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Abstract. This paper aims at integrating logical operators into frame-
based semantics. Frames are semantic graphs that allow to capture lex-
ical meaning in a fine-grained way but that do not come with a natu-
ral way to integrate logical operators such as quantifiers. The approach
we propose starts from the observation that modal logic is a powerful
tool for describing relational structures, hence frames. We use its hybrid
logic extension in order to incorporate quantification and thereby allow
for inference and reasoning. We develop a type theoretic compositional
semantics using this approach, formulated within Abstract Categorial
Grammar.

1 Frames and Lexical Semantics

Frames emerged as a representation format of conceptual and lexical knowl-
edge [10,4,15]. They are commonly presented as semantic graphs with labelled
nodes and edges, such as the one in Fig. 1, where nodes correspond to en-
tities (individuals, events, . . . ) and edges correspond to (functional or non-
functional) relations between these entities. In Fig. 1 all relations except part-of
are meant to be functional. Frames can be formalized as extended typed feature
structures [18,12,14], but a reformulation in first order logic is also straightfor-
ward [12]. This conception of frames is therefore not to be confused with the
somewhat simpler FrameNet frames (see [17]).

Recent work has addressed the composition of lexical frames on the senten-
tial level by means of an explicit syntax-semantics interface [12]. However, the
integration of logical operators remains a desideratum. While [13] presents an
experiment with a seamless intergration of “quantifier frames”, [16] suggests to
keep frames and logical operators separate. We follow the latter general approach
in this paper.
⋆ This work was supported by the INRIA sabbatical program and by the CRC 991
“The Structure of Representations in Language, Cognition, and Science” funded by
the German Research Foundation (DFG).
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2 Hybrid Logic and Semantic Frames

2.1 Hybrid Logic

With the notations of [2], Rel is a set of relational symbols, Prop a set of
propositional variables, Nom a set of nominals, and Svar a set of state variables
(Stat = Nom ∪ Svar). The language of formulas is Forms ∶∶= ⊺ ∣ p ∣ s ∣ ¬φ ∣ φ1 ∧
φ2 ∣ ⟨R⟩φ ∣ Eφ ∣ @sφ ∣ ↓x.φ ∣ ∃x.φ where p ∈ Prop, s ∈ Stat, R ∈ Rel and φ,φ1, φ2 ∈
Forms. A model M is a triple ⟨M, (RM)R∈Rel, V ⟩ such thatM is a non-empty set,
each RM is a binary relation on M , and the valuation V ∶ Prop∪NomÐ→ ℘(M)

is such that if i ∈ Nom then V (i) is a singleton. An assignment g is a mapping
g ∶ Svar Ð→M . For an assignment g, gxm is an assignment that differs from g at
most on x and gxm(x) = m. For s ∈ Stat, we also define [s]M,g to be the only m
such that V (s) = {m} if s ∈ Nom and [s]M,g = g(s) if s ∈ Svar.

Let M be a model, w ∈ M , and g an assignment for M. The satisfaction
relation is defined as follows:

M, g,w ⊧ ⊺
M, g,w ⊧ s iff w = [s]M,g for s ∈ Stat
M, g,w ⊧ ¬φ iff M, g,w /⊧ φ
M, g,w ⊧ φ1 ∧ φ2 iff M, g,w ⊧ φ1 and M, g,w ⊧ φ2
M, g,w ⊧ ⟨R⟩φ iff there is a w′ ∈M such that RM(w,w′) and M, g,w′ ⊧ φ
M, g,w ⊧ p iff w ∈ V (p) for p ∈ Prop
M, g,w ⊧ @sφ iff M, g, [s]M,g ⊧ φ for s ∈ Stat
M, g,w ⊧↓x.φ iff M, gxw,w ⊧ φ
M, g,w ⊧ ∃x.φ iff there is a w′ ∈M such that M, gxw′ ,w ⊧ φ
M, g,w ⊧ Eφ iff there is a w′ ∈M such that M, g,w′ ⊧ φ

We also define

A

φ ≡ ¬ E(¬φ) (i.e., M, g,w ⊧

A

φ iff ∀w′ M, g,w′ ⊧ φ)3 and φ Ô⇒
ψ ≡ (¬φ) ∨ ψ. A formula φ is:

– satisfiable if there is a model M, and assignment g on M, and a state w ∈M
such that M, g,w ⊧ φ

– globally true in a model M under an assignment g, i.e., M, g,w ⊧ φ for all
w ∈M . We write M, g ⊧ φ

2.2 Feature Structures

In [12], semantic frames are introduced as base-labelled feature structure with
types and relations. This definition extends the standard definition of feature
structures in two respects: In addition to features, proper relations between nodes
can be expressed. Moreover, it is not required that every node is accessible from
3 According to the satisfaction relation, ↓ and ∃ bind state variables without changing
the current evaluation state. [7] shows that they define a distinct hierarchy from the
one we get using E(or some other binder Σ). It also shows that the fragment using
operators from the two hierarchies is as expressive as the most expressive fragment.
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Fig. 1. Frame for the meaning of the man walked to the house (adapted from [12])

a single root node via a feature path; instead, it is required that every node is
accessible from one of the base-labelled nodes. Semantic frames defined in this
way can be seen as finite first-order structures which conform to a signature
consisting of a set Label ∪ Type of unary relation symbols and a set Feat ∪ Rel
of binary relation symbols subject to the constraints that the members of Label
denote singletons, the members of Feat denote functional relations, and that
the above accessibility condition holds. In the example frame of Fig. 1, symbols
inside nodes (l0, l1, . . . ) indicate base labels, symbols attached to nodes (man,
motion, . . . ) belong to Type, members of Feat are marked by small caps (agent,
endp, . . . ), and part-of is the only member of Rel occurring in the frame.

Structures of this kind can easily be turned into Kripke structures by treating
the interpretation of the members of Label ∪Type by a separate valuation func-
tion. Semantic frames, or feature structures, provide thus a natural application
domain for modal languages and, in particular, for hybrid extensions because
of the need to cope with node labels and feature path re-entrancies [5]. Under
the formal set-up of Section 2.1, Type corresponds to Prop, Label corresponds
to Nom, and Feat is subsumed under Rel. (The functionality of the members of
Feat must be enforced separately.) The semantic frame of Fig. 1 is a model that
satisfies the formula (1) at the element named by l0.

(1) l0 ∧motion ∧ ⟨agent⟩(l1 ∧man) ∧ ⟨mover⟩l1 ∧ ⟨goal⟩(l2 ∧ house)∧

⟨manner⟩walking ∧ (∃v w.⟨path⟩(path ∧ ⟨endp⟩v)∧

@l2(⟨at-region⟩w) ∧@v(⟨part-of ⟩w))

The logical framework of [12] does not provide means for explicit quantification.
As a consequence, the referential entities of the domain of discourse are implicitly
treated as definite, which is reflected by the crucial role of nominals in (1).4 In

4 Hybrid logic with nominals but without quantification over states also allows [3] to
describe semantic dependency graphs. Natural language quantification is encoded
using restr and body relations. However, it is not clear how to compute relations
between these representations (e.g., how to check that John kisses Mary holds in
case every man kisses Mary holds).



4 L. Kallmeyer, T. Lichte, R. Osswald, S. Pogodalla, C. Wurm

the following, we will show how this limitation can be overcome by employing
hybrid languages.

3 Type-Theoretic Semantics with Frames

We now provide the type-theoretic syntax-semantics interface allowing for a com-
positional building of the meanings. We describe it using the ACG [9] framework.
As we are concerned in this article with semantic modeling and quantification
rather than with parsing, we use higher-order types for quantified noun-phrases.

The models we are considering are semantic frames instead of arbitrary
first-order models. So we first present some models in which we consider the
sentences (2a–4a). When the model is the frame of Fig. 2(a), we expect (2a) to
be true as there is a kissing event with agent and theme attributes linking to
persons named (linked with the named attribute) John and Mary resp. (3a) is
expected to be false, as well as (4a) with the object wide scope reading as there
is a person named Paul (resp. named Peter) who is agent of a single kissing
event whose theme is a person named Sue (resp. Mary). On the other hand,
the subject wide scope reading of (4a) is expected to be true. (5a) shows how
state storing with the ↓ operator correctly interacts with the @ operator used in
specifying node sharing (for instance that the state linked with a goal relation
in the verb semantic recipe has to be specified by the PP). This sentence is ex-
pected to be true (both readings) in the model given by the frame of Fig. 2(b).

(2) a. John kisses Mary
b. E(kissing ∧ ⟨agent⟩(person ∧ ⟨named⟩John)∧

⟨theme⟩(person ∧ ⟨named⟩Mary))

(3) a. Every man kisses Mary
b.

A

(↓i.man Ô⇒ E(kissing ∧ ⟨agent⟩i∧
⟨theme⟩(person ∧ ⟨named⟩Mary)))

(4) a. Every man kisses some woman
b.

A

(↓i.man Ô⇒ E(↓i′.woman ∧ E(kissing ∧ ⟨agent⟩i ∧ ⟨theme⟩i′)))
c. E(↓i.woman ∧

A

(↓i′.man Ô⇒ E(kissing ∧ ⟨agent⟩i′ ∧ ⟨theme⟩i)))
(5) a. Every man walked to some house

b. E(↓i.house ∧ (

A

(↓i′.man Ô⇒
(∃a g. E(motion ∧ ⟨agent⟩a ∧ ⟨mover⟩a ∧ ⟨goal⟩g∧

⟨path⟩path ∧ ⟨manner⟩walking ∧@ai
′∧

(∃r v w.event ∧ ⟨path⟩(path ∧ ⟨endp⟩v)∧
@r(⟨at-region⟩w) ∧@v(⟨part-of ⟩w) ∧@r(g ∧ i)))))))

c.

A

(↓i.man Ô⇒ ( E(↓i′.house∧
(∃a g. E(motion ∧ ⟨agent⟩a ∧ ⟨mover⟩a ∧ ⟨goal⟩g∧

⟨path⟩path ∧ ⟨manner⟩walking ∧@ai∧
(∃r v w.event ∧ ⟨path⟩(path ∧ ⟨endp⟩v)∧

@r(⟨at-region⟩w) ∧@v(⟨part-of ⟩w) ∧@r(g ∧ i
′)))))))
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Fig. 2. Frame samples

As in [12], the syntax-semantics interface we propose builds a frame descrip-
tion out of a sentence in natural language. This frame description is a logical
formula that is checked against the possible models, and the sentence is true
w.r.t. a model M in case this model satisfies the logical formula. More precisely,
given a sentence s and its semantic representation JsK, we say that s is true
iff for all assignments g, M, g ⊧ JsK (i.e., JsK is globally true in M under any
assignment).

We use the following syntactic types: NP , S , N , and PP and the following
syntactic type assignments:

John,Mary ∶ NP kisses ∶ NP → NP → S to, into ∶ NP → PP
man,woman,house ∶ N every, some ∶ N → (NP → S)→ S walk ∶ PP → NP → S
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event , kissing ,motion,person,John,Mary , . . . ∶ t @ ∶ t→ t→ t
∧ ∶ t→ t→ t Ô⇒ ∶ t→ t→ t E,

A

∶ t→ t ↓,∃ ∶ (t→ t)→ t
Table 1. Constant terms of the semantic language

S ,NP ,N ∶= t PP ∶= t→ t
John ∶= John Mary ∶= Mary
man ∶= man woman ∶= woman
house ∶= house
some ∶= λP Q. E(↓i.P ∧ (Q i)) every ∶= λP Q.

A

(↓i.P Ô⇒ (Q i))
kisses ∶= λo s. E(kissing ∧ ⟨agent⟩s ∧ ⟨theme⟩o)
walks ∶= λpp s.∃a g. E(motion ∧ ⟨agent⟩a ∧ ⟨mover⟩a ∧ ⟨goal⟩g

∧⟨path⟩path ∧ ⟨manner⟩walking ∧@as ∧ (pp g))
to ∶= λn g.∃r v w.event ∧ ⟨path⟩(path ∧ ⟨endp⟩v)∧

@r⟨at-region⟩w ∧@v⟨part-of ⟩w ∧@r(g ∧ n)
into ∶= λn g.∃r v w.event ∧ ⟨path⟩(path ∧ ⟨endp⟩v)∧

@r⟨in-region⟩w ∧@v⟨part-of ⟩w ∧@r(g ∧ n)
Table 2. Semantic interpretation of constants

Table 1 shows the semantic constants we use, including logical operators and
quantifiers. We follow [12] in the semantics and meaning decomposition of loco-
motion verbs.

Then we can use the semantic interpretation given in Table 2. For sake of
conciseness and explanatory purposes, we use a single type t to denote modal
formulas. This is not completely satisfactory as we can build terms that are not
in Forms. (In principle, any proposition could specify the @ ∶ t→ t→ t operator.
But in our lexicon example, we of course restrict the first parameter to state
variables.) A more faithful encoding could use the standard parametrization
of the propositions with a s type for states, or use a dedicated hybrid type-
theory [1]. Then the following equalities hold, where t2b is the term in (2b), t3b
is the term in (3b), etc.:

Jkisses Mary JohnK = t2b(6)
J(every man) (λx.kisses Mary x)K = t3b(7)

J(every man) (λx.(some woman) (λy.kisses y x))K = t4b(8)
J(some woman) (λy.(every man) (λx.kisses y x))K = t4c(9)

In (10) and (11), we have an interaction of the storing for quantification and
path equalities compositionally deriving from the verb and the preposition. In
the verb semantics, the path equalities specify that the mover and the agent
attributes of the event are the same, and that the information provided by
the pp argument should hold for the goal g. In its semantics, the preposition
contributes on the one hand to the main event (as the event proposition is
evaluated at the current state) and on the other hand by specifying that the g
state (meant to be the target node of the verb that the proposition modifies,
here the target of the goal attribute) should be identified to the n argument
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(the noun phrase which is argument of the preposition).

J(every man) (λx.(some house)(λy.walked (to y) x))K = t5b(10)
J(some house)(λy.(every man) (λx.walked (to y) x))K = t5c(11)

4 Conclusion and Perspectives

We used hybrid logic as a means to integrate logical operators with frame seman-
tics. A type theoretic semantics was presented that shows how to compositionally
derive different quantifier scope readings. This approach has much in common
with [16], which combines data semantics with frame semantics. The exact re-
lation between the two approaches needs to be spelled out in future work. We
see applications of our approach of using hybrid logic for frame semantics in the
context of various formalisms; we plan in particular to pursue this approach in
the framework of Lexicalized Tree Adjoining Grammars (LTAG) [12].

We also think that the compositional account we presented allows us to
consider an embedding within a underspecified representation language. The
object language (in the sense of [8]) would be the hybrid logic language instead
of the usual first-order logic language, following a standard modeling of scope
ambiguity in LTAG.

Finally, we plan to investigate the computational properties of the framework
we propose with respect to the hybrid inferential systems [6] and the specific
properties induced by the frame models we consider, typically the functionality
of the attribute relations [19].
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