150–163. College Publications (2015)

16. Nerode, A., Shore, R.A.: Logic for Applications. Springer (1993)
17. Nonnengart, A., Weidenbach, C.: Computing small clause normal forms. In: Robin-

son, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 335–367.
Elsevier and MIT Press (2001)

18. The BWare Project: (2012), http://bware.lri.fr/

http://bware.lri.fr/

	Polarized Rewriting and Tableaux in B Set Theory

