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1 Projection in Dependent Type Semantics

In recent years, formal semantics in the context of dependent type theory [9],
which originates in Sundholm’s [15] and Ranta’s [12] seminal works, has achieved
gradual progress: Cooper’s type theory with records [4], Luo and Asher’s type
theory with coercive subtyping [7][1], and Martin and Pollard’s [8] dynamic
categorial grammar, among others. Meanwhile, dependent type semantics (DTS
[2][3]) is a compositional framework of natural language semantics whose calcula-
tion of projective contents (namely, presupposition, anaphora, and conventional
implicatures) reduces to type checking in dependent type theory, and whose pre-
supposition binding/anaphora resolution reduces to a proof search (along the
lines of Krahmer and Piwek [5][11] and Mineshima [10]). For example, in (1), for
each pair of sentences, the left side of ⇒ has the right side of ⇒ as its projective
content, and this empirical relation is calculated by type checking in DTS.4

(1) a. Sweden does not cherish its king.

⇒ Sweden has a king.

b. If Sweden is a monarchy, Sweden cherishes its king.

⇒ If Sweden is a monarchy, Sweden has a king.

c. Every monarchy cherishes its king.

⇒ Every monarchy has a king.

d. Sweden, a monarchy, cherishes its king.

⇒ Sweden is a monarchy/has a king.

� Our sincere thanks to Kenichi Asai, Koji Mineshima, Ribeka Tanaka for many helpful
discussions. I also thank the anonymous reviewers of TYTLES for their insightful
comments. Daisuke Bekki is partially supported by JST, CREST.

�� 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan.
� � � 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, 101-8430, Japan.

† 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
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Two concepts in DTS that enable the unity are underspecified terms and local
contexts. An underspecified term (notated as @i, where i is a natural number)
is a proof term for a projective content. A local context is a proof term of the
preceding discourse for a sentence whose representation in DTS is a function that
takes a local context and returns a type (that is, a data type for proof terms).
Most underspecified terms are functions that receive a local context as their
argument in the context-passing mechanism of DTS. Then, anaphora resolution
and presupposition binding are formulated as a substitution of underspecified
terms by some proof terms, which are to be found via proof search that is
unified with the inference system for calculating entailments. Different proof
terms correspond to different choices of antecedents.

The whole system is integrated within a standard Montagovian composi-
tional setting; for instance, the sentences in (1) are derived by the lexical items
listed in Figure 15, where presupposition/CI triggers and anaphora introduce an
underspecified term6,7, which yields the semantic representations in (2).

An underspecified term of type A in DTS requires the existence of a proof
term of type A, which means that A (as a proposition) is true regardless of the
truth of the sentence itself; thus, A is projective.

Note that local contexts received by underspecified terms @ in the semantic
representations in (2) vary according to their syntactic configurations. In (2a),
@1 receives the proof term c of its preceding discourse alone. In (2b), the proof
term u of the antecedent part of the implication is also passed to @1. In (2c), a
given proof term is further abstracted. In (2d), @3, which corresponds to the CI
content, does not receive any local context.

Thus, the type of an underspecified term depends on the type of the local
context it receives, but this information is recoverable by type checking. This is
the reason that projective contents can be calculated via type checking in DTS.

2 Type Checking/Inference Algorithm

Despite the above, the type checking/inference algorithm for DTS remains un-
defined in [2]. This is due to two technical problems: 1) the undecidability of
type checking in dependent type theory [14], which DTS is based on, and 2) the
existence of underspecified terms.

5 We adopt the notation

[
x:A
B(x)

]
for the dependent sum type Σx : A.B(x), and write

(x : A) → B(x) for the dependent functional type Πx : A.B.
6 The representation of the word its contains two underspecified terms @i and @j :

the former (i.e. an anaphoric part) takes a local context and returns a pair of some
entity and a proof of its non-humanness. The latter (i.e. possessive presupposition)
takes a local context and returns a triple of some entity, a proof that it belongs to
the nominal category specified by the preceding common noun, and a proof that it
is owned by it.

7 The compositional analysis of the appositive in (2d) is due to Bekki and McCready
[3].



PF Syntactic categories Semantic representations

if S/S/S λp.λq.λc. (u:pc) → (q(c, u))
everynom S/(S\NP)/N λn.λp.λc. (x:entity) → (u:nx(c, x)) → (px(c, (x, u)))

aacc (S\NP)\(S\NP/NP)/N λn.λp.λx.λc.

⎡
⎣y:entity[

v:ny(c, y)
pyx(c, (y, v))

]⎤⎦
king N λx.λc.king(x)
cherish S\NP/NP λy.λx.λc.cherish(x, y)

itsacc (S\NP)\(S\NP/NP)/N λn.λp.λx.λc.p

⎛
⎜⎜⎝π1

⎛
⎜⎜⎝@jc ::

⎡
⎢⎢⎣

y:entity⎡
⎣nyc

have

(
π1

(
@ic ::

[
z:entity
¬human(z)

])
, y

)⎤
⎦
⎤
⎥⎥⎦

⎞
⎟⎟⎠

⎞
⎟⎟⎠xc

Fig. 1. Lexical items in DTS (where @i and @j are underspecified terms)

(2) a. λc.¬cherish

⎛
⎜⎜⎝sweden, π1

⎛
⎜⎜⎝@1(c) ::

⎡
⎢⎢⎣

y:entity⎡
⎣king(y)

have

(
π1

(
@2(c) ::

[
z:entity
¬human(z)

])
, y

)⎤
⎦
⎤
⎥⎥⎦

⎞
⎟⎟⎠

⎞
⎟⎟⎠

b. λc.(u : monarchy(sweden)) → cherish

⎛
⎜⎜⎝sweden, π1

⎛
⎜⎜⎝@1(c, u) ::

⎡
⎢⎢⎣

y:entity⎡
⎣king(y)

have

(
π1

(
@2(c, u) ::

[
z:entity
¬human(z)

])
, y

)⎤
⎦
⎤
⎥⎥⎦

⎞
⎟⎟⎠

⎞
⎟⎟⎠

c. λc.(x : entity) → (u : monarchy(x)) → cherish

⎛
⎜⎜⎝x, π1

⎛
⎜⎜⎝@1(c, (x, u)) ::

⎡
⎢⎢⎣

y:entity⎡
⎣king(y)

have

(
π1

(
@2(c, (x, u)) ::

[
z:entity
¬human(z)

])
, y

)⎤
⎦
⎤
⎥⎥⎦

⎞
⎟⎟⎠

⎞
⎟⎟⎠

d. λc.

⎡
⎢⎢⎢⎣

cherish

⎛
⎜⎜⎝sweden, π1

⎛
⎜⎜⎝@1(c) ::

⎡
⎢⎢⎣

y:entity⎡
⎣king(y)

have

(
π1

(
@2(c) ::

[
z:entity
¬human(z)

])
, y

)⎤
⎦
⎤
⎥⎥⎦

⎞
⎟⎟⎠

⎞
⎟⎟⎠

@3 =monarchy(sweden) @3

⎤
⎥⎥⎥⎦

Fig. 2. Semantic representations for (1)

With regard to 1), the type checking system of the proof assistant Agda8

employs the annotation construction of the form M :: A, which behaves just
like the term M except that its type is specified as A (which turns a checkable
term M into an inferable term), and presents checkable and inferable fragments
of dependent type theory [6]. We adopt this strategy as well.

With regard to 2), what we need for DTS is not a type checker in the genuine
sense of a functional programming language, but, instead, a checker that also
infers a type for an underspecified term that appears in a given term. For this
purpose, the type A of an underspecified term @ should be calculated from its
surroundings, and when the algorithm tries to check whether @ has a type A
within the given surroundings, it is supposed to update the list of judgements
for underspecified terms by adding Γ � @ : A.

However, the algorithm in [6] requires that the function in a function appli-
cation construction must be an inferable term, which means that the type of
an underspecified term @, in the form of function, must be inferable from the
structure of @ itself. This is not the case.

8 http://wiki.portal.chalmers.se/agda/



v ::= n | type | kind | � | ⊥ | () | (x:v) → v′ |
[
x:v
v′

]
| λx.v | (v, v′) | v → v′ |

[
v
v′

]

n ::= x | c | @i | nv | πin

M↑ ::= x | c | type | (x:M↓) → M↓ | M↑M↓ |
[
x:M↓
M↓

]
| (M↑, M↑) | πiM↑ | M↓ :: M↓ | M↓ → M↓ |

[
M↓
M↓

]
| () | � | ⊥

M↓ ::= M↑ | λx.M↓ | M↓M↑ | (M↓, M↓) | @i

Fig. 3. Values, neutral terms, inferable and checkable terms

(3) a. (for (2a)(2d)) δ : type, c : δ � @2 : δ →
[
z:entity
¬human(z)

]

b. (for (2b)) δ : type, c : δ, u : monarchy(sweden) � @2 :

[
δ
monarchy(sweden)

]
→

[
z:entity
¬human(z)

]

c. (for (2c)) δ : type, c : δ, x : entity, u : monarchy(x) � @2 :

⎡
⎣δ[

entity
monarchy(x)

]⎤⎦ →
[
z:entity
¬human(z)

]

(4) a. (for (2a)(2d)) δ : type, c : δ � @1 : δ →

⎡
⎣y:entity[

king(y)
have(sweden, y)

]⎤⎦

b. (for (2b)) δ : type, c : δ � @1 :

[
δ
monarchy(sweden)

]
→

⎡
⎣y:entity[

king(y)
have(sweden, y)

]⎤⎦

c. (for (2c) δ : type, c : δ, x : entity, u : monarchy(x) � @1 :

⎡
⎣δ[

entity
monarchy(x)

]⎤⎦ →

⎡
⎣y:entity[

king(y)
have(x, y)

]⎤⎦

(5) a. (for (2d)) δ : type, c : δ � @3 : monarchy(sweden)

Fig. 4. Projective contents of (2)

The key observation to solve the second problem is that an underspecified
term @ in DTS is always a simply typed function. Therefore, it suffices for the
type of a simply typed function @ to be inferable from the type of a local context
c and the type of the application @(c) (the same situation arises for simply typed
pairs, but we do not discuss the details of that case here). The main contributions
of this work are as follows.

(i) We extend the fragment of dependent type theory given in [6] to include
underspecified terms and dependent sum types, as defined in Figure 3,
where v, n,M↑ and M↓ are the collections of values, neutral terms, inferable
terms, and checkable terms, respectively.

(ii) We extend the type checking/inference rules of [6] as in Figure 5 for the
fragment in Figure 3, where simply typed functions (and simply typed
pairs) are inferable terms.

Note that any annotations that are required for the representation language
of DTS to be confined to the fragment in Figure 3 can be naturally specified
within the lexical representations of presupposition triggers, as shown in Fig-
ure 1.

Note also that the soundness of this algorithm—namely, that every judgment
that is checked as true or inferred in this algorithm is also derivable in the original



[L] Γ �σ M :↑ v [L′]

[L] Γ �σ M :↓ v [L′]
(CHK)

(x, v) ∈ Γ

[L] Γ �σ x :↑ v [L]
(VAR)

(c, v) ∈ σ

[L] Γ �σ c :↑ v [L]
(CON )

[L] Γ �σ type :↑ kind [L]
(TYPE)

[L] Γ �σ A :↓ s1 [L′] A ⇓β v [L′] Γ, x : v �σ B :↓ s2 [L′′]

[L] Γ �σ (x:A) → B :↑ s2 [L′′]
(ΠF)

(s1, s2 ∈ {type, kind})

[L] Γ, x : v �σ M :↓ v′ [L′]

[L] Γ �σ λx.M :↓ (x:v) → v′ [L′]
(ΠI )

[L] Γ �σ M :↑ (x:v) → v′ [L′] [L′] Γ �σ N :↓ v [L′′] v′[N/x] ⇓β v′′

[L] Γ �σ MN :↑ v′′ [L′′]
(ΠE)

[L] Γ �σ A :↓ s1 [L′] [L′] Γ �σ B :↓ s2 [L′′]

[L] Γ �σ A → B :↑ s2 [L′′]
(→F)

(s1, s2 ∈ {type, kind})

[L] Γ, x : v �σ M :↓ v′ [L′]

[L] Γ �σ λx.M :↓ v → v′ [L′]
(→I )

[L] Γ �σ N :↑ v [L′] [L′] Γ �σ M :↓ v → v′ [L′′]

[L] Γ �σ MN :↓ v′ [L′′]
(→E)

[L] Γ �σ A :↓ s1 [L′] A ⇓β v [L′] Γ, x : v �σ B :↓ s2 [L′′]

[L] Γ �σ

[
x:A
B

]
:↑ s2 [L′′]

(ΣF)

(s1, s2 ∈ {type, kind})

[L] Γ �σ M :↓ v [L′] v′[M/x] ⇓β v′′ [L′] Γ �σ N :↓ v′′ [L′′]

[L] Γ �σ (M, N) :↓

[
x:v
v′

]
[L′′]

(ΣI )

[L] Γ �σ M :↑

[
x:v
v′

]
[L′]

[L] Γ �σ π1M :↑ v [L′]
(ΣE)

[L] Γ �σ M :↑

[
x:v
v′

]
[L′] v′[π1M/x] ⇓β v′′

[L] Γ �σ π2M :↑ v′′ [L′]
(ΣE)

[L] Γ �σ A :↓ s1 [L′] [L′] Γ �σ B :↓ s2 [L′′]

[L] Γ �σ

[
x:A
B

]
:↑ s2 [L′′]

(→F)

(s1, s2 ∈ {type, kind})

[L] Γ �σ M :↑ v [L′] [L′] Γ �σ N :↑ v′ [L′′]

[L] Γ �σ (M, N) :↑

[
v
v′

]
[L′′]

(∧I )
[L] Γ �σ M :↑

[
v
v′

]
[L′]

[L] Γ �σ π1M :↑ v [L′]
(∧E)

[L] Γ �σ M :↑

[
v
v′

]
[L′]

[L] Γ �σ π2M :↑ v′ [L′]
(∧E)

[L] Γ �σ A :↓ s [L′] A ⇓β v [L′] Γ �σ M :↓ v [L′′]

[L] Γ �σ M :: A :↑ v [L′′]
(ANN )

(s ∈ {type, kind})

[L] Γ �σ � :↑ type [L]
(�F)

[L] Γ �σ () :↑ � [L]
(�I )

[L] Γ �σ ⊥ :↑ type [L]
(⊥F)

[L] Γ �σ @i :↓ v [L, (Γ �σ @i : v)]
(ASP)

Fig. 5. Type checking/inference rules for DTS

typing rule of dependent type theory—should be proven by a straightforward
induction on constructions.

3 Implementation

We implemented the algorithm in Figure 5, using the functional programming
language Haskell. The program includes two main functions: typeInfer and
typeCheck. The function typeInfer 1) takes a global context Γ and a term M ,
and returns a type A such that Γ � M : A; and 2) updates the current list [L] of
judgments for underspecified terms. The function typeCheck 1) takes a global
context Γ , a term M , and a type A, and returns a Boolean value indicating



whether Γ � M : A holds; and 2) updates the current list [L] of judgments for
underspecified terms.

4 Calculating Projective Contents

Given terms (2) as inputs, our type checking program checks whether it has
a type δ → type within a global context δ : type, c : δ (δ is a propositional
content of its preceding discourse and c is its proof term), and updates the
list of judgments for underspecified terms so as to contain those in Figure 4.
The lists (3) and (4) are, respectively, for @2 and @1, which correspond to the
anaphoric part and the possessive presupposition part of its. The list (5) is for
the appositive CI in (2d).

The judgments in (4) are the ones obtained after anaphora resolution for
@2 has been executed: the output of the program contains the occurrence of
@2 within the types for @1 (this means that the possessive presuppositions
in (1) contain the anaphora antecedents). The proof terms corresponding to
the intended reading in (1) (i.e. it refers to Sweden in (1a)(1b)(1d), and every
monarchy in (1c)) are as follows:

@2 = λc.(sweden, n(sweden)m)
@2 = λc.(π1π2(c), n(π1π2(c))(π2π2(c))),

where m is a proof term for monarchy(sweden) (Sweden is a monarchy), and n
is a proof term for (x : entity) → monarchy(x) → ¬human(x) (Monarchy is
not a human). Then, (4) is obtained by substituting @2 with these proof terms.

The judgments for @1 in (4) correctly represent the projective contents in
(1): the type of (4a) states that the preceding discourse entails that Sweden
has a king (which is a projective content of (1a)). The type of (4b) states that
the preceding discourse entails that, if Sweden is a monarchy, then Sweden has
a king. (This is a projective content of (1b). The type of (4c) states that the
preceding discourse entails that every monarchy has a king (which is a projective
content of (1c).) The type of (5) is the projected CI content in (1d), stating that
Sweden is a monarchy.

5 Conclusion

We show that the projective contents of (1) are automatically calculated from
the semantic representations via the type checking/inference algorithm in Fig-
ure 5. In future work, we plan to connect the input of this program to a robust
CCG parser, or, independently, to connect the output of this program to a theo-
rem prover, aiming at establishing a pipeline from sentences to their entailment
relation, including projective contents such as presuppositions, anaphora and
conventional implicatures.
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