
Towards Coq Formalisation of {log}
Set Constraints Resolution

Catherine Dubois1, Sulyvan Weppe2,
1. ENSIIE, lab. Samovar, Évry, France

2. ENSIIE, Évry, France

Abstract. The language {log} is a Constraint Logic Programming lan-
guage that natively supports finite sets and constraints such as (non)
equality and (non) membership. The set constraints resolution process
is mathematically formalised by Dovier et al in [5] using rewriting rules.
In this paper we present a formalisation in the Coq proof assistant of the
term and constraint algebra, the rewriting rules and check all the exam-
ples given in the reference paper by applying the rewriting rules manually
with the help of some tailored tactics. The main problem we encountered
is the non determinism captured by the rewriting rules, which prevents
us from automating their application in Coq. However the rules for non-
membership are deterministic. So we propose a function that iteratively
applies the latter rules. We prove its correctness with respect to the cor-
responding rewriting rules. This work is a first step of a larger project
whose objective is to provide a formally verified resolution process for
{log} set constraints resolution.

1 Introduction

The language {log}1 is a freely available implementation of CLP(SET), recently
extended to include binary relations and partial functions [4]. This language
embodies the fundamental forms of set and a number of primitive operations for
set management. It includes constraints for constructing and manipulating finite
sets. In this paper we focus on the resolution of set constraints as it is detailed
by Dovier et al in [5], considered in the following as the reference paper.

We contribute a formalisation within the Coq proof assistant [10] of the {log}
resolution process of set constraints, or more precisely a first step towards this
objective. Our motivation is to have a mechanized formal basis, in order to have
a reference that could be used to study extensions, like the recent ones about
partial functions and relations.

The resolution process extends the unification on first-order terms by adding
specific set constraints e.g. (non) membership, (non) equality.

There are many formalisations of first-order unification in proof assistants,
e.g. [8,9,2,1,7,6]. We can also mention a Coq proof of unification modulo as-
sociativity and commutativity with a neutral element embedded in the library
Coccinelle [3] and also several proofs about nominal unification, e.g. [11].
1 http://people.dmi.unipr.it/gianfranco.rossi/setlog.Home.html

The work described in this paper is the first step of a larger project whose ob-
jective is to provide a formally verified resolution process for {log} set constraints
resolution.

In this paper we present, in Section 2, the formalisation of the term and
constraint algebra and the rewriting rules used in the set constraints resolution of
{log} as exemplified in [5]. We go a step further by introducing some automation
in the rewriting strategy. We propose to turn some of the rewriting rules into
an operational process. It is described in Section 3 and we prove its termination
and correctness. In Section 4, we conclude and present future work.

2 Coq Formalisation

In this section, we present first the formalisation of the term and constraint
algebra and then the way we have formalised the rewriting rules used in the
set constraints resolution of {log} as exemplified in [5]. Coq code is available at
http://www.ensiie.fr/~dubois/CoqSetlog.

2.1 Terms and Constraints

A term is either a variable, the emptyset, a non-empty set or any non-set term
built from a function symbol and a list of terms (let us call them ordinary terms).
The type of term, term, is represented in Coq as the following simple inductive
data-type:

Inductive term: Set :=
| Var: variable → term
| SetC: term → term → term
| OTerm: symbol → list term → term
| EmptySet: term.

Ordinary terms are represented as varyadic terms. If necessary, we use a
predicate for checking the well-formedness of such a term (stating that the length
of the list of sub-terms is equal to the arity of the function symbol). The types
of variables and symbols are any arbitrary types equipped with a decidable
equality. Non empty sets are denoted by set terms of the form {a|t}, represented
in Coq by SetC a t: a denotes an element of the set and t the set of the other
elements. This notation stands for the set {a} ∪ t. The function symbol {_|_}
used to construct sets is such that: (i) duplicates in a set do not matter and
(ii) the order of elements is irrelevant. Both facts are taken into account by the
resolution process.

The primitive constraints are equality (Eq), non-equality (Neq), membership
(Mem), non-membership (Nmem) and set term constraints (IsSet). The type of
primitive constraints is again defined as an inductive data-type. FalseC is added
(wrt to the reference paper) to indicate that the resolution fails. A constraint is
defined as a conjunction of primitive constraints, represented in Coq as a list of
primitive constraints.

Inductive primitiveConstraint: Type :=
| Eq: term → term → primitiveConstraint
| Neq: term → term → primitiveConstraint
| Mem: term → term → primitiveConstraint
| Nmem: term → term → primitiveConstraint
| FalseC: primitiveConstraint
| IsSet: term → primitiveConstraint.

Definition constraint:=list primitiveConstraint.

Let pc be one of the primitive constraint of the constraint C. pc is in solved
form if it has any of the following forms: (i) X = t, and neither t nor the rest of
C contains X; (ii) X 6= t, and X does not occur in t; (iii) t /∈ X, and X does
not occur in t; (iv) IsSet(X). A constraint C is in solved form if it is empty or
all its components are in solved form.

We define also functions for checking occur-check, applying a substitution
and some more helpers. We try to use as much as possible Coq notations to
ease the reading and make our formalisation look like the paper presentation.
For example the construct {t1|t2} represented in Coq by SetC t1 t2 is written in
Coq {{ t1 | t2 }}. The constraint of equality t1 = t2 (resp. t1 6= t2) is written
t1 == t2 (resp. t1 /== t2), x ∈ t (resp. x /∈ t) is written x : s t (resp. x /:s t).

2.2 Rewriting Procedures

In [5], the constraint solver is defined as a procedure named SATSET that nonde-
terministically transforms a constraint to either false, error, or a finite collection
of constraints in solved form. This solver uses different rewriting procedures to
rewrite a set constraint to its equivalent solved form. Each rewriting procedure,
made of different rules, models one step of rewriting. And each rule corresponds
to a certain case of primitive constraint.

The next step in our Coq formal development is to formalise each single
rewriting procedure, one per kind of primitive constraints. We try to be very
close to the reference paper definitions. However there are some differences that
we pinpoint in the following because our purpose is to be able to animate these
definitions on some examples in Coq. We formalise the rewriting procedures in
Coq as inductively defined predicates. Each rule is translated into one clause of
the predicate.

In the reference paper, the choice of the primitive constraint to be rewritten
is not determined. This is a source of non-determinism. As said previously, we
decide to implement a constraint as a list of primitive constraints. So unlike the
reference paper presentation, we choose the first element of the list, let us call it
the constraint head. Furthermore we introduce the notion of problem as a pair
whose first component is a constraint in solved form and second component is an
unsolved constraint. The type problem is defined in Listing 1.1. In Coq, all the
rewriting procedures share the type problem → problem → Prop, showing that a
rewriting procedure rewrites a problem into another one. This is a quite common

presentation used for example for unification of first-order terms, in particular
in Color [2] and Coccinelle [3].

At the beginning of the resolution, the solved part is empty. When the rewrit-
ing process is complete (that is no more rules can be applied), either the unsolved
part is empty and the solved part provides us with a constraint in solved form,
or the unsolved part is [FalseC] meaning that a dead-end has been reached. The
form of the constraint head of the unsolved part determines which rewriting rules
can be applied. For some rules (e.g. stepMem procedure, second rule, stepMem2_2)
the unsolved constraint head is removed and replaced in the unsolved part by
one or some other primitive constraints (see Listing 1.1). For some other (e.g.
stepEq procedure, fifth rule), it is removed from the unsolved part to the solved
part (see Listing 1.1). We detail the rewriting stepMem to illustrate the style of
definition.

Definition problem := constraint * constraint.

Inductive stepEq: problem → problem → Prop :=
...
| stepEq5: forall X t c1 c2,

¬(occurCheck X t) →
((setTerm t) ∨ ¬(isSetInC X c1) ∨ ¬(isSetInC X c2))→
stepEq (c1, (Var X == t) :: c2)

((Var X == t)::(applySubst [(X,t)] c1), applySubst [(X,t)] c2)
...

Inductive stepMem : problem→ problem→ Prop :=
| stepMem1: forall t c1 c2,

stepMem (c1, ((t :s EmptySet)::c2)) (c1, [FalseC])
| stepMem2_1: forall r s t c1 c2,

stepMem (c1, (r :s {{s|t}})::c2) (c1, (r == s)::c2)
| stepMem2_2: forall r s t c1 c2,

stepMem (c1, (r :s {{s|t}})::c2) (c1, (r :s t)::c2)
| stepMem3: forall t X N c1 c2,

isFreshC N c1→ isFreshC N c2→ isFreshT N t → N<>X→
stepMem (c1, (t :s (Var X))::c2)

(c1, c2 ++ [Var X == {{ t | Var N}}} ; IsSet (Var N)]).

Listing 1.1. Coq encoding of some rewriting rules

Them we pack these rewriting predicates in one single, named step, specifying
that a step in the resolution is achieved by one of the 5 previous predicates:

Inductive step : problem→ problem→ Prop:=
| step1 : forall pb pb’, stepEq pb pb’→ step pb pb’
| step2 : forall pb pb’, stepMem pb pb’→ step pb pb’
| step3 : forall pb pb’, stepNeq pb pb’→ step pb pb’
| step4 : forall pb pb’, stepNmem pb pb’→ step pb pb’
| step5 : forall pb pb’, stepSC pb pb’→ step pb pb’.

These predicates only allow us to make one step of rewriting. We define the
transitive reflexive closure of each predicate, so that these closures allow us

to achieve a complete transformation. The Coq standard library provides the
predicate clos_refl_trans that defines the transitive reflexive closure of a binary
relation.

Definition stepNmemStar := clos_refl_trans _ stepNmem.
Definition stepStar := clos_refl_trans _ step.

Using some tailored tactics, we could prove the examples 2, 3 and 4 of the
reference paper with all their solutions. Some of them are solved quite easily,
some others need to apply manually each rule.

3 Towards More Automation

As said previously, the rewriting procedures are not deterministic, but actually
some are. This is the case of stepNmem and stepSC. It is useful to define a functional
version of these two ones, since the predicate versions we defined only allow us
to make one step at once, whereas such a functional version would allow us to
apply these steps iteratively, until we cannot anymore.

So we define the function stepsNM that iteratively applies the different rules
of the rewriting predicate stepNmen. This function implements a general recursive
scheme: some cases do add some primitive constraints in the problem. Proof of
termination in that case is not automatic in Coq. We easily prove the termination
by introducing a dedicated measure on the constraint.

We prove the correctness of the function stepsNM with respect to the corre-
sponding rewriting rules. More precisely, we prove, in Lemma stepsNM_soundness
below, that the result obtained by the function stepsNM is indeed in the reflexive
transitive closure of the relation stepNM. However we do not use stepNmemStar pre-
viously defined but an adaptation of it, stepNmemRd which is defined as stepNmemStar
extended with a rule that allows us to pass over any constraint different from
a Nmem constraint. We also prove the completeness of the function in Lemma
stepsNM_complete: if applying iteratively the stepNmem rewriting rules on pb leads
to pb’ which cannot be rewritten anymore - second premise - then the function
stepsNM applied on pb computes pb’.

Lemma stepsNM_soundness : forall c c1, stepNmenRd (c1,c) (stepsNM (c1,c)).

Lemma stepsNM_complete : forall pb pb’,
stepNmemRd pb pb’ → (forall p, ¬ stepSCExt pb’ p) → stepsNM pb = pb’.

We follow the same approach on stepSC, resulting in a function stepsSCheck,
correct wrt the reflexive transitive closure of stepSC.

4 Conclusion

This paper presents the initial work done for formalising in Coq the set con-
straints resolution of {log}. We mainly define the term and constraint algebra
and the different rewriting procedures, being as close as possible to the reference

paper. All the examples presented in [5] are re-played in Coq, which brings some
relative confidence in our formalisation. The difficulties we encountered come
from the fact that the rewriting procedures are not deterministic. So the defi-
nition of a resolution procedure cannot be done using functions (as it could be
done for unification of first-order terms, see e.g. [2]). However for each determin-
istic rewriting relation, we define a function that applies its rules until a solved
form is achieved.

The formalisation counts about 1350 lines of code, and thanks to this one we
proved some rewritings for a total of 600 lines of code.

We propose several directions for future work. First, we want to formalise in
Coq the main propositions and theorems of [5], such as termination and correct-
ness of the resolution process. The second direction concerns the definition of a
Coq function that implements the resolution process as it is proposed in [5] and
its formal correctness proof. We have already achieved a first step, as explained
in Section 3. The next step is a large one because it requires to implement back-
tracking in Coq, considered as implicit in the reference paper. An alternative to
trying to implement backtracking in Coq, could be to formalise an all solutions
semantics, where the computed result represents the disjunction of the results
of all the possible computations. This is another direction for future work.

Acknowledgements We thank M. Cristia and G. Rossi for the discussions
which initiate this work. We thank G. Rossi for his answers on our questions when
we started the Coq formalisation. Thanks also to the anonymous reviewers for
their suggestions.

References

1. A. B. Avelar, A. L. Galdino, F. L. C. de Moura, and M. Ayala-Rincón. First-order
unification in the pvs proof assistant. Logic Journal of the IGPL, 22(5):758–789,
2014.

2. F. Blanqui and A. Koprowski. Color: a coq library on well-founded rewrite rela-
tions and its application to the automated verification of termination certificates.
Mathematical Structures in Computer Science, 21(4):827–859, 2011.

3. E. Contejean. Coccinelle, a Coq library for rewriting. In Types, Torino, Italy, 2008.
4. M. Cristiá, G. Rossi, and C. S. Frydman. Adding partial functions to constraint

logic programming with sets. TPLP, 15(4-5):651–665, 2015.
5. A. Dovier, C. Piazza, E. Pontelli, and G. Rossi. Sets and constraint logic program-

ming. ACM Trans. Program. Lang. Syst., 22(5):861–931, 2000.
6. S. Kothari and J. Caldwell. A machine checked model of idempotent MGU axioms

for lists of equational constraints. In M. Fernández, editor, Proceedings 24th Inter-
national Workshop on Unification, UNIF 2010, Edinburgh, United Kingdom, 14th
July 2010., volume 42 of EPTCS, pages 24–38, 2010.

7. C. McBride. First-order unification by structural recursion. Journal of Functional
Programming, 13(6):1061–1075, 2003.

8. L. C. Paulson. Verifying the unification algorithm in lcf. Sci. Comput. Program.,
5(2):143–169, June 1985.

9. J. Rouyer. Développement de l’algorithme d’unification dans le calcul des con-
structions. technical report 1795, 1992.

10. The Coq Development Team. Coq, version 8.7. Inria, Aug. 2017. http://coq.
inria.fr/.

11. C. Urban, A. M. Pitts, and M. Gabbay. Nominal unification. Theor. Comput. Sci.,
323(1-3):473–497, 2004.

